3,009 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    MISSION-ORIENTED HETEROGENEOUS ROBOT COOPERATION BASED ON SMART RESOURCES EXECUTION

    Full text link
    Home environments are changing as more technological devices are used to improve daily life. The growing demand for high technology in our homes means that robot integration will soon arrive. Home devices are evolving in a connected paradigm in which data flows to perform efficient home task management. Heterogeneous home robots connected in a network can establish a workflow that complements their capabilities and so increases performance within a mission execution. This work addresses the definition and requirements of a robot-group mission in the home context. The proposed solution relies on a network of smart resources, which are defined as cyber-physical systems that provide high-level service execution. Firstly, control middleware architecture is introduced as the execution base for the Smart resources. Next, the Smart resource topology and its integration within a robotic platform are addressed. Services supplied by Smart resources manage their execution through a robot behavior architecture. Robot behavior execution is hierarchically organized through a mission definition that can be established as an individual or collective approach. Environment model and interaction tasks characterize the operation capabilities of each robot within a mission. Mission goal achievement in a heterogeneous group is enhanced through the complement of the interaction capabilities of each robot. To offer a clearer explanation, a full use case is presented in which two robots cooperate to execute a mission and the previously detailed steps are evaluated. Finally, some of the obtained results are discussed as conclusions and future works is introduced.Los entornos domésticos se encuentran sometidos a un proceso de cambio gracias al empleo de dispositivos tecnológicos que mejoran la calidad de vida de las personas. La creciente demanda de alta tecnología en los hogares señala una próxima incorporación de la robótica de servicio. Los dispositivos domésticos están evolucionando hacia un paradigma de conexión en el cual la información fluye para ofrecer una gestión más eficiente. En este entorno, robots heterogéneos conectados a la red pueden establecer un flujo de trabajo que ofreciendo nuevas soluciones y incrementando la eficiencia en la ejecución de tareas. Este trabajo aborda la definición y los requisitos necesarios para la ejecución de misiones en grupos de robots heterogéneos en entornos domésticos. La solución propuesta se apoya en una red de Smart resources, que son definidos como sistemas ciber-físicos que proporcionan servicios de alto nivel. En primer lugar, se presenta la arquitectura del middleware de control en la cual se basa la ejecución de los Smart resources. A continuación se detalla la topología de los Smart resources, así como su integración en plataformas robóticas. Los servicios proporcionados por los Smart resources gestionan su ejecución mediante una arquitectura de comportamientos para robots. La ejecución de estos comportamientos se organiza de forma jerárquica mediante la definición de una misión con un objetivo establecido de forma individual o colectiva a un grupo de robots. Dentro de una misión, las tareas de modelado e interacción con el entorno define las capacidades de operación de los robots dentro de una misión. Mediante la integración de un grupo heterogéneo de robots sus diversas capacidades son complementadas para el logro un objetivo común. A fin de caracterizar esta propuesta, los mecanismos presentados en este documento se evaluarán en detalle a lo largo de una serie experimentos en los cuales un grupo de robots heterogéneos ejecutan una misión colaborativa para alcanzar un objetivo común. Finalmente, los resultados serán discutidos a modo de conclusiones dando lugar el establecimiento de un trabajo futuro.Els entorns domèstics es troben sotmesos a un procés de canvi gràcies a l'ocupació de dispositius tecnològics que milloren la qualitat de vida de les persones. La creixent demanda d'alta tecnologia a les llars assenyala una propera incorporació de la robòtica de servei. Els dispositius domèstics estan evolucionant cap a un paradigma de connexió en el qual la informació flueix per oferir una gestió més eficient. En aquest entorn, robots heterogenis connectats a la xarxa poden establir un flux de treball que ofereix noves solucions i incrementant l'eficiència en l'execució de tasques. Aquest treball aborda la definició i els requisits necessaris per a l'execució de missions en grups de robots heterogenis en entorns domèstics. La solució proposada es recolza en una xarxa de Smart resources, que són definits com a sistemes ciber-físics que proporcionen serveis d'alt nivell. En primer lloc, es presenta l'arquitectura del middleware de control en la qual es basa l'execució dels Smart resources. A continuació es detalla la tipologia dels Smart resources, així com la seva integració en plataformes robòtiques. Els serveis proporcionats pels Smart resources gestionen la seva execució mitjançant una arquitectura de comportaments per a robots. L'execució d'aquests comportaments s'organitza de forma jeràrquica mitjançant la definició d'una missió amb un objectiu establert de forma individual o col·lectiva a un grup de robots. Dins d'una missió, les tasques de modelatge i interacció amb l'entorn defineix les capacitats d'operació dels robots dins d'una missió. Mitjançant la integració d'un grup heterogeni de robots seves diverses capacitats són complementades per a l'assoliment un objectiu comú. Per tal de caracteritzar aquesta proposta, els mecanismes presentats en aquest document s'avaluaran en detall mitjançant d'una sèrie experiments en els quals un grup de robots heterogenis executen una missió col·laborativa per aconseguir un objectiu comú. Finalment, els resultats seran discutits a manera de conclusions donant lloc a l'establiment d'un treball futur.Munera Sánchez, E. (2017). MISSION-ORIENTED HETEROGENEOUS ROBOT COOPERATION BASED ON SMART RESOURCES EXECUTION [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/88404TESI

    Adaptive physical human-robot interaction (PHRI) with a robotic nursing assistant.

    Get PDF
    Recently, more and more robots are being investigated for future applications in health-care. For instance, in nursing assistance, seamless Human-Robot Interaction (HRI) is very important for sharing workspaces and workloads between medical staff, patients, and robots. In this thesis we introduce a novel robot - the Adaptive Robot Nursing Assistant (ARNA) and its underlying components. ARNA has been designed specifically to assist nurses with day-to-day tasks such as walking patients, pick-and-place item retrieval, and routine patient health monitoring. An adaptive HRI in nursing applications creates a positive user experience, increase nurse productivity and task completion rates, as reported by experimentation with human subjects. ARNA has been designed to include interface devices such as tablets, force sensors, pressure-sensitive robot skins, LIDAR and RGBD camera. These interfaces are combined with adaptive controllers and estimators within a proposed framework that contains multiple innovations. A research study was conducted on methods of deploying an ideal HumanMachine Interface (HMI), in this case a tablet-based interface. Initial study points to the fact that a traded control level of autonomy is ideal for tele-operating ARNA by a patient. The proposed method of using the HMI devices makes the performance of a robot similar for both skilled and un-skilled workers. A neuro-adaptive controller (NAC), which contains several neural-networks to estimate and compensate for system non-linearities, was implemented on the ARNA robot. By linearizing the system, a cross-over usability condition is met through which humans find it more intuitive to learn to use the robot in any location of its workspace, A novel Base-Sensor Assisted Physical Interaction (BAPI) controller is introduced in this thesis, which utilizes a force-torque sensor at the base of the ARNA robot manipulator to detect full body collisions, and make interaction safer. Finally, a human-intent estimator (HIE) is proposed to estimate human intent while the robot and user are physically collaborating during certain tasks such as adaptive walking. A NAC with HIE module was validated on a PR2 robot through user studies. Its implementation on the ARNA robot platform can be easily accomplished as the controller is model-free and can learn robot dynamics online. A new framework, Directive Observer and Lead Assistant (DOLA), is proposed for ARNA which enables the user to interact with the robot in two modes: physically, by direct push-guiding, and remotely, through a tablet interface. In both cases, the human is being “observed” by the robot, then guided and/or advised during interaction. If the user has trouble completing the given tasks, the robot adapts their repertoire to lead users toward completing goals. The proposed framework incorporates interface devices as well as adaptive control systems in order to facilitate a higher performance interaction between the user and the robot than was previously possible. The ARNA robot was deployed and tested in a hospital environment at the School of Nursing of the University of Louisville. The user-experience tests were conducted with the help of healthcare professionals where several metrics including completion time, rate and level of user satisfaction were collected to shed light on the performance of various components of the proposed framework. The results indicate an overall positive response towards the use of such assistive robot in the healthcare environment. The analysis of these gathered data is included in this document. To summarize, this research study makes the following contributions: Conducting user experience studies with the ARNA robot in patient sitter and walker scenarios to evaluate both physical and non-physical human-machine interfaces. Evaluation and Validation of Human Intent Estimator (HIE) and Neuro-Adaptive Controller (NAC). Proposing the novel Base-Sensor Assisted Physical Interaction (BAPI) controller. Building simulation models for packaged tactile sensors and validating the models with experimental data. Description of Directive Observer and Lead Assistance (DOLA) framework for ARNA using adaptive interfaces

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Software-in-the-Loop Simulation of a Planetary Rover

    Get PDF
    The development of autonomous navigation algorithms for planetary rovers often hinges on access to rover hardware. Yet this access is usually very limited. In order to facilitate the continued development of these algorithms even when the hardware is temporarily unavailable, simulations are used. To minimize any additional work, these simulations must tightly integrate with the rover’s software infrastructure. They are then called Software-in-the-Loop simulators. In preparation for the 2015 DLR SpaceBot Camp, a simulation of the DLR LRU rover became necessary to ensure a timely progress of the navigation algorithms development. This paper presents the Software-in-the-loop simulator of the LRU, including details on the implementation and application

    Autonomy in the real real-world: A behaviour based view of autonomous systems control in an industrial product inspection system

    Get PDF
    The thesis presented in this dissertation appears in two sequential parts that arose from an exploration of the use of Behaviour Based Artificial Intelligence (BBAI) techniques in a domain outside that of robotics, where BBAI is most frequently used. The work details a real-world physical implementation of the control and interactions of an industrial product inspection system from a BBAI perspective. It concentrates particularly on the control of a number of active laser scanning sensor systems (each a subsystem of a larger main inspection system), using a subsumption architecture. This industrial implementation is in itself a new direction for BBAI control and an important aspect of this thesis. However, the work has also led on to the development of a number of key ideas which contribute to the field of BBAI in general. The second part of the thesis concerns the nature of physical and temporal constraints on a distributed control system and the desirability of utilising mechanisms to provide continuous, low-level learning and adaptation of domain knowledge on a sub-behavioural basis. Techniques used include artificial neural networks and hill-climbing state-space search algorithms. Discussion is supported with examples from experiments with the laser scanning inspection system. Encouraging results suggest that concerted design effort at this low level of activity will benefit the whole system in terms of behavioural robustness and reliability. Relevant aspects of the design process that should be of value in similar real-world projects are identified and emphasised. These issues are particularly important in providing a firm foundation for artificial intelligence based control systems

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology
    corecore