12 research outputs found

    Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    Get PDF
    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with robots entering our lives, whether in the workplace, in clinics, or in normal household environments, such improvements are increasingly important. The current state of research in bipedal robot locomotion reveals that several groups have continuously demonstrated enhanced locomotion performance of the developed robots. But each of these groups has taken a unilateral approach and placed the focus on only one aspect, in order to achieve enhanced movement abilities;---for instance, the motion control and postural stability or the mechanical design. The neural and mechanical systems in human and animal locomotion, however, are strongly coupled and should therefore not be treated separately. Human-inspired musculoskeletal design of bipedal robots offers great potential for enhanced dynamic and energy-efficient locomotion but also imposes major challenges for motion planning and control. In this thesis, we first present a detailed review of the problems related to achieving enhanced dynamic and energy-efficient bipedal locomotion, from various important perspectives, and examine the essential properties of the human locomotory apparatus. Subsequently, existing insights and approaches from biomechanics, to understand the neuromechanical motion apparatus, and from robotics, to develop more human-like robots that can move in our environment, are discussed in detail. These thorough investigations of the interrelated essential design decisions are used to develop a novel design for a musculoskeletal bipedal robot, BioBiped1, such that, in the long term, it is capable of realizing dynamic hopping, running, and walking motions. The BioBiped1 robot features a highly compliant tendon-driven actuation system that mimics key functionalities of the human lower limb system. In experiments, BioBiped1's locomotor function for the envisioned gaits is validated globally. It is shown that the robot is able to rebound passively, store and release energy, and actively push off from the ground. The proof of concept of BioBiped1's locomotor function, however, marks only the starting point for our investigations, since this novel design concept opens up a number of questions regarding the required design complexity for the envisioned motions and the appropriate motion generation and control concept. For this purpose, a simulator specifically designed for the requirements of musculoskeletally actuated robotic systems, including sufficiently realistic ground reaction forces, is developed. It relies on object-oriented design and is based on a numerical solver, without model switching, to enable the analysis of impact peak forces and the simulation of flight phases. The developed library also contains the models of the actuated and passive mono- and biarticular elastic tendons and a penalty-based compliant contact model with nonlinear damping, to incorporate the collision, friction, and stiction forces occurring during ground contact. Using these components, the full multibody system (MBS) dynamics model is developed. To ensure a sufficiently similar behavior of the simulated and the real musculoskeletal robot, various measurements and parameter identifications for sub-models are performed. Finally, it is shown that the simulation model behaves similarly to the real robot platform. The intelligent combination of actuated and passive mono- and biarticular tendons, imitating important human muscle groups, offers tremendous potential for improved locomotion performance but also requires a sophisticated concept for motion control of the robot. Therefore, a further contribution of this thesis is the development of a centralized, nonlinear model-based method for motion generation and control that utilizes the derived detailed dynamics models of the implemented actuators. The concept is used to realize both computer-generated hopping and human jogging motions. Additionally, the problem of appropriate motor-gear unit selection prior to the robot's construction is tackled, using this method. The thesis concludes with a number of simulation studies in which several leg actuation designs are examined for their optimality with regard to systematically selected performance criteria. Furthermore, earlier paradoxical biomechanical findings about biarticular muscles in running are presented and, for the first time, investigated by detailed simulation of the motion dynamics. Exploring the Lombard paradox, a novel reduced and energy-efficient locomotion model without knee extensor has been simulated successfully. The models and methods developed within this thesis, as well as the insights gained, are already being employed to develop future prototypes. In particular, the optimal dimensioning and setting of the actuators, including all mono- and biarticular muscle-tendon units, are based on the derived design guidelines and are extensively validated by means of the simulation models and the motion control method. These developments are expected to significantly enhance progress in the field of bipedal robot design and, in the long term, to drive improvements in rehabilitation for humans through an understanding of the neuromechanics underlying human walking and the application of this knowledge to the design of prosthetics

    Bioinspired template-based control of legged locomotion

    Get PDF
    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple models, coined ``templates'', able to represent the overall dynamics of animal (including human) gaits. One of the most recognized models is the spring-loaded inverted pendulum (SLIP) which consists of a point mass atop a massless spring. This model provides a good description of human gaits, such as walking, hopping and running. Despite its high level of abstraction, it supported and inspired the development of successful legged robots and was used as explicit targets for control, over the years. Inspired from template models explaining biological locomotory systems and Raibert's pioneering legged robots, locomotion can be realized by basic subfunctions: (i) stance leg function, (ii) leg swinging and (iii) balancing. Combinations of these three subfunctions can generate different gaits with diverse properties. Using the template models, we investigate how locomotor subfunctions contribute to stabilize different gaits (hopping, running and walking) in different conditions (e.g., speeds). We show that such basic analysis on human locomotion using conceptual models can result in developing new methods in design and control of legged systems like humanoid robots and assistive devices (exoskeletons, orthoses and prostheses). This thesis comprises research in different disciplines: biomechanics, robotics and control. These disciplines are required to do human experiments and data analysis, modeling of locomotory systems, and implementation on robots and an exoskeleton. We benefited from facilities and experiments performed in the Lauflabor locomotion laboratory. Modeling includes two categories: conceptual (template-based, e.g. SLIP) models and detailed models (with segmented legs, masses/inertias). Using the BioBiped series of robots (and the detailed BioBiped MBS models; MBS stands for Multi-Body-System), we have implemented newly-developed design and control methods related to the concept of locomotor subfunctions on either MBS models or on the robot directly. In addition, with involvement in BALANCE project (\url{http://balance-fp7.eu/}), we implemented balance-related control approaches on an exoskeleton to demonstrate their performance in human walking. The outcomes of this research includes developing new conceptual models of legged locomotion, analysis of human locomotion based on the newly developed models following the locomotor subfunction trilogy, developing methods to benefit from the models in design and control of robots and exoskeletons. The main contribution of this work is providing a novel approach for modular control of legged locomotion. With this approach we can identify the relation between different locomotor subfunctions e.g., between balance and stance (using stance force for tuning balance control) or balance and swing (two joint hip muscles can support the swing leg control relating it to the upper body posture) and implement the concept of modular control based on locomotor subfunctions with a limited exchange of sensory information on several hardware platforms (legged robots, exoskeleton)

    A Systematic Approach to the Design of Embodiment with Application to Bio-Inspired Compliant Legged Robots

    Get PDF
    Bio-inspired legged robots with compliant actuation can potentially achieve motion properties in real world scenarios which are superior to conventionally actuated robots. In this thesis, a methodology is presented to systematically design and tailor passive and active control elements for elastically actuated robots. It is based on a formal specification of requirements derived from the main design principles for embodied agents as proposed by Pfeifer et al. which are transfered to dynamic model based multi objective optimization problems. The proposed approach is demonstrated and applied for the design of a biomechanically inspired, musculoskeletal bipedal robot to achieve walking and human-like jogging

    Musculoskeletal Modeling of the Human Lower Limb Stiffness for Robotic Applications

    Get PDF
    This research work presents a physiologically accurate and novel computationally fast neuromusculoskeletal model of the human lower limb stiffness. The proposed computational framework uses electromyographic signals, motion capture data and ground reaction forces to predict the force developed by 43 musculotendon actuators. The estimated forces are then used to compute the musculotendon stiffness and the corresponding joint stiffness. The estimations at each musculotendon unit is constrained to simultaneously satisfy the joint angles and the joint moments of force generated with respect to five degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Hip Internal-External Rotation, Knee Flexion-Extension, and Ankle Plantar-Dorsi Flexion. Advanced methods are used to perform accurate muscle-driven dynamic simulations and to guarantee the dynamic consistency between kinematic and kinetic data. This study presents also the design, simulation and prototyping of a small musculoskeletal humanoid made for replicating the human musculoskeletal structure in an artificial apparatus capable to maintain a quiet standing position using only a completely passive elastic actuation structure. The proposed prototype has a total mass of about 2 kg and its height is 40 cm. It comprises of four segments for each leg and six degrees of freedom, including: Hip Adduction-Abduction, Hip Flexion-Extension, Knee Flexion-Extension, Ankle Plantar-Dorsi Flexion, Ankle Inversion-Eversion, and Toe Flexion-Extension. In order to reconstruct the continuous state space parameters proper of the assembly's control of quiet standing, a hybrid non-linear Extended Kalman Filter based technique is proposed to combine a base-excited inverted pendulum kinematic model of the robot with the discrete-time position measurements. This research work provides effective solutions and readily available software tools to improve the human interaction with robotic assistive devices, advancing the research in neuromusculoskeletal modeling to better understand the mechanisms of actuation provided by human muscles and the rules that govern the lower limb joint stiffness regulation. The obtained results suggest that the neuromusculoskeletal modeling technology can be exploited to address the challenges on the development of musculoskeletal humanoids, new generation human-robot interfaces, motion control algorithms, and intelligent assistive wearable devices capable to effectively ensure a proper dynamic coupling between human and robot

    Towards understanding human locomotion

    Get PDF
    Die zentrale Frage, die in der vorliegenden Arbeit untersucht wurde, ist, wie man die komplizierte Dynamik des menschlichen Laufens besser verstehen kann. In der wissenschaftlichen Literatur werden zur Beschreibung von Laufbewegungen (Gehen und Rennen) oftmals minimalistische "Template"-Modelle verwendet. Diese sehr einfachen Modelle beschreiben nur einen ausgewählten Teil der Dynamik, meistens die Schwerpunktsbahn. In dieser Arbeit wird nun versucht, mittels Template-Modellen das Verständnis des Laufens voranzubringen. Die Analyse der Schwerpunktsbewegung durch Template-Modelle setzt eine präzise Bestimmung der Schwerpunktsbahn im Experiment voraus. Hierfür wird in Kapitel 2.3 eine neue Methode vorgestellt, welche besonders robust gegen die typischen Messfehler bei Laufexperimenten ist. Die am häfigsten verwendeten Template-Modelle sind das Masse-Feder-Modell und das inverse Pendel, welche zur Beschreibung der Körperschwerpunktsbewegung gedacht sind und das Drehmoment um den Schwerpunkt vernachlässigen. Zur Beschreibung der Stabilisierung der Körperhaltung (und damit der Drehimpulsbilanz) wird in Abschnitt 3.3 das Template-Modell "virtuelles Pendel" für das menschliche Gehen eingeführt und mit experimentellen Daten verglichen. Die Diskussion möglicher Realisierungsmechanismen legt dabei nahe, dass die Aufrichtung des menschlichen Gangs im Laufe der Evolution keine große mechanische Hürde war. In der Literatur wird oft versucht, Eigenschaften der Bewegung wie Stabilität durch Eigenschaften der Template-Modelle zu erklären. Dies wird in modifizierter Form auch in der vorliegen Arbeit getan. Hierzu wird zunächst eine experimentell bestimmte Schwerpunktsbewegung auf das Masse-Feder-Modell übertragen. Anschließend wird die Kontrollvorschrift der Schritt-zu-Schritt-Anpassung der Modellparameter identifiziert sowie eine geeignete Näherung angegeben, um die Stabilität des Modells, welches mit dieser Kontrollvorschrift ausgestattet wird, zu analysieren. Der Vergleich mit einer direkten Bestimmung der Stabilität aus einem Floquet-Modell zeigt qualitativ gute Übereinstimmung. Beide Ansätze führen auf das Ergebnis, dass beim langsamen menschlichen Rennen Störungen innerhalb von zwei Schritten weitgehend abgebaut werden. Zusammenfassend wurde gezeigt, wie Template-Modelle zum Verständnis der Laufbewegung beitragen können. Gerade die Identifikation der individuellen Kontrollvorschrift auf der Abstraktionsebene des Masse-Feder-Modells erlaubt zukünftig neue Wege, aktive Prothesen oder Orthesen in menschenähnlicher Weise zu steuern und ebnet den Weg, menschliches Rennen auf Roboter zu übertragen.Human locomotion is part of our everyday life, however the mechanisms are not well enough understood to be transferred into technical devices like orthoses, protheses or humanoid robots. In biomechanics often minimalistic so-called template models are used to describe locomotion. While these abstract models in principle offer a language to describe both human behavior and technical control input, the relation between human locomotion and locomotion of these templates was long unclear. This thesis focusses on how human locomotion can be described and analyzed using template models. Often, human running is described using the SLIP template. Here, it is shown that SLIP (possibly equipped with any controller) cannot show human-like disturbance reactions, and an appropriate extension of SLIP is proposed. Further, a new template to describe postural stabilization is proposed. Summarizing, this theses shows how simple template models can be used to enhance the understanding of human gait

    Umsetzung und Optimierung robotischer Hüpfbewegungen mit bio-inspirierter Virtual Model Control

    Get PDF
    Biological inspired templates can help to control complex robotic movements. In this thesis a control strategy, enabling hopping motions of a segmented robotic leg, is developed. The control bases on the spring loaded inverse pendulum (SLIP) model, which can describe the courses of displacement of the center of mass and the ground reaction force during human or animal hopping motions. To use this template as a calculation model for desired control values a method called virtual model control (VMC) is used. VMC implements virtual components in real structures to design a desired behavior. Existing actuators of the real system are controlled in a manner to mimic the effects, the virtual components would have on the system. The virtual component used in this work is a spring with certain properties. Like in the role model, the SLIP template, the spring is virtually attached between hip and foot of the robotic leg. The knee is the only actuated part of the structure. Through the control of the knee torque the effects of the virtual spring are mimicked. The used test-bed necessitates it to adjust the developed control laws for the compensation of losses. Different methods for the calculation of a variable virtual spring stiffness have been developed, resulting in stable hopping motions of the robotic leg in the used test-bed. The resulting control strategy does not need a feedback loop of the controlled parameter and is therefore a kind of a feed-forward approach. The possibility of an overlaid force-feedback control has been examined and the limits of this method have been estimated

    Neuro-musculoskeletal Models: A Tool to Study the Contribution of Muscle Dynamics to Biological Motor Control

    Get PDF
    Das Verständnis der Prinzipien, die menschlichen Bewegungen zugrunde liegen, ist die Basis für die Untersuchung der Entstehung gesunder Bewegungen und, was noch wichtiger ist, der Entstehung motorischer Störungen aufgrund neurodegenerativer Erkrankungen oder anderer pathologischer Zustände. Dieses Verständnis zu erlangen ist jedoch herausfordernd, da menschliche Bewegung das Ergebnis eines komplexen, dynamischen Zusammenspiels von biochemischen und biophysikalischen Prozessen im Bewegungsapparat und den hierarchisch organisierten neuronalen Kontrollstrukturen ist. Um die Wechselwirkungen dieser Strukturen zu untersuchen, bieten Computersimulationen, die mathematische Modelle des muskuloskelettalen Systems mit Modellen seiner neuronalen Kontrolle kombinieren, ein nützliches Werkzeug. In diesen Simulationen können einzelne Prozesse oder ganze Funktionseinheiten deaktiviert oder gestört werden, um die Auswirkungen dieser Veränderungen auf die vorhergesagten Bewegungen zu untersuchen. Die Plausibilität der zugrundeliegenden Modelle kann durch den Vergleich der Simulationen mit Daten aus Humanexperimenten und biologisch inspirierten Robotermodellen beurteilt werden. Das Ziel dieser Arbeit war es, neuro-muskuloskelettale Modelle als Hilfsmittel zur Untersuchung von Konzepten der biologischen Bewegungskontrolle zu verwenden. Von besonderem Interesse war der Beitrag der Muskeldynamik zur Kontrolle, d.h. wie die intrinsischen muskuloskelettalen Eigenschaften die motorische Kontrolle vereinfachen, ohne die motorische Genauigkeit zu beeinträchtigen. Zusätzlich wurde der Einfluss propriozeptiver Reflexmechanismen in verschiedenen Szenarien getestet. Die verwendeten neuro-muskuloskelettalen Modelle sind eine Kombination von Mehrkörpermodellen der Muskel-Skelett-Struktur des Armes oder des ganzen Körpers mit einem biologisch inspirierten hybriden Gleichgewichtspunkt-Kontrollmodell. In einer Simulationsstudie stellten wir fest, dass unser Armmodell realistische Reaktionen auf externe mechanische Störungen für zielgerichtete Bewegungen mit einem Freiheitsgrad vorhersagt. Auf dieser Grundlage simulierten wir die Anwendung von tragbaren Assistenzgeräten zur Kompensation unerwünschter Hypermetrie, d.h. einer überschießenden Reaktion bei zielgerichteten Bewegungen im Zusammenhang mit zerebellärer Ataxie und anderen neurodegenerativen Erkrankungen. Wir fanden heraus, dass einfache mechanische Hilfsmittel ausreichend sein können, um die Hypermetrien auf ein normales Niveau zu reduzieren. Wir stellten jedoch auch fest, dass die Größe des Drehmoments und der Kraft, die zur Kompensation der Störung erforderlich sind, möglicherweise deutlich unterschätzt wird, wenn die Muskel-Sehnen-Eigenschaften im Modell nicht berücksichtigt werden. Die Ergebnisse dieser beiden Studien bestätigten die Hypothese aus der Literatur, dass die Morphologie des Muskel-Skelett-Systems signifikant zur Bewegung beiträgt und somit deren Kontrolle vereinfacht. Deshalb haben wir einen informationstheoretischen Ansatz verwendet, um diesen Beitrag für zielgerichtete und oszillatorische Armbewegungen mit zwei Freiheitsgraden zu charakterisieren. Die Ergebnisse bestätigten, dass die unteren Kontrollebenen, einschließlich der Muskeln und ihrer Aktivierungsdynamik, wichtige Beiträge zur gesamten Kontrollhierarchie leisten. Beispielsweise führt ein einfaches, stückweise konstantes Muskelstimulationssignal, das nur wenig Information enthält, zu einer geschmeidigen Bewegung. Der physiologische Detailgrad, der in unseren Muskel-Skelett-Modellen enthalten ist, ermöglicht nicht nur die Untersuchung von Theorien zur motorischen Kontrolle, sondern auch die Untersuchung von Größen wie inneren Kräften in Muskeln und Gelenken, die experimentell normalerweise nicht zugänglich sind. Diese Größen sind zum Beispiel in der Ergonomie und für die Entwicklung von Assistenzgeräten von Bedeutung. In einer Ganzkörpersimulationsstudie untersuchten wir den Beitrag des Dehnungsreflexes zu den resultierenden Muskelkräften bei einer aktiven externen Repositionierung des Hüftgelenkes für einen großen Bereich von Bewegungsgeschwindigkeiten. Wir fanden heraus, dass der relative Kraftbeitrag des Feedback-Mechanismus vom modellierten kognitiven Zustand abhängig ist und einen nicht vernachlässigbaren Beitrag leistet, insbesondere bei hohen Repositionsgeschwindigkeiten. Die Gesamtheit unserer Ergebnisse zeigt, dass die Eigenschaften des Bewegungsapparates signifikant zur Erzeugung und Kontrolle von Bewegung beitragen und es daher wichtig ist, sie bei der Modellierung der menschlichen Bewegung zu berücksichtigen. Daher sprechen die Ergebnisse für die Kombination eines physiologisch fundierten biomechanischen und biochemischen Modells des Bewegungsapparates mit biologisch inspirierten Konzepten der motorischen Kontrolle. Diese Computersimulationen haben sich als ein nützliches Werkzeug zum Verständnis der Prozesse erwiesen, die der Erzeugung gesunder und pathologisch beeinträchtigter menschlicher Bewegungen zugrunde liegen.Understanding the principles underlying human movement is the basis for investigating the generation of healthy movements and, more importantly, the origins of motor disorders due to neurodegenerative diseases or other pathological conditions. However, gaining this understanding is challenging since human motion is the result of a complex, dynamic interplay of biochemical and biophysical processes in the musculoskeletal system and the hierarchically organized neuronal control structures. To study the interactions of these structures, computer simulations that combine mathematical models of the musculoskeletal system with models of its neuronal control provide a useful tool. In these simulations, single processes or whole functional units can be disabled or perturbed to study the effects of these changes on the predicted movements. The plausibility of the underlying models can be assessed by comparing the simulations with data from human experiments and biologically inspired robotic models. The purpose of this work was to use neuro-musculoskeletal models as tools to study concepts of biological motor control. Of particular interest was the contribution of muscle dynamics to the control, i.e. how the intrinsic musculoskeletal properties simplify motor control without compromising motor accuracy. Additionally, the influence of proprioceptive reflex mechanisms was tested in different scenarios. The neuro-musculoskeletal models that were used are a combination of multibody musculoskeletal models of the arm or the whole body with a biologically inspired hybrid equilibrium-point controller. In a simulation study, we found that our arm model predicts realistic reactions to external mechanical perturbations while performing one-degree-of-freedom goal-directed movements. Based on this, we simulated the application of wearable assistive devices to compensate for unwanted hypermetria, i.e. an overshooting response in goal-directed movements associated with cerebellar ataxia and other neurodegenerative disorders. We found that simple mechanical devices may be sufficient to reduce the hypermetria to a normal level. However, we also observed that the magnitude of torque and power that is required to compensate for the disorder may be significantly underestimated if muscle-tendon characteristics are not considered in the computational model. The results of these two studies confirmed the hypothesis from literature that the morphology of musculoskeletal systems significantly contributes to the movement and thus simplifies its control. Therefore, we made use of the information-theoretic approach of quantifying morphological computation to characterize this contribution for goal-directed and oscillatory arm movements with two degrees of freedom. The results asserted that the lower levels of control, including the muscles and their activation dynamics, make important contributions to the overall control hierarchy. For example, a simple piecewise constant muscle stimulation signal that contains only little information results in a smooth movement. The level of physiological detail that is included in our musculoskeletal models does not only allow for the examination of motor control theories but also makes it possible to study quantities like internal forces in muscles and joints, usually not experimentally accessible. These quantities are relevant, for example, in ergonomics and for the development of assistive devices. In a whole-body simulation study, we investigated the contribution of the stretch reflex to the resulting muscle forces during active external repositioning of the hip joint for a large range of movement velocities. We found that, depending on the modeled cognitive state, the relative force contribution of the feedback mechanism is not negligible, especially for high repositioning velocities. The entirety of our results shows that the properties of the musculoskeletal system significantly contribute to the generation and control of movement and, thus, it is important to take them into account when modeling human movement. Therefore, the results advocate the combination of a physiologically well-founded biomechanical and biochemical model of the musculoskeletal system with biologically inspired concepts of motor control. These computer simulations have proven to be a useful tool towards the comprehension of the processes underlying the generation of healthy and pathologically impaired human movements

    Actuation requirements for hopping and running of the musculoskeletal robot BioBiped1

    No full text
    Actuation with variable elasticity is considered a key property for the realization of human-like bipedal locomotion. Also, an intelligent and self-stable mechanical system is indispensable. While much effort of current research has been devoted to the development of variable impedance joint actuators, this paper deals with the important question of how to determine the actuation requirements of a compliant, musculoskeletal robot that is targeted at fast dynamic motions. In a step-by-step approach, design decisions for the elastic humanoid robot BioBiped1 are presented. Using multibody system dynamics models and simulations, incorporating bidirectional series elastic actuator models and a realistic ground contact model, we analyze the actuation requirements of the employed electrical motors for computer generated hopping and human data based running motions. The numerical simulation results are accompanied by videos of the dynamics simulations. Recent experiments on the real hardware have indicated that the selected motor-gear units and elastic transmissions support the desired dynamic motion goals

    Actuation requirements for hopping and running of the musculoskeletal robot BioBiped1

    No full text
    corecore