124 research outputs found

    Towards Optimizing Quality Assurance Outcomes of Knowledge-Based Radiation Therapy Treatment Plans Using Machine Learning

    Get PDF
    Knowledge-based planning (KBP) techniques have been shown to provide improvements in plan quality, consistency, and efficiency for advanced radiation therapies such as volumetric modulated arc therapy (VMAT). While the potential clinical benefits of KBP methods are generally well known, comparatively less is understood regarding the impact of using these systems on resulting plan complexity and pre-treatment quality assurance (QA) measurements, especially for in-house KBP systems. Therefore, the overarching purpose of this work was to assess QA implications with using an in-house KBP system and explore data-driven methods for mitigating increased plan complexity and QA error rates without compromising dosimetric plan quality. Specifically, this study evaluated differences in dose, complexity, and QA outcomes between reference clinical plans and plans designed with a previously established in-house KBP system. Further, a machine learning model – trained and tested using a database of 500 previous VMAT treatment plans and QA measurements – was developed to predict VMAT QA measurements based on selected mechanical features of the plan. This model was deployed as a feedback mechanism within a heuristic optimization algorithm designed to modify plan parameters (identified by the machine learning model as important for accurately predicting QA outcomes) towards improving the predicted delivery accuracy of the plan. While KBP plans achieved average reductions of 6.4 Gy (p \u3c 0.001) and 8.2 Gy (p \u3c 0.001) in mean bladder and rectum dose compared to reference clinical plans across thirty-one prostate patients, significant (p \u3c 0.05) increases in both complexity and QA measurement errors were observed. A support vector machine (SVM) was developed – using a database of 500 previous VMAT plans – to predict gamma passing rates (GPRs; 3%/3mm percent dose-difference/distance-to-agreement with local normalization) based on selected complexity features. A QA-based optimization algorithm was devised by utilizing the SVM model to iteratively modify mechanical treatment features most commonly associated with suboptimal GPRs. The feasibility was evaluated on 13 prostate VMAT plans designed with an in-house KBP method. Using a maximum random leaf gap displacement setting of 3 mm, predicted GPRs increased by an average of 1.14 ± 1.25% (p = 0.006) with minimal differences in dose and radiobiological metrics

    Establishment and interpretation of the gamma pass rate prediction model based on radiomics for different intensity-modulated radiotherapy techniques in the pelvis

    Get PDF
    Backgroundand objectives: Implementation of patient-specific quality assurance (PSQA) is a crucial aspect of precise radiotherapy. Various machine learning-based models have showed potential as virtual quality assurance tools, being capable of accurately predicting the dose verification results of fixed-beam intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) plans, thereby ensuring safe and efficient treatment for patients. However, there has been no research yet that simultaneously integrates different IMRT techniques to predict the gamma pass rate (GPR) and explain the model.Methods: Retrospective analysis of the 3D dosimetric verification results based on measurements with gamma pass rate criteria of 3%/2 mm and 10% dose threshold of 409 pelvic IMRT and VMAT plans was carried out. Radiomics features were extracted from the dose files, from which the XGBoost algorithm based on SHapley Additive exPlanations (SHAP) values was used to select the optimal feature subset as the input for the prediction model. The study employed four different machine learning algorithms, namely, random forest (RF), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), to construct predictive models. Sensitivity, specificity, F1 score, and AUC value were calculated to evaluate the classification performance of these models. The SHAP values were utilized to perform a related interpretive analysis on the best performing model.Results: The sensitivities and specificities of the RF, AdaBoost, XGBoost, and LightGBM models were 0.96, 0.82, 0.93, and 0.89, and 0.38, 0.54, 0.62, and 0.62, respectively. The F1 scores and area under the curve (AUC) values were 0.86, 0.81, 0.88, and 0.86, and 0.81, 0.77, 0.85, and 0.83, respectively. The explanation of the model output based on SHAP values can provide a reference basis for medical physicists when adjusting the plan, thereby improving the efficiency and quality of treatment plans.Conclusion: It is feasible to use a machine learning method based on radiomics to establish a gamma pass rate classification prediction model for IMRT and VMAT plans in the pelvis. The XGBoost model performs better in classification than the other three tree-based ensemble models, and global explanations and single-sample explanations of the model output through SHAP values may offer reference for medical physicists to provide high-quality plans, promoting the clinical application and implementation of GPR prediction models, and providing safe and efficient personalized QA management for patients

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Events Recognition System for Water Treatment Works

    Get PDF
    The supply of drinking water in sufficient quantity and required quality is a challenging task for water companies. Tackling this task successfully depends largely on ensuring a continuous high quality level of water treatment at Water Treatment Works (WTW). Therefore, processes at WTWs are highly automated and controlled. A reliable and rapid detection of faulty sensor data and failure events at WTWs processes is of prime importance for its efficient and effective operation. Therefore, the vast majority of WTWs operated in the UK make use of event detection systems that automatically generate alarms after the detection of abnormal behaviour on observed signals to ensure an early detection of WTW’s process failures. Event detection systems usually deployed at WTWs apply thresholds to the monitored signals for the recognition of WTW’s faulty processes. The research work described in this thesis investigates new methods for near real-time event detection at WTWs by the implementation of statistical process control and machine learning techniques applied for an automated near real-time recognition of failure events at WTWs processes. The resulting novel Hybrid CUSUM Event Recognition System (HC-ERS) makes use of new online sensor data validation and pre-processing techniques and utilises two distinct detection methodologies: first for fault detection on individual signals and second for the recognition of faulty processes and events at WTWs. The fault detection methodology automatically detects abnormal behaviour of observed water quality parameters in near real-time using the data of the corresponding sensors that is online validated and pre-processed. The methodology utilises CUSUM control charts to predict the presence of faults by tracking the variation of each signal individually to identify abnormal shifts in its mean. The basic CUSUM methodology was refined by investigating optimised interdependent parameters for each signal individually. The combined predictions of CUSUM fault detection on individual signals serves the basis for application of the second event detection methodology. The second event detection methodology automatically identifies faults at WTW’s processes respectively failure events at WTWs in near real-time, utilising the faults detected by CUSUM fault detection on individual signals beforehand. The method applies Random Forest classifiers to predict the presence of an event at WTW’s processes. All methods have been developed to be generic and generalising well across different drinking water treatment processes at WTWs. HC-ERS has proved to be effective in the detection of failure events at WTWs demonstrated by the application on real data of water quality signals with historical events from a UK’s WTWs. The methodology achieved a peak F1 value of 0.84 and generates 0.3 false alarms per week. These results demonstrate the ability of method to automatically and reliably detect failure events at WTW’s processes in near real-time and also show promise for practical application of the HC-ERS in industry. The combination of both methodologies presents a unique contribution to the field of near real-time event detection at WTW
    • …
    corecore