264 research outputs found

    Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP) model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR), destination-sequenced distance-vector routing (DSDV), and ad hoc n-demand distance vector routing (AODV). The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To conclude, it is possible to develop a range of techniques for modelling scenarios applicable to MANETs, and these simulation models could be utilised for the evaluation of routing protocols

    A scheme for efficient peer-to-peer live video streaming over wireless mesh networks

    Get PDF
    Peers in a Peer-to-Peer (P2P) live video streaming system over hybrid wireless mesh networks (WMNs) enjoy high video quality when both random network coding (RNC) and an efficient hybrid routing protocol are employed. Although RNC is the most recently used method of efficient video streaming, it imposes high transmission overhead and decoding computational complexity on the network which reduces the perceived video quality. Besides that, RNC cannot guaranty a non-existence of linear dependency in the generated coefficients matrix. In WMNs, node mobility has not been efficiently addressed by current hybrid routing protocols that increase video distortion which would lead to low video quality. In addition, these protocols cannot efficiently support nodes which operate in infrastructure mode. Therefore, the purpose of this research is to propose a P2P live video streaming scheme which consists of two phases followed by the integration of these two phases known as the third phase to provide high video quality in hybrid WMNs. In the first phase, a novel coefficients matrix generation and inversion method has been proposed to address the mentioned limitations of RNC. In the second phase, the proposed enhanced hybrid routing protocol was used to efficiently route video streams among nodes using the most stable path with low routing overhead. Moreover, this protocol effectively supports mobility and nodes which operate in infrastructure mode by exploiting the advantages of the designed locator service. Results of simulations from the first phase showed that video distortion as the most important performance metric in live video streaming, had improved by 36 percent in comparison with current RNC method which employs the Gauss-Jordan Elimination (RNC-GJE) method in decoding. Other metrics including frame dependency distortion, initial start-up delay and end-to-end delay have also improved using the proposed method. Based on previous studies, although Reactive (DYMO) routing protocol provides better performance than other existing routing protocols in a hybrid WMN, the proposed protocol in the second phase had average improvements in video distortion of l86% for hybrid wireless mesh protocol (HWMP), 49% for Reactive (Dynamic MANET On-Demand-DYMO), 75% for Proactive (Optimized Link State Routing-OLSR), and 60% for Ad-hoc on-demand Distance Vector Spanning-Tree (AODV-ST). Other metrics including end-to-end delay, packet delay variation, routing overhead and number of delivered video frames have also improved using the proposed protocol. Finally, the third phase, an integration of the first two phases has proven to be an efficient scheme for high quality P2P live video streaming over hybrid WMNs. This video streaming scheme had averagely improved video distortion by 41%, frame dependency distortion by 50%, initial start-up delay by 15% and end-to-end delay by 33% in comparison with the average introduced values by three other considered integration cases which are Reactive and RNC-GJE, Reactive and the first phase, the second phase and RNC-GJE

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    A Distributed Geo-Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads

    On the Treewidth of Dynamic Graphs

    Full text link
    Dynamic graph theory is a novel, growing area that deals with graphs that change over time and is of great utility in modelling modern wireless, mobile and dynamic environments. As a graph evolves, possibly arbitrarily, it is challenging to identify the graph properties that can be preserved over time and understand their respective computability. In this paper we are concerned with the treewidth of dynamic graphs. We focus on metatheorems, which allow the generation of a series of results based on general properties of classes of structures. In graph theory two major metatheorems on treewidth provide complexity classifications by employing structural graph measures and finite model theory. Courcelle's Theorem gives a general tractability result for problems expressible in monadic second order logic on graphs of bounded treewidth, and Frick & Grohe demonstrate a similar result for first order logic and graphs of bounded local treewidth. We extend these theorems by showing that dynamic graphs of bounded (local) treewidth where the length of time over which the graph evolves and is observed is finite and bounded can be modelled in such a way that the (local) treewidth of the underlying graph is maintained. We show the application of these results to problems in dynamic graph theory and dynamic extensions to static problems. In addition we demonstrate that certain widely used dynamic graph classes naturally have bounded local treewidth

    Wireless Multi Hop Access Networks and Protocols

    Get PDF
    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points to the Internet are available, and the mobile node roams to a new access point, the node has to make a decision when and how to change its point of attachment. The thesis describes how to consider the rapid fluctuations of the wireless medium, how to handle the fact that other nodes on the path to the access point are also mobile which results in frequent link and route breaks, and the impact the change of attachment has on already existing connections. Medium access and routing protocols have been developed that consider both the long term and the short term variations of a mobile wireless network. The long term variations consider the fact that as nodes are mobile, links will frequently break and new links appear and thus the network topology map is constantly redrawn. The short term variations consider the rapid fluctuations of the wireless channel caused by mobility and multi path propagation deviations. In order to achieve diversity forwarding, protocols are presented which consider the network topology and the state of the wireless channel when decisions about forwarding need to be made. The medium access protocols are able to perform multi dimensional fast link adaptation on a per packet level with forwarding considerations. This i ncludes power, rate, code and channel adaptation. This will enable the type of performance improvements that are of significant importance for the success of multi hop wireless networks

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A Pheromone-Aided Multipath QoS Routing Protocol and its Applications in MANETs

    Get PDF
    In this paper, we present an ant-based multipath QoS routing protocol that utilizes a single link metric combiningmultiple weighted criteria. The metric is applied to the proposed energy efficient multipath algorithm that considers both energy and latency. Energy efficiency is an important issue in mobile ad hoc networks (MANETs) since node energy supplies are stored in batteries. In order to increase the network lifetime it is important to maximize the minimum node energy along a path. As the network topology changes, failures may occur on active routes,resulting in the need for new route discoveries if only singleroutes per flow are maintained. Frequent new route discovery would, however, increase routing overhead and increase mean and peak packet latency. Using multiple routes simultaneously per flow can be a solution to these problems. Also, a special case of the multipath QoS routing protocol that considers throughput is applied to a security context. A compromised node can obstruct network communication by simply dropping packets that are supposed to be forwarded. In our approach, messages aredistributed over multiple paths between source and destination using ant-based QoS routing. In proportion to the throughput of each path, a pheromone-aided routing table is updated and, subsequently, paths that contain malicious nodes are naturally avoided

    Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Get PDF
    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks
    • …
    corecore