17,421 research outputs found

    A novel on-board Unit to accelerate the penetration of ITS services

    Get PDF
    In-vehicle connectivity has experienced a big expansion in recent years. Car manufacturers have mainly proposed OBU-based solutions, but these solutions do not take full advantage of the opportunities of inter-vehicle peer-to-peer communications. In this paper we introduce GRCBox, a novel architecture that allows OEM user-devices to directly communicate when located in neighboring vehicles. In this paper we also describe EYES, an application we developed to illustrate the type of novel applications that can be implemented on top of the GRCBox. EYES is an ITS overtaking assistance system that provides the driver with real-time video fed from the vehicle located in front. Finally, we evaluated the GRCbox and the EYES application and showed that, for device-to-device communication, the performance of the GRCBox architecture is comparable to an infrastructure network, introducing a negligible impact

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    DFCV: A Novel Approach for Message Dissemination in Connected Vehicles using Dynamic Fog

    Full text link
    Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for enhancing road safety. Routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology, and high density of vehicles, leading to frequent route breakages and packet losses. Previous researchers have used either mobility in vehicular fog computing or cloud computing to solve the routing issue, but they suffer from large packet delays and frequent packet losses. We propose Dynamic Fog for Connected Vehicles (DFCV), a fog computing based scheme which dynamically creates, increments and destroys fog nodes depending on the communication needs. The novelty of DFCV lies in providing lower delays and guaranteed message delivery at high vehicular densities. Simulations were conducted using hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that DFCV ensures efficient resource utilization, lower packet delays and losses at high vehicle densities
    • …
    corecore