83 research outputs found

    Boxicity of graphs on surfaces

    Get PDF
    The boxicity of a graph G=(V,E)G=(V,E) is the least integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1...EkE=E_1 \cap ... \cap E_k. Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ\Sigma of genus gg is at most 5g+35g+3. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.Comment: 9 pages, 2 figure

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Surfaces, Tree-Width, Clique-Minors, and Partitions

    Get PDF
    In 1971, Chartrand, Geller, and Hedetniemi conjectured that the edge set of a planar graph may be partitioned into two subsets, each of which induces an outerplanar graph. Some partial results towards this conjecture are presented. One such result, in which a planar graph may be thus edge partitioned into two series-parallel graphs, has nice generalizations for graphs embedded onto an arbitrary surface and graphs with no large clique-minor. Several open questions are raised. © 2000 Academic Press

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    corecore