701 research outputs found

    Adaptive delayed channel access for IEEE 802.11n WLANs

    Get PDF
    Abstract— In this paper we investigate potential benefits that an adaptive delayed channel access algorithm can attain for the next-generation wireless LANs, the IEEE 802.11n. We show that the performance of frame aggregation introduced by the 802.11n adheres due to the priority mechanism of the legacy 802.11e EDCA scheduler, resulting in a poor overall performance. Because high priority flows have low channel utilization, the low priority flows throughputs can be amerced further. By introducing an additional delay at the MAC layer, before the channel access scheduling, it will retain aggregate sizes at higher numbers and consequently a better channel utilization. Also, in order to support both UDP and TCP transport layer protocols, the algorithm’s operational conditions are kept adaptive. The simulation results demonstrate that our proposed adaptive delayed channel access outperforms significantly the current 802.11n specification and non-adaptive delayed channel access

    FastM: Design and Evaluation of a Fast Mobility Mechanism for Wireless Mesh Networks

    Get PDF
    Although there is a large volume of work in the literature in terms of mobility approaches for Wireless Mesh Networks, usually these approaches introduce high latency in the handover process and do not support realtime services and applications. Moreover, mobility is decoupled from routing, which leads to inefficiency to both mobility and routing approaches with respect to mobility. In this paper we present a new extension to proactive routing protocols using a fast mobility extension, FastM, with the purpose of increasing handover performance in Wireless Mesh Networks. With this new extension, a new concept is created to integrate information between neighbor wireless mesh routers, managing locations of clients associated to wireless mesh routers in a certain neighborhood, and avoiding packet loss during handover. The proposed mobility approach is able to optimize the handover process without imposing any modifications to the current IEE 802.11 MAC protocol and use unmodified clients. Results show the improved efficiency of the proposed scheme: metrics such as disconnection time, throughput, packet loss and control overhead are largely improved when compared to previous approaches. Moreover, these conclusions apply to mobility scenarios, although mobility decreases the performance of the handover approach, as expected

    Service differentiation in multihop wireless packet networks

    Get PDF
    This work explores the potential of link layer scheduling combined with MAC layer prioritization for providing service differentiation in multihop wireless packet networks. As a result of limited power, multihop characteristic and mobility, packet loss ratio in wireless ad hoc networks tends to be high compared to wireline and one-hop mobile data networks. Therefore, for wireless ad hoc networks, DiffServ-like distributed service differentiation schemes are more viable than hard QoS solutions, which are mainly designed for wireline networks. The choice and implementation of proper queuing and scheduling methods, which determine how packets will use the channel when bandwidth becomes available, contributes significantly to this differentiation. Due to the broadcast nature of wireless communication, media access is one of the main resources that needs to be shared among different flows. Thus, one can design and implement algorithms also at MAC level for service differentiation. In this study, in addition to the scheduling discipline, IEEE 802.11 Distributed Coordination Function is used to increase the media access probability of a specific class of traffic. It is shown that the service requirements of a class can be better met using this two level approach compared to the cases where either of these schemes used alone
    • 

    corecore