3,666 research outputs found

    Learning to Segment and Represent Motion Primitives from Driving Data for Motion Planning Applications

    Full text link
    Developing an intelligent vehicle which can perform human-like actions requires the ability to learn basic driving skills from a large amount of naturalistic driving data. The algorithms will become efficient if we could decompose the complex driving tasks into motion primitives which represent the elementary compositions of driving skills. Therefore, the purpose of this paper is to segment unlabeled trajectory data into a library of motion primitives. By applying a probabilistic inference based on an iterative Expectation-Maximization algorithm, our method segments the collected trajectories while learning a set of motion primitives represented by the dynamic movement primitives. The proposed method utilizes the mutual dependencies between the segmentation and representation of motion primitives and the driving-specific based initial segmentation. By utilizing this mutual dependency and the initial condition, this paper presents how we can enhance the performance of both the segmentation and the motion primitive library establishment. We also evaluate the applicability of the primitive representation method to imitation learning and motion planning algorithms. The model is trained and validated by using the driving data collected from the Beijing Institute of Technology intelligent vehicle platform. The results show that the proposed approach can find the proper segmentation and establish the motion primitive library simultaneously

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Gaussian-Process-based Robot Learning from Demonstration

    Full text link
    Endowed with higher levels of autonomy, robots are required to perform increasingly complex manipulation tasks. Learning from demonstration is arising as a promising paradigm for transferring skills to robots. It allows to implicitly learn task constraints from observing the motion executed by a human teacher, which can enable adaptive behavior. We present a novel Gaussian-Process-based learning from demonstration approach. This probabilistic representation allows to generalize over multiple demonstrations, and encode variability along the different phases of the task. In this paper, we address how Gaussian Processes can be used to effectively learn a policy from trajectories in task space. We also present a method to efficiently adapt the policy to fulfill new requirements, and to modulate the robot behavior as a function of task variability. This approach is illustrated through a real-world application using the TIAGo robot.Comment: 8 pages, 10 figure

    Probabilistic prioritization of movement primitives

    Get PDF
    Movement prioritization is a common approach to combine controllers of different tasks for redundant robots, where each task is assigned a priority. The priorities of the tasks are often hand-tuned or the result of an optimization, but seldomly learned from data. This paper combines Bayesian task prioritization with probabilistic movement primitives to prioritize full motion sequences that are learned from demonstrations. Probabilistic movement primitives (ProMPs) can encode distributions of movements over full motion sequences and provide control laws to exactly follow these distributions. The probabilistic formulation allows for a natural application of Bayesian task prioritization. We extend the ProMP controllers with an additional feedback component that accounts inaccuracies in following the distribution and allows for a more robust prioritization of primitives. We demonstrate how the task priorities can be obtained from imitation learning and how different primitives can be combined to solve even unseen task-combinations. Due to the prioritization, our approach can efficiently learn a combination of tasks without requiring individual models per task combination. Further, our approach can adapt an existing primitive library by prioritizing additional controllers, for example, for implementing obstacle avoidance. Hence, the need of retraining the whole library is avoided in many cases. We evaluate our approach on reaching movements under constraints with redundant simulated planar robots and two physical robot platforms, the humanoid robot “iCub” and a KUKA LWR robot arm
    corecore