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Abstract

Biological inspired templates can help to control complex robotic movements. In this thesis
a control strategy, enabling hopping motions of a segmented robotic leg, is developed. The
control bases on the spring loaded inverse pendulum (SLIP) model, which can describe the
courses of displacement of the center of mass and the ground reaction force during human or
animal hopping motions. To use this template as a calculation model for desired control values a
method called virtual model control (VMC) is used. VMC implements virtual components in real
structures to design a desired behavior. Existing actuators of the real system are controlled in
a manner to mimic the effects, the virtual components would have on the system. The virtual
component used in this work is a spring with certain properties. Like in the role model, the SLIP
template, the spring is virtually attached between hip and foot of the robotic leg. The knee is
the only actuated part of the structure. Through the control of the knee torque the effects of the
virtual spring are mimicked. The used test-bed necessitates it to adjust the developed control
laws for the compensation of losses. Different methods for the calculation of a variable virtual
spring stiffness have been developed, resulting in stable hopping motions of the robotic leg in
the used test-bed. The resulting control strategy does not need a feedback loop of the controlled
parameter and is therefore a kind of a feed-forward approach. The possibility of an overlaid
force-feedback control has been examined and the limits of this method have been estimated.

Kurzfassung

Von der Natur inspirierte Modellvorstellungen können helfen die Regelung komplizierter robo-
tischer Bewegungnen zu realisieren. In dieser Arbeit wurde eine Regelungsstrategie entwickelt,
die es ermöglicht Hüpfbewegungen eines segmentierten robotischen Beines zu ermöglichen. Die
Regelung basiert auf dem "spring loaded inverse pendulum" (SLIP) Modell. Dieses ist in der Lage
Kenngrößen menschlicher und tierischer Hüpf- und Laufbewegungen vorherzusagen. Um dieses
Modell für die Entwicklung von Berechnungsvorschriften von Regelungsparametern zu nutzen,
wurde eine Technik namens "virtual model control" (VMC) verwendet. Mittels VMC werden
virtuelle Komponenten in reale Strukturen integriert, um erwünschtes Verhalten zu erzielen. Die
real vorhandenen Aktoren werden in einer Weise gesteuert, dass sie die Effekte erzielen, die
die virtuelle Komponente erzielen würde. Die verwendete virtuelle Komponente ist in diesem
Fall eine Feder mit bestimmten Eigenschaften. Wie im Vorbild, dem SLIP Modell, wird die Feder
virtuell zwischen Hüfte und Fuß des robotischen Beins angebracht. Das Knie ist die einzige
angetriebene Stelle des Beins. Durch die Regelung des Drehmoments am Knie werden die Effekte
der virtuellen Feder imitiert. Die Verwendung auf einem Prüfstand macht die Anpassung des
Regel-Gesetzes notwendig, um auftretende Verluste zu kompensieren. Verschiedene Methoden
der Berechnung einer virtuellen Feder-Steifigkeit wurden entwickelt. Die Anwendung auf dem
Versuchsstand resultiert in einer stabilen Hüpfbewegung. Die Möglichkeit einer superponierten
Kraftregelung wurde untersucht und auf ihre Anwendbarkeit und Grenzen hin beurteilt.
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ẋTO velocity during take off [m

s ]
Ac cross section of the cable [m2]
cswitch logical operator control [-]
dbs diameter shaft ball screw [m]
dc diameter of the cable [m]
dg damping rate ground model [Ns

m ]

XVII



dk damping constant of the knee stop [Nms
rad ]

dM damping constant motor [Nms
rad ]

Eal E-modulus aluminum [ kN
mm2 ]

Ekin kinetic energy [J]
Epot potential energy [J]
Esteel E-modulus steel [ kN

mm2 ]
Fdes desired force [N]
Ferr,int integrated absolute force error [N]
Ferr deviation from the desired force [N]
Fbearing, a axial force roller bearing [N]
Fbearing, r radial force roller bearing [N]
Fbs,v velocity dependent force in the ball screw [N]
Fc,- stribeck force parameter ‘coulomb’ [N]
Fdt,M maximum force by the motor after transmissions [N]
Fdt force between carriages in the drivetrain [N]
Ffr,f friction force of the linear bearing at the foot [N]
Ffr,h friction force of the linear bearing at the hip [N]
FGRF ground reaction force [N]
FHF force between foot and hip-stop [N]
Fkx force in x-direction at the knee joint [N]
Fky force in y-direction at the knee joint [N]
Fpl pre-load on force sensor [N]
Fs,- stribeck force parameter ‘stiction’ [N]
Fv,- stribeck force parameter ‘viscous’ [N]

g gravitation constant [kg m
s ]

hl height of leg segment [m]
iM+ additional motor current to compensate friction, positive [A]
iM- additional motor current to compensate friction, negative [A]
Iy,iP area moment of inertia ITEM profile [cm4]
ibs transmission ratio ball screw [-]
iM, max nominal current [A]
iM motor current [A]
iT transmission ratio motor transmission [-]
K amplification factor differential amplifier [-]
k spring rate [ N

m]
kbs,v parameter ball screw damping alternative [N]
kc stiffness of the cable [ N

m]
kE rotation speed constant motor [ 1

V min]
kg spring rate ground model [ N

m]
kM torque/current constant motor [mNm

A ]
kv spring rate of the virtual spring [ N

m]
l0 rest length of the spring single mass oscillator [m]
lleg leg length [m]
lbs length shaft ball screw [m]
lc length of the cable [m]

XVIII Nomenclature



liP length of ITEM profile [m]
ll length of leg segment [m]
LM inductance motor [mH]
m mass of single mass oscillator [kg]
m1 mass at the hip [kg]
m2 mass of one leg segment [kg]
m3 mass at the knee [kg]
m4 mass at the foot [kg]
mbs mass shaft ball screw [kg]
nbearing rotational speed of roller bearing [ U

min]
pbs slope shaft ball screw [m]
R electric resistance [Ω]
rbs radius shaft ball screw [m]
RM internal resistance motor [Ω]
rp effective radius of pulley at the knee [m]
T length of an experiment [s]
Tbearing operating temperature roller bearing [°C]
U voltage [V]
Ua output voltage differential amplifier [V]
Ue1 output voltage 1 sensor [V]
Ue2 output voltage 2 sensor [V]
USout output voltage sensor [V]
vs,- stribeck velocity parameter [m

s ]
w displacement of a bended beam [m]
wl width of leg segment [m]
x position of single mass oscillator [m]
x0 initial position of mass m [m]
x2 foot position of the single mass oscillator [m]
xc2 position of the carriage attached to the cable [m]
xh+ switching point control, high [m]
xh- switching point control, low [m]
xbs position of ball screw [m]
xf position of the foot [m]
xh,0 initial hip position [m]
xhs position of the hip stop [m]
xh position of the hip [m]
xmax apex height of single mass oscillator [m]

XIX





1 Introduction

1.1 Preface

Human machine interaction holds many possibilities but also challenges. The interfaces of such
must be thought through thoroughly. Especially in the field of robotics and assistive devices
like orthoses and prostheses a high level of harmonic interaction has to be reached, to support
humans in the best possible way.

Research in the field of locomotion and the development of legged robotics holds the possibility
to use inspiration from biological role models to improve this interaction. Control strategies for
the actuation of these systems have to be simple and inherit a high level of performance. The
search for and development of robust control strategies, which work with a minimum of sensor
information, a high level of robustness and a low energy consumption, are important goals to
reach.

For a long time assistive devices used to be passive and supported the human in a way, which is
not comparable to real legs. Active adaptive assistance devices can improve the performance,
usability and acceptance of the users and raise the life quality of people dependent on these
devices.

To understand basic relationships and to test actuation and control strategies, robotic legs are
built. One of these robotic legs lays the basis of this thesis.

1.2 Models of human hopping/locomotion

To built legged robots or assistive devices for humans, the principles behind legged locomotion
have to be understood. It has been shown that one basic part of the human locomotion is the
hopping motion [28]. An analysis and understanding of this motion may lead to the ability of
building and controlling leg-like structures.

The segmented leg is able to perform a linear translational motion of the body through the
combination of rotational movements of the segments. A hopping motion is a complex non-linear
control task if the concentration lies on a separated control of the different driven joints. A
simplified description of the motion is helpful to investigate control strategies.

Different templates of the human hopping motion have been developed to describe the complex
inner behavior with its basic effects and behavior of the system "‘leg"’, respectively the motion of
the whole human body. Templates describe "‘[...] the simplest model (least number of variables
and parameters) that exhibits a targeted behavior."’ [11]. Some of the templates, used to describe
human locomotion, will be shown in the next section.
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1.2.1 Spring loaded inverted pendulum

The spring loaded inverted pendulum (SLIP) model has been developed by Blickhan [8]. The
basic idea is to describe the human running and hopping motions through the motion and force
effects of a single mass oscillator.

The SLIP model consists of one mass m and an attached spring with the stiffness k and the rest
length l0. Because the model is also able to describe running motions, the angle of attack of
the spring in respect to the ground α is also an important parameter. For a hopping motion this
angle is equal to zero. The position of the mass corresponds to the position of the center of mass
(COM) of the human (near to the hip) while the end of the spring determines the contact point
of the human with the ground, the foot.

Despite its simplicity the SLIP model is able to describe the behavior of a human or an animal
in running or hopping motions [8]. The compared entities are the movement pattern of the
position of mass, respectively the COM of the human/ animal, and the ground reaction force
as the measurable effect on the environment. Certain ranges of locomotion parameters like
the "‘chosen"’ frequencies and resulting heights of the hopping can be explained through the
examination of the SLIP model.

Advanced approaches based on the SLIP model

Further developments of the SLIP model have been made. The basis of the single mass oscillator
has been extended to explain certain effects during human locomotion in a more precise way.
One example is the ESLIP model by Ludwig et al. [19]. In this model stiffness k and rest length l0
are no longer fixed values but are adapted through experimental measured changes of the system
energy after each step. A matching sequence of steps can be calculated, which is not possible by
the energy conservative SLIP model.

Another method is the variable leg spring (VLS) method [26] by Riese and Seyfarth. The
SLIP parameters spring rate k and rest length l0 are varied during the stance phase of the
hopping/running motion. Increasing stiffness and decreasing rest-length during this phase result
in stable hopping motions with and also without the consideration of damping effects. The
findings are valid for a wide range of spring parameters.

A third approach, mentioned at this point, is a method in which the spring stiffness is varied. In
[17] energy management methods working with a variation of spring stiffness during ground
contact where presented by Kalveram et al. Stable hopping motions, even in perturbed cases,
could be achieved.

More examples of advanced templates can be presented. In this work control strategies for a
segmented leg shall be developed. First examinations will be made with the simplest templates
before a possible enhancement of performance through advanced models will be examined.
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1.2.2 Inverted pendulum

A second simple mathematical model for the explanation of human locomotion is the inverted
pendulum or "‘ballistic walking"’ model by Mochon and McMahon [21]. In this model the leg
length is fixed during the locomotion process. A running gait is realized by alternate swing
phases of the two legs driven by initial conditions, produced by muscle forces, and the influence
of gravitation on the swinging leg.

This model can not be used to realize hopping motions and, therefore, is not regarded further on.

1.3 Test-beds legged locomotion

In the past, different test-beds for the research on legged locomotion have been built. Mostly
robotic systems that come near to a biological role model were assembled. There are a lot of
different approaches from single-leg robots [31] over different two legged robots (e.g. "‘BioBiped"’
[30] and [25], "‘Spring Flamingo"’ [24] or "‘ATLAS"’ by Boston Dynamics) to robots with four or
more legs (e.g. BigDog by Boston Dynamics).

For the research on hopping motions, a test-bed with only one leg is necessary. For this purpose,
the leg has to move only in one direction. It is possible to fix the segmented leg in space and
to leave only two 1-D degrees of freedom for each, the foot- and hip position. Through this
systems simple and robust structures are feasible. Two of those hopping research test-beds will
be presented. Also a third recent test-bed will be described for its closeness to the topic of this
work.

1.3.1 Marco Hopper

In order to investigate different energy management methods inspired from human hopping
motions, a test-bed called MARCO (Mechanical adjustable reflexive-compliant) Hopper was
developed [29](see fig. 1.1). The structure of MARCO comes close to the SLIP model, for the
motor is controlled to act in a spring-like behavior. Masses are only moved in one direction.
Therefore, the test-bed does not come very close to the structure of a real leg.

The one actuator driving the system can mimic the behavior of different drive-train properties
through suitable control laws. For instance, it is possible to influence the control signal in
the motor to reproduce muscle-reflex dynamics and to produce stable hopping motions [29].
Different physical drive-train setups can not be realized.

In these points lie the limitations of the test-bed. Energy management methods could be
investigated but the research on segmented structures (near to real legs) and variable drive-trains
is not possible. An extended test-bed is necessary, which does not inherit these limitations.
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Figure 1.1.: The test-bed MARCO Hopper consists of a foot, a shank and a body. The weight
of the motor and the attached transmission serves as the body mass. A tooth-belt
connected to the ends of the shank and the output shaft of the motor makes it
possible to move the motor up and down the shank. A second rail guides the whole
structure in the vertical direction. The foot is equipped with a ball of highly damping
material, to absorb the impact energy of the landing and prevent damages on the
structure [17].

1.3.2 Development of the test-bed Marco Hopper II

The test-bed MARCO Hopper II was developed during an advanced design project (ADP)1 in the
year 2013 [9] at TU Darmstadt. The task of this student project with the title "‘Human motions
and robotics"’ was the development of a demonstrator for lessons and research on bio-inspired
actuator concepts. One purpose for the test-bed is the research on serial elastic actuator concepts.
As shown in section 1.3.2 serial-elastic-actuators can be used to model biological muscles.

The role model for the actuated biological structure is the human leg. Its structure has been
reduced and the essential parts have been built in the test-bed. Compared to an actual human
leg, the concept of actuation was strictly simplified. The actuation of the test leg takes only place
on the knee. Through the use of a cable in combination with an electric motor and an attached
transmission-system (drive-train) a torque in the knee is generated. This torque moves the leg
and can be used to control squats and hopping motions.

The figure 1.2 shows a photo of the test-bed. The demonstrator consists of different mechanical
parts representing structures in a real human leg. Thigh and shank are represented by two metal

1 http://wiki.ifs-tud.de/adp_laufrobotik/adp_2013
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Figure 1.2.: Picture of the test-bed Marco Hopper 2.0

segments. The hip-, knee- and ankle-joint are given by three ball-bearings. The design of the
knee contains an pulley that guides the cable around the knee to produce the driving torque. Hip
and foot are guided by linear bearings.

Only motions in the vertical direction by hip and foot are possible. The position of the hip and
the foot in the vertical direction are tracked by potentiometer position sensors. The motions
of hip and foot are limited by mechanical stops in the negative vertical direction. These "‘rest"’
positions determine the initial condition of every motion of the leg.

During the project only a concept of the test-bed has been developed. The construction was
performed by the staff of the IMS subsequent to the ADP. When the project was over, a control
for the test-bed has not been developed yet.

This thesis bases on the test-bed MARCO II. All control strategies, models and parameter choices
were developed for MARCO II. General findings can be used for other projects and the abstract
idea of hopping motions. The results can be used to improve the performance of MARCO II and
also other legged robots.

Series elastic actuators

The test-bed MARCO Hopper II serves also as a platform for testing the effects of different
actuating strategies. Different muscle models can be expressed through the combination of
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mechanical components like springs and dampers shown by Hill [16] or in an extended form by
Haeufle [15].

The most simple approach is to combine an actuator in series with a spring. Through this measure
the biological functions of muscle and tendon are represented in a first approximation.

The series elastic actuator (SEA) [32] concept serves also additional purposes. A very important
goal regarding virtual model control is the need of actuators with a low output impedance. The
use of SEA results in a low impedance of the actuators as seen in [24]. A second reason is the
possibility that the use of SEA contains a lesser energy consumption than direct driven actuators.
As shown in [9] a spring in series with the actuator can reduce the needed motor energy per
jump. Third, elasticity in series with an actuator protects actuators from impacts. Peaks of force
(e.g. when driving in a rigid resistance) can be reduced.

All this influences and theories can be examined with the possibilities given by the test-bed
MARCO II.

1.3.3 Single legged robot with variable knee stiffness - L-MESTRAN

Recently Vu et al. [31] published a paper containing research results on a hopping robot very
similar to the one studied in this thesis. The purpose of their research was to measure the
influence of an actuator with variable stiffness, especially on the energy consumption of the
robot. Differences to the robot examined in this thesis are the actuated parts, the movement of
the structure and the control mechanisms.

The segmented leg of the presented robot has also two links but in difference to MARCO II two
actuated joints. The hip joint is driven by torque, provided by an electric motor. A system that
provides variable stiffness is connected to the knee. The movement of the robot is not restricted
to a vertical movement. It is also able to move on a circle in the horizontal direction. Motions
of the robot are controlled by the torque, provided at the hip (position control policy of the hip
[31]). The spring at the knee is a passive structure that is not dynamical adjustable.

There are some important findings of the paper:

• there are optimal parameter settings regarding the energy consumption of the actuator
for the knee stiffness for different stride frequencies, therefore these should also exist for
different hopping frequencies [31][p. 12]

• "‘the model-based analysis suggested that the energy efficiency of hopping locomotion is
significantly related to the eigen-frequency of the system, which can be used as an effective
indicator of the adjustment of knee stiffness"’ [31][p. 14]

The results gained with the variable knee stiffness can be applied to the variable drive-train
of MARCO II. To make this possible eigen-frequencies of the system have to be calculated and
evaluated.
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1.4 Virtual model control

Virtual model control forms the basic idea of the control approach presented in this thesis. The
concept has been developed by Pratt in [23] as an simplified approach to control legged robots.
A first application is found in the control of "‘spring turkey"’, a bipedal robot.

The idea behind virtual model control is to attach virtual components to a real structure to
realize a desired behavior. Existing actuators, in this case actuators producing joint torques,
are controlled by a law that mimics the effects of the virtual components. In the choice of the
virtual component the developer is not constrained by possibilities feasible in reality. The virtual
component can inherit all thinkable properties.

"‘This control technique uses simulations of virtual mechanical components to generate actuator
torques (or forces) thereby creating the illusion that the simulated components are connected to
the real robot"’[23]

Benefits of virtual model control are:

• "‘no matrix or function inverses need be computed for serial links"’[23][p. 12]

• "‘all equations can be precomputed in closed form and optimized"’ [23][p. 12]

• "‘multiple virtual components can be independently computed and superposed since their
outputs, joint torques, are linearly additive"’ [23][p. 12]

Pratt presents five steps to implement virtual components to a controlled system [23][p. 17]:

1. definition of the virtual model reference frames

2. computation of the forward kinematics

3. calculation of a Jacobian Matrix

4. computation of the joint torques

5. definition of the virtual model force function

Three coordinate systems are necessary for each virtual component of a virtual model control
approach - the "‘Action Frame"’, the "‘Reaction Frame"’ and the "‘Reference Frame"’ [23][p. 17].
They describe the "‘attachment"’ points of the virtual component and a global coordinate system,
in which forces and motions are described.

Forward kinematics means that through the knowledge of all degrees of freedom of the serial
manipulator the position of the end of the chain is clear. It is described by the rotation matrices,
which contain the information about the rotation of each coordinate system attached to one rigid
body to the next in the chain.

The Jacobian Matrix relates joint velocities to Cartesian velocities [10][p. 150]. It is also used to
transform generalized forces to joint torques [23][p. 19].

Next, the joint torques are computed. The Jacobian Matrix is used to transform the forces
produced by the virtual component to joint torques. The computed joint torques will have the
same effect as the virtual forces by the virtual component. It is important that the forces can be
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realized using the available joint actuators. Through looking at the Jacobian Matrix it can be
decided whether or not a force can be realized [23][p. 19].

The next step is to find a relation between the relative displacement and rotations of the action
and reaction frames and the generalized forces to be applied to the action frame. This force
function that describes virtual forces can be controlled by any desired control method [23][p.
20].

The method presented can be used to control very complicated structures with a lot of dependent
actuators and degrees of freedom. A control approach to control MARCO II performing hopping
motions needs only a single virtual component. Therefore the mentioned steps to derive a virtual
model control law become very simple and the presented implementation steps have not to be
performed.

In this thesis the virtual model control approach is performed by the equal setting of different
dynamic systems. The effect of a virtual component on a chosen degree of freedom shall be the
same as the effect, which the real actuator has. This procedure serves to hold the clearness of the
method on a high level. The results of both procedures are the same.

8 1. Introduction



2 Development of models for the control of
hopping motions

The starting point of this thesis is the concept of the test bed MARCO II [9] and a realized version
of it.

To prepare the start-up of the test bed a control has to be developed and implemented. In
preparation for this task and to have the possibility to test control algorithms, a model of the test
bed has to be created. Also mathematical models of ascending complexity have to be developed,
which make make it possible to use templates of hopping motions in complex systems. In this
chapter equations, which describe the laws used to control a stable hopping motion, are derived.

The model equations of the problem will be implemented in Matlab/Simulink. Parts of the
models will be realized by SimMechanics, the multi-body simulation environment provided by
Matlab. The control of the multi-body system will be developed with Matlab/Simulink. All figures
shown will have a sign determining if the result is from a simulation ([SIM]) or from experiment
([EXP]). This procedure was chosen in the style of [23].

There are different parts of the models that are necessary to create a valid model of the reality.

1. Structure of the test bed (links, bearings, mechanical constraints):
This part contains all mechanical parts of the test bed. Important for a realistic simulation
model are correct assumptions regarding mass-distribution, friction and damping by the
bearings and a correct modeling of the constraints (in this case parameters for damping and
deformation). Most of the data is obtained by data sheets of the used parts. If necessary
there have to be experiments to determine single parameters.

2. Sub-model for the contact between ground and the "‘foot"’:
The contact between foot and ground is either constant (during squats) or divided in contact-
and flight-phases (during hopping). In both cases the contact between foot and ground has
to be modeled. Depending on the dynamic values of the system the ground reaction force
gets higher (or lower) than in the static case [27]. The impact through the landing after
each jump has to be regarded and modeled correctly.

3. Sub-model for the actuation of the knee (drive-train model):
The knee is the only actuated part of the structure. Therefore, the control variable will be
the torque generated at the knee. A cable, different linear bearings, a transmission and in
an extended model even springs or dampers connect the actuator with the knee. All these
parts and the actuator itself have to be modeled. The realistic behavior of the model can
only be obtained, if all this influences are considered.

The complexity of the sub-models and models will increase during the development of the
different approaches. One first step is to develop a theory for the control of the knee torque in
a manner that produces hopping motions. A simple template model for hopping motions (the
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SLIP model) is investigated to gain a desired behavior by the adjustment of its parameters. This
behavior is transferred to more realistic models that come closer to reality through every step.

For the development of dynamic equations basic ideas from the textbooks "‘Technische Mechanik"’
1 [12], -2 [13] and -3 [14] have been used.

2.1 Dynamic equations of models with ascending complexity - squats

The basis of a hopping motion is given through an oscillating movement of the hip between
initial position xh,0 and the apex point xh,max (squats). A hopping motion is given if a flight phase
(the foot leaves the ground for a certain time) is added to this pattern. An understanding of the
laws describing squats is necessary to expand the controlled movement to hopping.

2.1.1 Harmonic oscillator with single mass

The sketch of a single mass oscillator is shown in Fig. 2.1. It consists of one mass m with one
degree of freedom x . The movement happens only in this direction. Attached to the mass is a
spring with the rate k and the rest length l0. A certain deflection of the spring results in a force F
attacking the mass and an equal ground reaction force FGRF. The importance of this model lies
in the equivalence of the behavior of this oscillating system to a human’s hopping pattern, as
shown by Blickhan in [8]. The derived movement and ground reaction force serves as template
respectively benchmark for other systems that should produce hopping motions.

m

k

x

Figure 2.1.: Sketch of a single mass oscillator. The mass m has got one degree of freedom x . A
spring with the rate k and the rest length l0 attached to the mass drives the oscillation
of the system. The lower end point of the spring never leaves the ground.

The equation of motion for this system is described by:

ẍ =
�

k(l0 − x)−mg
m

�

with:

ω0 =

√

√ k
m

(2.1)
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ω0 describes the eigen-frequency of the system and therefore the oscillating behavior. The
system’s behavior is influenced by the mass m, the rest length l0 and the spring-stiffness k.
The initial conditions, like the initial position x0 and the initial velocity ẋ0, also influence the
movement pattern of the system. Throughout this thesis the initial velocity is set to zero. A
movement always starts from a rest position.

In the real test bed the masses will have fixed values. Therefore the system’s behavior can
only be changed by adjusting k or l0. Since both values will only be virtual values with no
real counterpart they have not to be fixed. A variable stiffness or rest length is possible. The
calculation of the "‘correct"’ value of k depends on the wished movement.

Adjustment to a desired apex height of the oscillation

The beginning of a hopping motion is given if the mass m reaches the rest length of the spring
and the velocity of the mass ẋ is bigger than zero. For the spring is not attached to the ground,
no force in negative x-direction besides gravitation takes an effect on the mass. The kinetic
energy at this point sets the height of the hopping motion if losses are neglected.

To reach a certain apex height xmax from an initial position x0 and with a rest length of l0 the
necessary value for k has to be derived from the equation of motion of the system. For a single
mass oscillator it can be written:

x =

�

x0 − l0 +
g
ω2

0

�

cos(ω0 t) + l0 −
g
ω2

0

x = xmax if: ω0 t = π

xmax = 2l0 − x0 −
2g
ω2

0

ω2
0 =

2g
2l0 − x0 − xmax

(2.2)

The value of k for an apex height xmax is now given by:

k =
2gm

2l0 − x0 − xmax
(2.3)

There are borders for a reasonable behavior of the oscillation. The denominator of eq. 2.3 sets
this borders. It always has to be positive and not equal to zero. A negative stiffness k is not
reasonable and a denominator equals zero would produce unsteadiness.

xmax < 2l0 − x0 (2.4)

So far movements that do not go further than xmax = l0 are considered. A negative value of xmax
does not make sense under the assumption of hopping motions. So the lower and upper limit of
the apex height are set.

The same procedure could be used for more complex systems. All that is needed is the equation
of motion of the top mass.
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Adjustment to a desired frequency of the oscillation

If the resulting frequency of the motion is of interest, the equation of motion of the system is also
needed to identify the eigen-frequency ω0. For a desired frequency ωdes the spring stiffness is
determined by:

k =ω2
desm (2.5)

The apex height resulting from a certain frequency of movement with fixed values for l0, x0 and
ωdes is calculated by:

xmax = 2l0 − x0 −
2g
ω2

des

(2.6)

For a limited movement area there is a certain range of ωdes that leads to useful results. An apex
height lower than zero is not reasonable for the given problem of hopping movements. The lower
border ωdes is determined by:

0< 2l0 − x0 −
2g
ωdes

ωdes >

√

√ 2g
2l0 − x0

(2.7)

The upper border is given when ωset reaches infinity. An apex height of the movement is then
given by:

xmax = 2l0 − x0 (2.8)

This apex height is only valid for a spring attached to the ground. The movement is limited by
the rest length of the spring for resulting squats.

Another important frequency is the point where a hopping motion begins. This point is set by the
condition that the apex height of the movement gets higher than the rest length of the spring.
The resulting border-frequency is set by:

wdes >

√

√ 2g
l0 − x0

k >
2gm

l0 − x0

(2.9)

Tuned systems that meet this condition produce hopping motions if the spring is not attached on
the ground.
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2.1.2 Single mass oscillator with flight phase

If the frequency of the motion is set slightly above the frequency mentioned in 2.9, the apex
point is higher than the rest length of the spring. For the spring is not attached to the ground,
the foot leaves the ground and a flight phase is initiated.

The height of this hop depends on the velocity the mass has at take off ẋTO. Through the
comparison of kinetic and potential energy of the single mass oscillator it can be shown that the
apex height of the flight (the hopping height) is given by:

Ekin,TO =
1
2

mẋ2
TO

Epot,xmax =mg(xmax − l0)
Ekin,TO =Epot,xmax

xmax =
1

2g
ẋ2

TO + l0

(2.10)

The velocity the mass has at take off can be determined by:

ẋTO = −ωdes

�

x0 − l0 −
g
ω2

des

�

√

√

√

1−
�

g
ω2

desx0 −ω2
desl0 + g

�2

(2.11)

Through the adjustment of a proper value for ωdes and, therefore, k the hopping height of a
single mass oscillator can be determined.

In reality there are always energy losses during hopping movements. The energy balance between
kinetic and potential energy is given no more. Therefore, an ideal border value for the hopping
height is presented in eq. 2.10.

Summary single mass oscillator

The equations derived from the single mass oscillator and especially the border frequencies are
important as soon it is possible to control more complex systems in the fashion of a single mass
oscillator. The same behavior (desired frequencies, apex points, border frequencies) can be
applied on these systems. Some laws that have been developed (e.g. hopping height through the
kinetic energy) may change for the changed proportion of masses. But they give directions for
the choice of parameters and the resulting behavior non the less.

2.1.3 Multi-body system with one mass

For the geometries of the robot are more complex than of the single mass oscillator the true
geometry should be regarded. For reasons of simplicity it gets started with a single mass with
one translational degree of freedom x and two mass-less links with the length ll representing the
segments of the leg (shown in Fig. 2.2).

2.1. Dynamic equations of models with ascending complexity - squats 13



The first link is attached to the mass and encloses an angle ψ with the translational direction x .
The second link is connected to the first link at the knee (enclosed angle φ). The segment is also
attached to the ground, for the leg should not leave the ground in this phase. The angle between
the lower segment and the vertical direction is also ψ. Geometric constraints set the proportion
of the angles and the position of the mass to:

ψ=
π

2
−
φ

2

x =2 ll sin
�

φ

2

� (2.12)

The actuation of the whole structure is implemented in the knee, the point where the two links
are connected. A torque τ drives the movement of the multi-body structure.

Multi-body system driven by an ideal torque

So far an ideal torque τ for the actuation of the whole structure is assumed. In this example
the resulting movement resulting by this method of actuation will be shown. The regarded
multi-body system is shown in Fig. 2.2. There is only one mass in this system. The links will be
regarded mass-less and rigid. So the resulting movement of the mass is made comparable to a
single mass oscillator, which was introduced before.

As to see in Fig. 2.2 a spring is attached between the mass and the ground. This spring is a
virtual spring which causes no actual force on the mass or the ground. The effect the torque τ
has on the mass is supposed to be the same effect the spring would have. This is the central idea
of the virtual model control.

m

kv

x

φ τ

ψ

ψ

Figure 2.2.: Sketch of the multi-body system driven by an ideal torque τ. The structure got one
degree of freedom x . The torque τ should act like a force by the virtual spring with
the stiffness kv.

The acting forces on the links of the system are displayed in Fig. 2.3. Through a cut of the system
at the knee and the bearings of hip and foot the acting forces are exposed. The mass on top
causes a gravitational force mg on this point while the constraint of the movement of the mass

14 2. Development of models for the control of hopping motions



causes a reaction force F1y. At the knee there is a torque τ at the upper link introduced. The
intersection of the knee exposes the reaction forces Fkx and Fky. Also the movement of the foot
is constrained in one direction. The reaction forces of the bearing and the ground are given by
F2y and FGRF. Through the equations of equilibrium of the forces and the torques, the equation
of motion for the top mass can be found. The equilibrium of forces and torques leads to the

y

x

z τ

F1y

Fk y
Fkx

Fk y

Fkx

FGRF

F2y

mg

ll

l l

1 2

φ
2

φ
2

x

Figure 2.3.: Sketch of the multi-body system of two segments with the length ll driven by an
ideal torque τ. The system is divided in two parts through a cut at the knee and
underneath the foot. Forces acting at the section planes are shown.

following equations. Super-scripted numbers relate to the described sub-system in Fig. 2.3.

ΣF1
x : mẍ = Fkx −mg

ΣF1
y : 0= F1y + Fky

Στ1 : 0= −Fkx cos
�

φ

2

�

ll − Fky sin
�

φ

2

�

ll +τ

ΣF2
x : 0= −Fkx + F2x

ΣF2
y : 0= F2y − Fky

Στ2 : 0= Fkx cos
�

φ

2

�

ll − Fky sin
�

φ

2

�

ll

Through some transformations the equation of motion for the top mass m follows:

mẍ =
τ

2cos
�

φ
2

�

ll
−mg (2.13)

The torque τ sets the mass in motion. One goal is to gain a behavior of the structure similar to a
single mass oscillator with one spring. Therefore, the driving terms of the single mass oscillator
and the multi-body system, with the rest length l0 of the spring have to be equal.

τ

2 cos
�

φ
2

�

ll
= k(l0 − x) (2.14)
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If the torque τ in the following form is added at the knee, the structure moves like a single mass
oscillator. The generation of the torque depends only on the degree of freedom of the mass x ,
for φ and x are dependent values. The stiffness k is changed to kv, for it is now representing a
virtual component in the multi-body system.

τ= 2cos
�

φ

2

�

llkv(l0 − x) (2.15)

The necessary requirement is that the mass is the same in both systems.
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Figure 2.4.: [SIM] Comparison of the oscillation of the single mass oscillator (a) and the multi-body
system (b). The stiffness of the spring kv is adjusted for a stable oscillation ofω= 7
rad/s. The initial position of the mass is x = 0.2m and the rest length l0 = 0.5m.
The solver used for the single mass oscillator is ODE45 and for the multi-body system
ODE23. The resulting oscillations are equivalent.

The comparison of the oscillations in figure 2.4 shows that both systems act equal. Results for
the frequency and also the amplitude are for both systems the same. The derived law for the
torque is able to make a multi-body system behave like a single mass oscillator.

Multi-body system driven by a force

As seen before, the actuation of the knee with an ideal torque τ is simple. Looking at the real
test-bed it is seen that the assumption of an ideal torque at the knee is not realistic. The torque
at the knee is realized by a cable attached to a pulley with the radius rp on the thigh. This can be
compared to a force F attacking on a lever arm with the length rp at the knee (see Fig. 2.5). The
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Fk y
Fkx

Fk y

Fkx
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Figure 2.5.: Sketch of the multi-body system of two segments with the length ll driven by a
force F attacking on a lever arm with the length rp. The lever arm is parallel to the
rail/direction of x in the initial position. The system is divided in two parts through
a cut at the knee and underneath the foot. Forces acting at the section planes are
shown.

equations of equilibrium are developed similar to the system with the torque at the knee. After
some transformations of the equations, the equation of motion for the top mass m follows:

mẍ =−
1
2

F



cos
�

φ

2
− arcsin

�

1
2

x0

ll

��

tan
�

φ

2

�

− sin
�

φ

2
− arcsin

�

1
2

x0

ll

��

−
rp

2cos
�

φ
2

�

ll



−mg

(2.16)

The influence of the force F on the movement of the mass depends on φ in a form like:

mẍ =−
1
2

F f (φ)−mg

f (φ) = cos
�

φ

2
− arcsin

�

1
2

x0

ll

��

tan
�

φ

2

�

− sin
�

φ

2
− arcsin

�

1
2

x0

ll

��

−
rp

2cos
�

φ
2

�

ll
(2.17)

To get the same result of the system acting like a single mass oscillator, the force must be
computed in the following manner:

F =
2kv(l0 − x)

f (φ)
(2.18)

The comparison between this method and the single mass oscillator is shown in figure 2.6. The
results are similar and comparable to the behavior gained by the calculation of the torque at the
knee in Fig. 2.3.

A law for the force at the knee is more complicated and depends on the initial position of the
force in the system. This shown relationships hold for the assumption that the lever arm of
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Figure 2.6.: [SIM] Comparison of the oscillation of the single mass oscillator and the multi-body

system driven by a force F on a lever arm at the knee. The stiffness of the spring kv is
adjusted for a stable oscillation with the frequencyω= 7 rad/s. The initial position
of the mass is x = 0.2m and the rest length l0 = 0.5m. The solver used for the single
mass oscillator is ODE45 and for the multi-body system ODE23.

the force is parallel to the travel direction of the mass in the initial position of the system. All
transformations introduced are valid for this initial condition. This condition is expressed through
the term:

φ0 = arcsin
�

1
2

x0

ll

�

(2.19)

Small deviations of the initial angular condition of the lever arm have a large impact on the
movement of the structure, for the force calculation law to mimic single mass oscillator behavior
bases on the initial condition. These angular deviation is introduced through adding ∆β in the
initial condition of the system, but not in the equation of the force F (eq. 2.17). For the real
initial position of the lever arm on the test-bed is not known, these deviations are likely when
the law is implemented on the control of the test-bed. The new initial condition of the attacking
force is now given by:

φ0 = arcsin
�

1
2

x0

ll

�

+∆β (2.20)

The force generation law assumes a specific position of the lever arm for each position of the
mass. The result of changing the real angular-position of the lever arm without adapting the
force generation law is shown in figure 2.7.

Amplitude and frequency of the oscillation change even for small deviations. For it is not easy
to adjust the force generation law to the initial lever arm position on the test-bed, the method
for the force control presented in this paragraph, shall not be used. The calculation law for the
torque shown in eq. 2.15 is much simpler and does not depend on the attacking point of the
force. Therefore it is chosen as a valid generation law for the transformation of virtual spring
force to knee torque for the following development of more complex systems.
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Figure 2.7.: [SIM] Oscillation of the top mass of an multi-body system with deviation of the initial
angle of the lever arm∆β . The force generation law is not adapted, so a "‘wrong"’
force is effective for each position. The used solver is ODE23.

Summary multi-body system with one mass

The result from the examination of the single mass multi-body system is that it is possible to
control the abstracted leg through a torque at the knee. The calculation law for the torque is
simple and the implementation in the simulation shows comparable behavior of single mass
oscillator and single mass multi-body system.

A control of a force attacking a lever arm attached to the thigh leads to more complicated laws
with a dependency on initial conditions that react very sensitive to deviations. Although the
assumption of a controlled force would be more realistic, the handling is far more prone to errors
through imprecise assumptions of geometries.

2.1.4 Multi-body system with distributed masses

After the examination of multi-body systems with a single mass the influence of distributed
masses on the multi-body system is debated. In Fig.2.8 the additional mass m2 and inertia θl of
the link are added to the system. θl is the moment of inertia of a segment of the leg relative to
the hip bearing or the foot bearing and depends on the mass of a segment m2 and the length ll
and width wl of a segment.

θl =
1

12
m2

�

l2
l +w2

l

�

+m2

�

ll
2

�2

(2.21)

For the moments of inertia of the two links compensate each other in their influence on the
movement of x , the calculation of those and the values are not of interest at this point. The
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Figure 2.8.: Sketch of the multi-body system driven by an ideal torque τ. There are three masses
in the system, the mass on top of the leg m1 and the masses of each link m2, which
are considered as concentrated in the center of mass of each segment. Moments
of mass inertia are calculated relative to the foot or the hip/ the end point of the
segments. The structure got one degree of freedom x . The torque τ should act like
a force by the virtual spring with the stiffness kv. The system is divided in two parts
through a cut at the knee and underneath the foot. Forces acting at the section
planes are shown.

equations of equilibrium for this extended system are given by:

ΣF1
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This equations (Eq.2.22) lead to the expression:

ẍ =

τ

2 cos
�

φ
2

�

ll
− (m1 +m2)g

m1 +
3
4 m2

(2.23)

If the calculation law for τ from eq. 2.15 is used, the equation of motion for the described system
is given by:

x =

�

x0 − l0 +
m1 +m2

ω2
0,MB

�

m1 +
3
4 m2

� g

�

cos(ω0,MB t) + l0 −
m1 +m2

ω2
0,MB

�

m1 +
3
4 m2

� g

with:

ω0,MB =

√

√

√

kv

m1 +
3
4 m2

(2.24)

It is assumed that the system with a change of mass relations could be controlled equally to the
system with only a single mass on top of the structure (through the torque generation law in eq.
2.15). Changes to the motion resulting from the additional mass m2 are described by the new
eigen-frequency ω0,MB.

Another way to show resulting differences is to compare the minimum frequency for reaching an
apex point higher than the rest length. This frequency is now given by:

ω0,MB >

√

√

√

2(m1 +m2)g

(l0 − x0)(m1 +
3
4 m2)

(2.25)

The frequency now depends on the distribution of masses between top mass m1 and the dis-
tributed mass in one link m2. Even for an equal sum of masses in the single mass multi-body
system and the multi-body system with distributed masses m1,SB = m1,MB +m2,MB the frequency
which is needed to reach to reach a certain apex point is not the same. In Fig. 2.9 the different
behavior can be seen. The frequency of the movement is slightly different. Also the movement
near the apex point is different.

If the circumstance of the distribution of masses is ignored and the equation for finding the
frequency for reaching the rest-length resulting from the single mass oscillator (eq. 2.9) is used,
we get some differences in the behavior. The resulting oscillations are diagrammed in Fig. 2.10.
The border frequency developed with the single mass oscillator is not able to reach the rest-length
of the spring.

If a multi-body system should be driven by the laws derived from the analysis of a system with
only one mass, to approach the behavior and simplify the calculations, some deviations occur. It
is not possible to gain the exact same behavior. These errors result from the assumption that the
calculation law for τ (see eq. 2.15) could be used without changes. If the exact behavior of the
single mass oscillator ahould be gained, some changes have to be made to the calculation law of
τ.
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Figure 2.9.: [SIM] Comparison of the oscillation of the single mass oscillator (b) and a multi-body
system (a). The stiffness of the spring kv is adjusted for reaching the rest length of
the spring of both systems. Both systems have the exact same sum of mass, but a
different distribution of masses. The initial position of the top point is x = 0.2m and
the rest length l0 = 0.5m. The solver used for the single mass oscillator is ODE45 and
for the multi-body system ODE23.

SLIP like behavior of the multi-body system

If a similar behavior of the multi-body system and the single mass oscillator should be gained,
the condition that eq. 2.1 is equal to eq. 2.23 has to be met. The masses of the systems are given
by m1(mass on the top of the multi-body system), m2(mass of one link) and m(mass in the single
mass oscillator).

A relationship between the torque in the multi-body system τ, the spring rate kv of the single
mass oscillator, all the masses of both systems and the kinematics of the multi-body system can be
found, to make the multi-body system move like a single mass oscillator with fixed parameters.

τ=
�

kv(l0 − x)−mg
m

(m1 +
3
4

m2) + (m1 +m2)g
�

2 cos
�

φ

2

�

ll

in:
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τ

2cos
�

φ
2

�

ll
− (m1 +m2)g

m1 +
3
4 m2

(2.26)

A single mass oscillator with a desired behavior (like an apex height or a certain frequency of
movement) can be chosen, defined through its mass m, rest length l0 and its spring-rate kv. The
same behavior can be mimicked with a multi-body system with the given values for the masses
and the kinematics.
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Figure 2.10.: [SIM] Comparison of the oscillation of the single mass oscillator (a) and two different
multi-body system settings (b+c). The stiffness of the spring kv is adjusted for
reaching the rest length of the spring. In the system (c) the same kv as in (a) is used.
All systems have exact the same sum of mass, but a different distribution of masses.
The initial position of the top point is x = 0.2m and the rest length l0 = 0.5m. The
solver used for the single mass oscillator is ODE45 and for the multibodysystem
ODE23.

As shown in Fig.2.11 the oscillations of both systems are exactly the same. The force pattern has
the same frequency, but the amplitude of the single-mass system is higher. This circumstance is
easily explainable by the chosen parameters of the simulations. The multi-body system was set
to the real values of masses of the test bed m1 = 0.498 kg and m2 = 0.135 kg. Whereas, for the
single mass oscillator a mass of m3 = 1kg was chosen. The theoretical ground reaction force for
the multi-body system is given by:

FGRF =m2 ẍB + Fkx +m2g

=m2 ẍB +
τ

2 cos
�

φ
2

�

ll
+m2g

=
1
4

m2 ẍ +
τ

2 cos
�

φ
2

�

ll
+m2g

=
k(l0 − x)−mg

m
(m1 +m2) + (m1 + 2m2)g

with: k =ω2
desm

FGRF =ω
2
des(m1 +m2)(l0 − x) +m2g

(2.27)

To compare the ground reaction force of the multi-body system FGRF with the one of the single
mass oscillator FGRF,SM we derive:

FGRF,SM =k(l0 − x)

with: k =ω2
desm

FGRF,SM =ω
2
desm(l0 − x)

(2.28)
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Figure 2.11.: [SIM] Motion- and force-patterns derived from a single mass oscillator model (SLIP)
and a multibody-system model (MBS) with distributed masses. The oscillation of the
top point is the same for both models. Force patterns of the ground reaction force
are different, for the sum of masses in the systems are different. m = 1 kg while
m1 = 0.498 kg and m2 = 0.135 kg. The solver used for the single mass oscillator
model is ODE45 and for the multi-body system ODE23.

In Fig. 2.12 the trend of both forces in dependency of the position of the top point x is compared.
As we see in eq. 2.28 and eq. 2.27 the slopes of both force functions are different. Also the
offset-points are different. The ground reaction force of the single mass oscillator will become
zero for a position of x equal to the rest length of the spring. The spring does not transfer forces
if it is unstressed. In the multi-body system the weight-force of one segment causes the offset.
Both position-force-relations are linear. A multi-body system can be controlled with a linear
force-law to behave like a single mass oscillator.

Non-linear behavior of the multi-body system with attached cable

The leg will be attached to the drive-train with a cable. For the cable is modeled as a spring with
the stiffness kc, the cable and the segmented leg form a system able to perform oscillations. The
system can be considered as a kind of mass-spring system with a corresponding eigen-frequency.
Resonance and related effects can occur, but also be used to enhance the performance of the
system.

For determining this effects, the eigen-frequency has to be calculated. The system shown in Fig.
2.8 is used. The driving torque τ is replaced by a force F resulting from the displacement of the
cable/spring when it is loaded with the weight of the segmented leg. So the system is comparable
to a mass resting on a spring. The equations to describe the eigen-frequency are given by:

�

m1 +
3
4

m2

�

ẍ =
τ

2 cos
�

φ
2

�

ll
− (m1 +m2)g (2.29)
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Figure 2.12.: [SIM] Relation between the position of the top point x and the ground reaction
forces FGRF for the multi-body system and FGRF,SM for the single mass oscillator. Both
systems are tuned to have the same oscillation pattern (shown in Fig. 2.11. Both
courses of the force are linear but have different slopes and offsets. The solver used
for the single mass oscillator is ODE45 and for the multi-body system ODE23.

The torque τ can be described by a force attacking on the pulley with the lever arm rp. Force
transformations through the cable are exposed to losses. This is described by the efficiency of the
cable ηc.

τ= F rpηc (2.30)

The force and therefore the torque depends on the deflection of the cable. It can be expressed
with the initial angular position φ0 and the current angular position φ at the knee.

F =kc(φ0rp −φrp)

τ=kcr2
pηc(φ0 −φ)

(2.31)

The dependencies of the angle φ can be transformed to dependencies of the position x . Through
the constant C1 the initial condition of the system is expressed.

sin
�

φ0

2

�

=
x0

2ll

φ0 =2 arcsin
�

x0

2ll

�

= 2C1

φ =2 arcsin
�

x
2ll

�

(2.32)
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The following transformations serve to implement the relationships in the equation of motion.

F = 2kcrp
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2ll
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x
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��

2ll cos
�
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x
2ll

��

=
q

4l2
l − x2

(2.33)

Now the differential equation of motion for the "mass"-spring system is given by:

ẍ −
2kcr2

pηc(C1 − arcsin( x
2ll
))

q

4l2
l − x2(m1 +

3
4 m2)

= −
m1 +m2

m1 +
3
4 m2

g (2.34)

To find a description of the eigen-frequency of the system, the part dependent of x has to be
analyzed.

f (x) =
2kcr2

pηc(C1 − arcsin( x
2ll
))

q

4l2
l − x2(m1 +

3
4 m2)

(2.35)

A splitting of the relationship in the form of a single mass oscillator to get the eigen-frequency of
the system does not seem possible. The simulation of the system leads to the following results.
Shown are the resulting oscillations with different initial conditions in Fig. 2.13. The frequency of

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

t (s)

x
h
(m

)

 

 

 

x
0
=0.2 m

x
0
=0.3 m

x
0
=0.4 m

Figure 2.13.: [SIM] The oscillation of the hip position xh of the segmented leg with different initial
positions. The cable of the knee is attached to a rigid point.

oscillation for a single mass oscillator is independent of the initial condition. For the segmented
leg the eigen-frequency is dependent of the initial condition.
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We assume that the eigen-frequency is fixed for a certain initial condition C1. Therfore, the
eigen-frequency could be determined in the following manner.

f (x) =
2kcr2

pηc(C1 − arcsin( x
2ll
))

q

4l2
l − x2(m1 +

3
4 m2)

=ω2
0x
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√

√ f (x)
x
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√

√

√

√

2kcr2
pηc(C1 − arcsin( x

2ll
))

q

4l2
l − x2(m1 +

3
4 m2)x

(2.36)

This relationship would be valid if the eigen-frequency of the system is independent of the
position x .

These findings could be used to develop a serial elastic actuation concept to influence the behavior
and energy consumption in the manner of the way presented by Vu et al in [31] (see chapter
1.3.3). Because it is not a core task of this work, the idea will not be pursued further.

Summary multi-body system with distributed masses

It has been shown that a multi-body system with distributed masses can be controlled in the
fashion of a single mass oscillator while the foot does not leave the ground. Some laws for the
generation of the torque at the knee had to be adjusted. The use of the simple laws derived
for the single mass oscillator and the segmented structure with one mass lead to errors in the
behavior. A possible approach to determine the eigen-frequency region of the system has been
shown.
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2.2 Dynamic equations of models with ascending complexity - hopping

So far all models were used to show relations while the foot stays on the ground. A hopping
motion includes also a flight phase and a landing. These events make the models unsteady for
some forces only act during certain time segments of the whole movement.

For example influences the ground model the system only while the leg is on the ground. On the
other hand, the movement of the foot mass during the phase of ground contact is near to zero.
Forces resulting from this movement are very small. In the moment of take-off the foot mass
moves in comparable range to the mass at the hip. Resulting forces from the foot movement only
influence the system behavior during the flight phase.

Models will be presented that are able to describe these flight phases and the change of effects
between ground contact phase and flight phase. All models will be derived with an ascending
complexity again.

2.2.1 Harmonic oscillator

The harmonic oscillator is extended with a foot point that enables the system to leave the ground,
therefore it possesses now two degrees of freedom x and xf (see fig.2.14).

Relevant parameters are the mass on top m, the mass of the foot m4 and the spring with it’s rest
length l0 and spring rate k. The ground exerts forces on the foot mass and is modeled through a
spring and damper in parallel with the spring rate kg and the damping parameter dg. Ground
forces only occur when the displacement of the ground ∆xg becomes bigger than zero. This
displacement is equal to a foot position underneath zero. The forces by the ground are always
bigger than zero. There will be more explained about the ground models in chapter 3.2.4.

The equations of motion are given by:

mẍ =k(l0 − x + xf)−mg
m4 ẍf =− k(l0 − x + xf) + kg(∆xg)− dg ẋf −m4g

(2.37)

The differential equations during the flight phase are given by:

mẍ =k(l0 − x + xf)−mg
m4 ẍf =− k(l0 − x + xf)−m4g

(2.38)

The second mass m4 representing the foot point is set to a value near to zero to gain a behavior
that comes close to a single mass oscillator. Values for k and ω0, which are needed to reach
certain states of movement during ground contact, have been discussed before (see chapter
2.1.1). Now the range of parameters for reaching a certain hopping height is examined.

It has been shown (see chapter 2.1.2) that the change of height ∆h after reaching the rest length
of the spring l0 (equal to the hopping height) depends on the velocity of the top mass ẋTO at the
moment when it reaches the rest length of the spring (’take-off’, the foot-point leaves the ground,
for the force by the spring is zero):

∆h=
1

2g
ẋ2

TO (2.39)
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Figure 2.14.: Sketch of the model for the harmonic oscillator. The structure got two degrees of
freedom x and xf. A spring with the rate k attached between the hip mass m and
the foot mass m4 drives the oscillation. The ground consists of parallel spring with
the rate kg and a spring with the rate dg. The ground forces effect the oscillator
only during the stance phase.

The velocity at ’take-off’ ẋTO for a certain rest length l0, an initial position x0 of the mass m and
a desired eigen-frequency ωdes is given by:

ẋ2
TO =ω

2
des(x0 − l0)

2 + 2g(x0 − l0) (2.40)

So the change of height ∆h after the take-off can be determined by:

∆h=

�

ω2
des

2g
(x0 − l0)

2 + (x0 − l0)

�

m
m+m4

(2.41)

The relation of the masses m and m4 influences the hopping height. The ideal height could be
reached for a foot mass near zero . A realistic relation for the masses (see Fig. 3.1 with the
distribution of the masses on the test-bed) leads to a reduced hopping height of approximately
∆hred = 0.8∆h(m4 = 0).

A spring rate k can be found that leads to a certain hopping height xmax = l0+∆h of the harmonic
oscillator:

k = 2gm
∆hm+m4

m − x0 + l0
(x0 − l0)2

(2.42)

This relationship can be used as a first approach to generate a desired hopping height and to
compare results of the simulation and the experiment performed with this value.
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2.2.2 Multi-body system with distributed masses

This model contains all masses that can be found on the real test-bed and takes them into account
(see fig.2.15). The system has two degrees of freedom, the position of the hip xh and the position
of the foot xf. All other positions (xA, xB the positions of the center of mass of the two links; xK
the knee position) and the angle between the segments and the direction of x , ψ and the knee
angle φ are dependent values.
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Figure 2.15.: Free body diagram of the multi-body system with all involved forces and torques.
(1) represents the upper link (thigh) and (2) the lower link (shank) of the leg. m1
represents the mass on the top point, m2 is the mass of a link, m3 is the addi-
tional mass at the knee point and m4 represents the mass of the foot. All masses
produce gravitational and inertial forces. Additionally the mass moments of iner-
tia (related to hip/foot point) of the links presented by θl take effect. All forces
(F1y,Fky,Fkx,F2y,FGRF) result from contact forces of the bearings. The torque τ ac-
tuates the system. Positions of the masses are given by xh, xA, xK , xB and xf. The
knee angle is represented by φ.

The equations of motion for the system are given by:
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ÿK = F1y + Fky

ΣM1 :θlψ̈+
m3

2
l2
l ψ̈= −Fky sin

�

φ

2

�

ll − Fkx cos
�

φ

2

�

ll

+m2g cos(
φ

2
)
ll
2
+τ+

m3

2
g cos

�

φ

2

�

ll

(2.43)
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ẍA =
3
4
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Transformations of the equations lead to:
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(2.45)

The differential equations for the movement of xh and xf can be used to simulate the behavior of
a multi-body system. To accomplish the goal of a movement of the multi-body system similar to
a single mass oscillator with flight phase, the following equation for a single mass oscillator with
two degrees of freedom (position of the mass on top xSM and the position of the foot xf, SM) and
the equation for ẍh have to be equal:

ẍSM =
k(l0 − xSM + xf, SM)−mg

m
(2.46)

The condition ẍ1 = ẍSM leads to a calculation term for τ:
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(2.47)

If the system is influenced by a torque generated by this law, a movement similar to a single mass
oscillator is possible. The generation law is only valid during the contact with the ground. The
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mass of the foot m4 is not moved during this time. After the ’take-off’ of the leg the dynamic of
the system is also influenced by this additional mass.

In eq. 2.42 a law for determining a certain stiffness kv of the virtual spring for reaching a desired
hopping height is shown.

kv = 2gm1

∆hm1+2m2+m3+m4
m1

− x0 + l0
(x0 − l0)2

(2.48)

In this equation we assume that only the mass at the hip m1 possesses kinetic energy when the
rest length is reached. The masses m2−m4 have to be accelerated by this available energy. When
the potential energy of all masses and the kinetic energy of m1 during ’take-off’ are equal, the
apex point of the movement is reached.

Eq. 2.48 sets a lower limit of the hopping height, for m2 and m3 also posses kinetic energy before
the foot leaves the ground. In reality there are also friction forces acting against the hopping
motion. Therefore, the reached hopping height will always be lower than the one anticipated
with the presented equations. The purpose is to estimate values for tuning the model and the
test-bed that will result in hopping motions. Energy losses that occur during the motion have to
be compensated with other methods presented in the control section of this thesis.

32 2. Development of models for the control of hopping motions



3 Test-bed Marco Hopper II
The derived theories have to be tested on a realistic device. Therefore, a mechanic segmented
leg has been developed. The drive-train of the structure holds the possibility of testing different
concepts of actuation.

3.1 Configuration of MARCO Hopper II and changes

As described in paragraph 1.3.2 the test-bed has already been developed and built [9]. During
the development of proper control strategies some adaptions had to be made. This chapter sums
up these changes and the properties of MARCO II.

MARCO II consists of two main parts. One part represents the leg and the body on top of it. For
the purpose of coming close to the mass proportions of the leg it represents, the masses (m1-mass
at the hip and m4-mass at the foot) are scalable. The other part is the drive-train which provides
the necessary forces to move the leg. Both parts are connected with a cable attached to the knee
of the leg and the output of the drive-train.

3.1.1 Segmented leg of MARCO II

The segmented leg consists of different parts with different tasks (see Fig. 3.1). All properties are
summed up in Fig. 3.1. The values give the current status of each part of the system. Further
changes are mentioned when they are made.

First there are the structural parts of the leg, the segments (representing shank and thigh
with length ll, width wl, height hl, density of aluminum ρal), the roller- and linear-bearings
(representing hip-, knee- and ankle-joint), the pulley at the knee (effective radius rp), the stop of
the knee preventing it from over-extension (allowing a maximum knee angle of φmax) and the
mass m1 that can be added to the upper linear bearing. The masses m2 (leg segment mass), m3
(mass at the knee) and m4 (mass at the foot) are fixed in this setting.

There are three sensors at the leg. The positions of hip xh, foot xf and the knee angle φ are
measured by a potentiometer position sensor and via an inertial measurement unit (IMU). The
third sensor is a strain gauge force sensor measuring the ground reaction force FGRF beneath the
foot. The IMU and also the force sensors were not part of the original concept and have been
added in the process of this work.

Changes to the segmented leg during the development

There are a few changes made to the leg during the process of this thesis. The changes are shown
in Fig. 3.1. First the concept of torque generation at the knee was changed. In the original setup
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Figure 3.1.: The segmented leg of MARCO Hopper II. (a) shows the leg in the current state. (b)
shows it in the beginning of the thesis. The two segments thigh and shank got
a length of ll with a knee angle φ enclosed between them. Thigh and shank are
connected by a roller bearing at the knee. The pulley is fixed on the shank with the
cable glued on it. Positions of hip and foot are given by xh and xf. The foot and the
hip are connected to the vertical sledge via linear bearings and to the segments via
roller bearings. Also an additional mass m1 could be added at the hip. The knee stop
is realized via a cable, limiting the knee angle. Underneath the foot a force sensor
is mounted measuring the ground reaction force FGRF. The potentiometer position
sensor is fixed to the foot. On the hip, near the joint, the IMU is mounted.

the cable was fixed on the thigh. Therefore no torque could be generated at the knee. The force
moving the leg was a horizontal force generated by the shortening of the cable. Fixing the cable
on the pulley generates a torque at the knee/ at the lower part of the thigh. The mass at the
hip m1 was changed. In the old configuration the mass of m1 = 0.498 kg generated not enough
inertia to let the whole leg jump. Also the sensors to measure the knee angle φ, the foot position
xf and the ground reaction force FGRF were added.

3.1.2 Drive-train of Marco Hopper II

The drive-train consists of the parts motor, motor encoder, transmission, ball screw, carriages and
the force sensor. The properties of each part can be found in chapter 3.2.3.

In the original concept a spring was included in the drive train to investigate the behavior and
energy consumption of a system under the influence of a drive-train with SEA. The current setup
of the drive-train uses a force sensor in the place of the spring. A picture of the drive-train is
shown in fig. 3.2.

34 3. Test-bed Marco Hopper II



Table 3.1.: Properties of the segmented leg

properties segmented leg

length of leg segment ll = 0.25 m
width of leg segment wl = 0.005 m
height of leg segment hl = 0.04 m
effective radius pulley rp = 0.034 m
maxiumum knee angle φmax = 120◦

current mass at the hip m1 = 1.102 kg
mass of one segment m2 = 0.135 kg

current mass at the knee m3 = 0.3 kg
current mass at the foot m4 = 0.297 kg

density of aluminum ρal = 2700 kg m−3

roller bearings SKF No. 61800
linear bearings item Industrietechnik GmbH, PS 4-15

pulley at the knee Burckhardt, No. C178 002 560/80
potentiometer position sensor Burster Präzisionsmesstechnik, No. 8709-5150

IMU MPU6050 3-axis acceleration sensor + gyro - 6DOF module [4]
force sensor - load cell Watterott electronic, 0-30 kg [3]

The current of the motor is managed with a motor controller from MAXON. An internal PI
current controller sets the desired current to the motor. The internal control of current tends to
oscillations due to high steps in the desired values during a hopping motion. Some problems
resulting from this will be discussed in chapter 5.2.1.

An embedded controller for managing sensor and control signals is given by the NATIONAL

INSTRUMENTS MyRIO. It receives all signals of the test-bed and handles all information together
with a PC-workstation. The software used to control the test-bed is NATIONAL INSTRUMENTS

LABVIEW. The test-bed is supplied with energy through two power sources. One supplies the
motor and the control devices connected to it. The other power source supplies all the sensors
and necessary signal amplifiers.

Changes to the drive-train during the development

The changes of the drive-train were limited to the development of some adapter pieces to include
the force sensor in the drive-train and a device to pre-load the force sensor.

For the changes are concentrated on the connection between the two carriages on the rail over
the ball screw, a comparison is shown in fig. 3.3.

The pre-load device is built up of a threaded rod, a screw nut and a shim. For attaching the
threaded rod in the flux of force of the force sensor, the left end is fixed in a threaded part
connected to the sensor. The right part connected to the sensor has a drill hole without thread.
Screw nut and shim can be adjusted to pre-load the sensor. If an additional tensile force on the
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electric motor
with transmission

ball screw
and force sensor

bowden cable

Figure 3.2.: The drive-train of MARCO Hopper II. It consists of an electric motor with mounted
transmission and encoder to measure the position of the motor. A ball screw con-
verges the rotation of the motor in a translational movement of the carriages attached
to the ball screw. The two carriages move on the rail and are connected to each other
with a force sensor. The second carriage is attached to the Bowden cable which is
connected to the pulley of the leg.

sensor is raised the threaded rod can move freely. The pre-loading of the sensor is necessary to
get linear behavior of the sensor.

3.1.3 Sensor concept and implementation

To be able to implement a proper control and to measure and evaluate the motion of the robot leg,
the test-bed is in need of different sensors. Two types of dimensions, rotational- and translational
positions and forces have to be measured. The sensors used on the leg and on the drive-train
have been mentioned before. Now the settings and implementation of those is described.

Position sensors

The existing test bed contained already some position sensors. Through potentiometer sensors
the positions of the hip xh, the foot xf and the carriage with the attached cable are measured. An
encoder measures the angle of the motor φM and through some kinematic equations (expressed
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Figure 3.3.: The different concepts of the connection in the drive-train are shown. In (a) a spring
is fixed between the two carriages. SEA concepts can be investigated. In (b) the force
sensor takes the place of the spring. A force-control approach is possible. Over the
sensor the device for pre-loading the sensor is shown.

through the transmission rations of motor transmission iT and ball screw ibs) it measures the
position of the carriage xbs attached to it.

xbs =
φM

iTibs
(3.1)

A disadvantage of the available sensors on the hip and the foot were the limitation of travel. The
position of the foot can be measured with the existing sensors and some new designed adapters.
For measuring the position of the hip and also the angle of the knee φ an IMU has been attached
to the leg.

Encoder at the motor

The encoder of the motor is a device provided by MAXON (see Fig. 3.2). It measures the current
angle of the motor. Through that also the angular velocity of the motor φ̇M could be determined.

Some problems with the encoder made it difficult to work with it in a proper way. An internal
error leads to the misinterpretation of direction of rotation. When the error occurs, one direction
of travel is not recognized. A proper position or velocity control based on sensor information
provided by the motor is not possible until the error will be found. For the control concept of
these work does not depend on this information, the error will be neglected.
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Table 3.2.: Properties of the drive-train

properties drive-train

motor maxon EC-4pole, P = 200 W
transmission maxon GP 42 C, i = 91/6

ball screw item Industrietechnik KGT VK14, i = 314
carriages item Industrietechnik GmbH, PS 4-15

force sensor Scaime, ZF 0-100 kg No. 031018
motor controller Escon Module 50/5, 4-Q, No. 438725

motor controller motherboard Escon Module Motherboard, No. 438779
motor encoder maxon Motor AG, Encoder MR, Typ ML, No. 225778

power source - motor U=22-29 V, I=10.5 A, P=300 W
power source - sensors U=24 V, I=0.01-2 A

embedded hardware device NI, myRIO

Potentiometer position sensor of the foot

For measuring the position of the foot xf, a potentiometer sensor provided by BURSTER PRÄZISION-
SMESSTECHNIK is used (see fig. 3.1). It is attached to the linear bearing of the foot. A drawing
for the used adapter can be found in the appendix (see fig. A.3). The signal is received by the
MYRIO.

IMU at the thigh

The position of the hip xh and the angle of the knee φ are determined with the sensor information
provided by the IMU attached to the thigh.

Basically the IMU measures the angle enclosed by the thigh and the vertical rail of the linear
bearings ψ. The angle of the knee is calculated internally.

φ = 2
�π

2
−ψ

�

(3.2)

Also the position of the hip xh is calculated with the information of foot position xf, the length of
one leg segment ll and the angle ψ.

xh = xf + 2sin
�π

2
−ψ

�

ll (3.3)

During impacts, when the leg becomes stretched and when the foot hits the ground, the rate of
change of ψ is very high. At this points the signal from the IMU tends to high peaks that do not
reflect the real values for ψ. Therefore, the signal for the calculation of the knee angle, the hip
position and all their derivations is not very precise at this moment. All measures to control the
system with these values have to be designed with these circumstances in mind.

Force sensors

Force sensors have not been a part of the original concept of the test-bed. At two points the
measurement of forces is necessary. Ground reaction forces are one important quantity for
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evaluating motions, which should mimic legged locomotion. Therefore, the inquiry of this data is
important.

The knowledge of the force attacking on the end of the bowden cable makes the evaluation of
the effective knee torque much easier. A force sensor between the carriage connected to the drive
train and the other carriage attached to the bowden cable gives insight into this matter.

Two kinds of force sensors were used, a load cell [3] in the form of a beam (see fig. 3.4) and a
different force sensor ("‘S"’-double beam) [2] (see fig. 3.3). Both sensors base on the change of
resistance due to deflections of strain gauges.

Figure 3.4.: The force sensor used to measure the ground reaction force FGRF [3].

Determining properties of the force sensors

Load cells are used for measuring the forces. A load on the sensor leads to a change of the
output voltage. For there are no data sheets for the sensors available, the load - output voltage
relationship has to be determined.

For identifying the load/ output voltage relationship, a simple experiment is conducted. The
load cell is rigidly attached on its one end. A variable weight is added to the other end. The
resulting output voltage can be related to the attached weight and therefore to the actual force
on the sensor. Resulting data from the calibration can be found in fig. A.1. Especially the sensor
for measuring the force in the drive-train has to be calibrated properly though it measures the
controlled variable. The used force sensors inherit a measuring range in which the output voltage
depends linear from the force. Beneath a certain force value, the output signal gets non-linear.
Therefore, the force sensors have to be pre-loaded to deliver reliable information.

Implementation of the force sensor - force in the drive train

The derived linear law for calculating force values Fdt from the output voltage USout is:

Fdt =
g

1000

�

−
0.0332223
2.56466

105USout

�

− Fpl (3.4)

The sensor will be pre-loaded with a force Fpl = 200 N necessary to leave the non-linear range of
the sensor. Before each experiment including force-control the pre-load device is tuned to set the
output force to Fdt = 0.

For implementing the force sensor in the drive train an adapter had to be developed. Drawings
for these can be found in the appendix (see fig. A.1). A second force sensor with an extended
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range of measurement can be used. The alternative for the adapter can also be found in the
appendix in fig. A.2.

The used force sensor can be replaced by a sensor similar to the sensor used to measure the ground
reaction force. These type of load cells are cheaper and an alternative should be presented,
for the current force sensors can not be used permanently in the test bed. One alternative
construction for the implementation is presented.

For the construction of the adapter already available aluminum profiles from item Industrietechnik
GmbH with a length of liP = 0.1 m could be used. This profile acts like a beam with one end
rigid attached to the ground while the other end is attached to a parallel motion. The force takes
effect at the end with the parallel motion.

A drawing of the possible solution is shown in fig. 3.5. The mechanical drawings could be found
in the appendix (see fig. A.5 and fig. A.6). A solution for the calculation of resulting forces and
deflections of this kind of problem can be found in [14][p. 125]. The properties of the profile
used for this calculation are summarized in the table 3.3.

(a) (b)

Figure 3.5.: Drawing of the the adapter for the alternative sensor measuring the force in the
drive-train. The long gray part connected with two drilled parts to the ITEM profile
represents the sensor (beam load cell). The connection to the carriages is possible via
the free threaded hole and the ITEM profile.

Table 3.3.: Properties of item Profil 5 40x20, natur, Art. No. 0.0.370.04

properties ITEM profile

material aluminum
Iy,iP 5.14 cm4

E modulus aluminum Eal 7.09 kN mm−2

mass per length 0.89 kg m−1

length liP 0.1 m
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The author used the smallest available profile for the calculation. If the smallest profile passes
the test, possible other profiles could easily provide the desired stiffness values.

To determine, if the stiffness of the developed adapter is sufficient, a threshold for the displace-
ment of the adapter has to be given. The threshold is set to w= 1mm.

The displacement w of the chosen profile can be calculated by:

wmax(l) =
Fdtl

3
iP

12 EalIy,iP
(3.5)

Values for the displacement depend on the force Fdt applied at the end of the profile. Two
examples for possible forces shall be regarded.

On the one hand the motor can generate a maximum force Fdt,M limited by the motor properties
(maximum current iM, max, torque constant kM) and transmission properties of the drive-train
(transmission ratios of motor transmission iT and ball screw ibs and the efficiencies of both, ηT
and ηbc; see fig. 3.7, fig. 3.8 and fig. 3.9).

Fdt,M = iM, maxkMiTηTibsηbs (3.6)

This value is regarded as an upper limit. On the other hand there is a range of torque, the knee is
operated with. It is not likely that there will be much higher forces during the operation of the
test-bed.

Table 3.4.: Displacement of adapter due to maximum force

Force F Displacement wmax

Fdt,M = 471 N 0.01 µm

Values of the resulting displacement can be found in the table 3.4. Even for the maximum force,
the displacement is very low and does not even comes close to the threshold of w= 1mm. The
stiffness of the used profile is regarded as sufficient.

Another thing to be determined is the signal quality of the force sensor. A certain noise signal
overlays the force signal. One measure to make the signal better is to calculate an average over
a certain number of signal values N . In Fig. 3.6 there is shown the signal of the force sensor
without load and a different level of average calculation. The measuring frequency used is
ω= 200 Hz. The time used to get an average value is given by:

T =
N

200 Hz
(3.7)

The effective measuring frequency decreases, because only for a frequency of 200/N Hz a new
value is given after the average calculation. For this reason the number of signals used to calculate
an average value is set to N = 20 in the test-bed. The noise is reduced while the dynamic of the
sensor stays on an acceptable level.
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Figure 3.6.: The signal of the force sensor without load. Measured is the force in the drivetrain
Fdt. Different colors of the plot show the signal with a certain quantity of signal
values used to calculate the average signal.

Implementation of the force sensor - ground reaction force

The implementation of the force sensor for the ground reaction force is similar to the implemen-
tation of the sensor for the force in the drive-train. Also a law for calculating the force dependent
on the output voltage can be derived through an experiment.

FGRF =
g

1000

�

−
0.0215042

6.51085
105USout

�

(3.8)

In the case of this sensor a pre-loading is not necessary. The force resulting from the weight of
the leg resting on the sensor is sufficient as a pre-load. Also the calculation of an average signal
value was not be regarded necessary. The sensor signal should not be used for control tasks.
Therefore, a signal processing during experiments is not necessary at the moment.

An adapter for mounting the sensor beneath the foot has been developed. The mounted sensor is
shown in fig. 3.1. Mechanical drawings of the adapter can be found in the appendix (see fig. A.4
and A.5).

Implementation of an signal amplifier

For the output voltage of both force sensors are very low (in the range of mV), the signals have
to be amplified. A self-made differential amplifier takes this task.

Ua = Ue2
R1 + R2

R1

R4

R3 + R4
− Ue1

R2

R1
(3.9)

All used force sensors give out two voltage values Ue1 and Ue2. The difference between both
voltage values varies and depends on the deflection of the sensors, which depends on the force.
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An operational-amplifier (op-amp) in a circuit with certain resistances (R1, R2, R3 and R4) can
amplify the signal (see fig. 3.7).

An amplification factor K is equal to the proportion of the resistances R2
R1

if R1 = R3= 1kΩ and
R2 = R4 = 100kΩ [1]. The value for the amplification was chosen to K = 100 because, in this

(a) (b)

Figure 3.7.: (a) Principle of a differential amplifier. It amplifies the differential signal Ue2 − Ue1
by the factor K . [1](b) Implementation of the amplifier. The signals of both force
sensors have to be amplified. Both are amplified with the same factor. The amplifier
needs an own voltage source (down left). Sensors are provided with U = 10 V and
the amplifier with U = 25 V.

case, the sensor signals fit in the range of U = 0− 5 V, which is the input range of the MyRIO.
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3.2 Simulation models Marco Hopper II

To validate the analytical derived findings and to test possible control strategies, simulation
models have been developed. They serve different purposes, which are explained in the following.
As a simulation environment MATLAB Simulink and parts of SimMechanics were used. All
presented simulation models can be found on the attached CD or on the wiki-page1.

Selection of suitable solvers for different models

The chosen solvers for a model has a big influence on the results. Early experiments showed this
and, therefore, all available solver were tested for their performance. An example illustrates this
circumstance.

A single mass oscillator is simulated. For a certain spring rate k and an initial condition for the
mass x = x0 the system performs oscillations over a certain time T = 10 s. The multi-body
system developed with the relationships in chapter 2.1.3 should show the same behavior tuned
with the same parameters kv = k and xh,0 = x0. The chosen solver of the multi-body model has
an influence on the simulated oscillation. For this reason the gained results with each solver have
been compared.
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Figure 3.8.: [SIM] Motion- and force-patterns derived from a single mass oscillator model and a
multi-body system model. The parameters are set to m = m1 = 1 kg, k = kv = 36
N/m,x0 = xh = 0.2 m. The solver ODE15s for the multibody-system brings some kind
of damping in the simulated system. The oscillation ceases. For the solver ODE23
used for the multi-body model and ODE45 for the single mass oscillator the simulation
results are equal.

As to see in Fig. 3.8 the use of different solvers gains different results for the same model and
simulation parameters. The figure in the middle shows a ceasing oscillation that hints to a
damping effect/ energy loss during the oscillation. For there are no energy sinks or damping
models active, the shown behavior is falsified through the solver. All solvers have been tested to
gain the most similar results to the single mass oscillator.

1 http://wiki.ifs-tud.de/biomechanik/abschlussarbeiten/oehlke
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The best results could be gained with the solver ODE23 for the multi-body model. Therefore,
it will be used further on for multi-body simulations. For the single mass oscillator model the
standard solver ODE45 will be used. The structure of the different models will be presented in
the following chapters.

No further changes to the simulation settings have been made. The simulation is performed with
variable time steps internally calculated by the solver. Zero-crossing detection was disabled in all
used blocks. The nature of the simulated test-bed makes this necessary. A lot of zero-crossings
for different velocities, accelerations and positions happen during a regular hopping motion. For
these values are also used for different force models a lot of sub-systems are involved. Each of
them could bring the simulation to abortion due to much zero-crossings. As a consequence all
detection of this event is disabled.

3.2.1 Single Mass Oscillator

The single mass oscillator model is founded on the set of differential equations discussed in
chapter 2.1.1. The equation eq. 2.1 describes the core behavior of the system.

Up to now, all models performed oscillations without leaving the ground. Additional the simulated
system should be able to perform a hopping motion. The differential equations are expanded
with another degree of freedom. A foot point xf with an extra mass m4 and a reaction force by
the ground FGRF are inserted (see fig.3.9). Now the equations of motion have to be separated for
a phase with ground contact (stance phase) and a phase without ground contact (flight phase).
The differential equations for the stance phase are set through:

mẍ =k(l0 − x + xf)−mg
m4 ẍf =− k(l0 − x + xf) + FGRF −m4g

(3.10)

The differential equations during the flight phase are given by:

mẍ =k(l0 − x + xf)−mg
m4 ẍf =− k(l0 − x + xf)−m4g

(3.11)

During the flight phase the system is not influenced by the ground. This behavior is realized
with a switch-block in Matlab. The ground reaction force takes only effect on the foot when the
conditions xf < 0 (the foot is on the ground) and FGRF ≥ 0 (the force by the ground can only
push the foot) are met. If not, the force is set to zero.

In Fig. 3.9 an example for a possible ground model is shown. The ground behaves like a parallel
mechanism of a spring and a damper. For the ground model is explained in a later chapter, this
simple ground model serves to show the principle. The preset for the ground spring stiffness rate
and the ground damping rate are kg = 100000 N/m and dg = 100 Ns/m. An alternative ground
model can be used easily.

The stiffness of the spring k could be adjusted in different ways. For simple experiments k got a
fixed value. It is also possible to implement a variable k after a certain law during the movement.
The model for this variable k is explained when used. This equations are represented as a block
diagram in MATLAB Simulink. The used solver is ODE45. For a single mass oscillator with flight
phases is simulated, the value for m4 is set near to zero.
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Figure 3.9.: Sketch of the model for the single mass oscillator. The structure got two degrees of
freedom x and xf. A spring with the rate k attached between the hip mass m and
the foot mass m4 drives the oscillation. The ground consists of a parallel spring with
the rate kg and a damper with the rate dg. The ground forces effect the oscillator
only during the stance phase.

3.2.2 Simulation of the segmented leg

A second model is built with the SimMechanics library of MATLAB Simulink. The goal is to
simulate the dynamic behavior of the multi-body system given through the existing test bed.
In SimMechanics rigid bodies with their dimensions, distributed masses and resulting dynamic
behavior can be simulated. The bearings that connect rigid bodies with each other are represented
by certain degrees of freedom, which the bodies got to each other. Also forces exerted in the
bearings can be included in their effects on the system. The behavior of the system is the same
like the one described through the equations in chapter 2.1.4.

Masses in the simulated system

The segments of the leg ("thigh" and "shank") are represented by rigid bodies with distributed
masses. The dimensions of the links in the test bed were chosen according to the reality (see
Fig.3.5 and [9]). In difference to the real links the segments in the simulation are rectangular
prisms with the density of aluminum ρal. The connections with the roller bearings are at the
exact end of each link and not through drill holes in the links.

In the test-bed the segments are not rectangular but have rounded ends behind the drill holes.
Therefore, the mass of the segments in simulation is slightly less than the mass of the real
segments. This changes were made to simplify the simulated structure. The masses at the
foot m4, the knee m3 and the hip m1 come into account as point masses. As they move only
translational, this assumption is valid [13]. All masses can be tuned to check the effects of
changes to the test bed and to find an ideal distribution of masses between foot, hip, knee and
links.
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Table 3.5.: Properties of the segments "‘shank"’ and "‘thigh"’ used in the model

Properties of segment

length link ll = 0.25 m
width link wl = 0.005 m
height link hl = 0.04 m

density aluminium ρal = 2700 kg m−3

Bearings in the system

The bearings of the real test bed are represented as kinematic constraints between the rigid
bodies. Connected bodies have one degree of freedom (rotational or translational) to each other
in this case. All other degrees of freedom of the connected parts are locked. In these directions
forces and torques are transferred to the next part in the leg.

There are two linear bearings (hip and foot) and three rotational bearings (hip-, knee- and
ankle-joint) in the system. The rotational bearings/ joints represent actual behavior of a real leg.
The linear bearings represent the constraints given by the one degree of freedom hip xh and foot
xf should have during a hopping motion.

Forces that take effect on the system behavior through the linear bearings should be minimized,
for they have no counterpart in biological legs and falsify results. This measures can only be
executed in the test-bed. The model only represents the test-bed and is therefore near to the
real device. In all bearings friction forces influence the motion. Models for each bearing were
developed and are presented in the next section.

Through the bearings forces and torques can be added to the system. All external and internal
forces, besides the gravitational forces on the masses, are added at a bearing.

External and internal forces on the segmented leg

Forces influence the behavior of the system at different places of the segmented leg (see Fig. 3.10).
In the following they are divided by the corresponding bearing, on which they exert influence.
Reaction forces between the segments are not included.

Forces on the linear bearing at the foot

There are three forces influencing the linear bearing of the foot. The first two forces are reaction
forces due to stops in the test-bed, the ground reaction force FGRF and the force by the hip stop
FHF.

Both forces base on the ground model of the system, which will be explained in a later chapter.
They hold only non-zero values if certain conditions are met. Similar to the model of the single
mass oscillator the ground reaction force is equal to zero FGRF 6= 0 if the conditions xf < 0 and
FGRF ≥ 0 are given. The force at the hip-stop is unequal to zero FHF 6= 0 if the foot position
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Figure 3.10.: Forces and torques introduced through the bearings in the simulation. Friction
forces Ffr,h and Ffr,f and reaction forces of the stops FGRF, FGRF,h and FHF act on the
foot and the hip. On the knee two torques take influence, the actuation torque τK
and the torque by the knee stop τks.

gets higher than the position of the hip-stop xf > xhs = 0.2 m and the force is lower than zero
FGRF ≤ 0 (the foot is pushed back by the hip-stop). When the foot hits the hip-stop, a force limits
the movement.

The third force, which influences the movement of the foot, is the friction force in the bearing
Ffr,f. This force always apposes the direction of movement. A special set of parameters has been
developed for the friction model of the linear bearing at the foot. The parameters for all friction
models are summarized in chapter 3.2.5.

Torques on the rotational bearing at the foot

The second bearing of the foot is a roller bearing in which also a friction torque τfr,f influences the
movement of the foot-shank connection. Friction torques due to roller bearings are comparatively
low.

For the rotational roller bearings a constant friction torque can be estimated by tools provided
by the producer of the bearings [6]. Necessary for that are radial and axial loads of the bearing
Fbearing, r and Fbearing, a, a maximum rotational speed of the bearing nbearing and some operating
conditions like temperature Tbearing and the used grease. The viscosity of the grease LGMT2 can
be found in [7]. Both bearing load forces have been estimated.

The axial load is estimated to be zero because no load in this direction is induced. For the
radial load a higher value is estimated, than will occur in the reality, to make sure that the real
friction force is underneath the estimated one. Experiments show a ground reaction force of
FGRF,max ≈ 60 N for simple hopping experiments. This is a rough estimation of the radial load,
which the roller bearings will see in the leg. A force of Fbearing, r = 100 N seems not to far away
from reality to estimate resulting friction torques in the roller bearings. This resulting friction
torque is added as an additional torque at the hip-, knee- and ankle-bearing of the model. The
data used to estimate the friction torque could be found in Fig. 3.6.
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Table 3.6.: Properties of the roller bearings for the estimation of the friction torque

Properties roller bearings

bearings used SKF roller bearing 61800
radial load Fbearing, r = 100 N
axial load Fbearing, a = 0 N

maximum rotational speed nbearing = 40 U min−1

operating temperature Tbearing = 23 °C
viscosity grease LGMT2 νgrease, 40°C = 110 mm2s−1

resulting max. friction torque τfr = 0.00122 Nm

A resulting friction torque of τfr = 0.00122 Nm is compared to the other forces in the system so
low that it shall be neglected for all roller bearings in the simulation.

Torques on the rotational bearing at the knee

The actuation of the leg takes place at the knee through the torque τ. One important difference
between the test-bed and the simulation model lies within the method the torque is introduced
to the knee.

On the test-bed, the pulley is fixed on the shank. The torque generated by the cable takes effect
on the lower end of the thigh, not on the knee-joint itself. There is no anti-torque on the shank,
because the counteracting force of the force attacking at the pulley, attacks outside the leg in the
drive-train (see Fig. 2.15).

In the simulation model the torque is directly generated in the knee-joint. A torque and a
counteracting torque are generated in thigh and shank where the knee is attached (see Fig. 3.10).
To gain the same effect with a torque in the simulation model as in the reality, only half of the
torque has to be used. The following dynamic equations show the difference.

mẍ = Fkx

equilibrium of torques, subsystem thigh, at the hip:
∑

τh : 0= τ+ Fky sin
�

φ

2

�

ll + Fkx cos
�

φ

2

�

ll

equilibrium of torques, subsystem shank, at the foot:
∑

τ f : 0= −τ− Fkx cos
�

φ

2

�

ll + Fky sin
�

φ

2

�

ll

Fkx = −
τ

cos(φ2 )ll

mẍ = −
τ

cos(φ2 )ll

(3.12)
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These equations describe the relationships in the simulation with torque and counter-torque at
the knee joint. The following equations describe the relationships in the test-bed. There is no
counter-torque for τ at the shank.

mẍ = Fkx

equilibrium of torques, subsystem thigh, at the hip:
∑

τh : 0= τ+ Fky sin
�

φ

2

�

ll + Fkx cos
�

φ

2

�

ll

equilibrium of torques, subsystem shank, at the foot:
∑

τ f : 0= −Fkx cos
�

φ

2

�

ll + Fky sin
�

φ

2

�

ll

Fkx = −
τ

2 cos(φ2 )ll

mẍ = −
τ

2 cos(φ2 )ll

(3.13)

A comparison shows that for the same amount of acceleration ẍ of the mass m on the test-bed,
two times the torque as with a counter-torque in the knee is required. Therefore, the simulation
model is introduced with half the torque generated in the real test-bed to gain the same results.

Second, there is the torque at the knee produced by the knee-stop preventing over-extension of
the knee joint τks. The torque is introduced in the manner of a linear rotational damper with a
very high damping constant acting only in one direction, against the extension.

τks = −φ̇dk (3.14)

The torque is non-zero if a certain knee angle is reached φ = φmax and the angular velocity of
the knee is bigger than zero.

The third torque influencing the knee joint is the friction torque of the roller bearing τfr,k. As
shown before this torque is very low, so it is neglected.

Forces on the linear bearing at the hip

Two forces influence the linear bearing at the hip. The first one is the force at the hip stop
FGRF,h. It is a kind of ground reaction force for it is only non-zero when the position of the hip is
underneath the hip-stop xh < xhs, the force can only be positive FGRF,h > 0 and the model for the
force bases on a ground model.

The second force is the friction force in the bearing Ffr,h. The parameters of this force are also
summarized in chapter 3.2.5.

Forces on the rotational bearing at the hip

The only torque, influencing the behavior of the hip joint, is the friction torque of the roller
bearing τfr,h. For it is very low, it is neglected.
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3.2.3 Drive-train model

After a simulation model of the segmented leg has been presented, a model of the drive-train
with its different components is presented next.

Motor

The motor of the drive-train is represented by a set of differential equations, describing the
equilibrium of torques and the electric properties of the motor [22] (p. 186). Necessary for this
description are the mass moment of inertia of the drive-train θM, sum, the motor torque constant
kM, the motor damping constant dM, the load torque of the motor τL, the motor current iM
and derivations of the angular motor position φM. To describe the electric equilibrium of the
motor, the voltage of the motor U , the internal electric resistance RM, the inductance LM and the
rotation speed constant kE are necessary.

θM, sumφ̈M =iMkM −τL − φ̇MdM

U =LM i̇ − RMi − kEφ̇M
(3.15)

The moments of mass inertia of the transmission θT and the ball screw θbs are taken into account
in the equation of motion of the motor. Necessary for that are the mentioned moment masses of
inertia and the transmission ratio of the ball screw ibs.

θM, sum = θM + θT + (1/ibs)θbs (3.16)

All constants are gained from the data sheet of the motor. Only the damping constant of the
motor dM is not known. It is suggested to estimate this parameter by a value near to zero. For
the parameter can not be determined exactly, it is set to dM = 0.00005 Nms/rad. Therefore, the
behavior of the motor will come close but not exact to the real behavior.

Table 3.7.: Properties of the motor used in the model

Properties of the motor maxon EC-4pole 30

nominal current iM, max = 10.5 A
resistance RM = 0.102 Ω
inductance LM = 0.0163 mH

rotation speed constant kE = 700 V−1min−1

torque constant kM = 13.6 mNm A−1

mass moment of inertia θM = 3.33 ∗ 10−6 kgm2

damping constant dM = 0.00005 Nms rad−1

Transmission

The transmission after the motor is represented by a transmission ratio iT and an efficiency
ηT. Also it possesses a mass moment of inertia θT. This value is given by the data sheet of the
component.
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Table 3.8.: Properties of the transmission used in the model

Properties transmission maxon GP42 C

transmission ratio iT = 91/6
efficiency ηT = 0.81

moment of mass inertia θT = 15 ∗ 10−6 kgm2

Ball screw

The ball screw in the drive-train changes translation into rotation (forces F to torques τ, re-
spectively between translational- xbs and rotational movement φbs) and vice versa. There are
different possible models to include all effects in the simulation.

There have been different models developed for this thesis and each one shows certain weaknesses.
No model was able to explain every situation during the tests. For the simulation should be
similar to the test-bed during the hopping motion, a model that reaches the closest results for
this special case of movement should be regarded as the best model.

Direction dependent behavior

The ball screw is included in the simulation model by a transmission ratio ibs and an efficiency
ηbs. In [22] p.51 f. it can be found a relationship for the transmission ratio of ball screws
dependent on the radius of the ball screw rbs, its slope angle αbs and its friction angle ρbs.

τ=F rbs tan(αbs ±ρbs)
and:

xbs =rbs tan(αbs)
φbs

2π

xbs =
φbs

ibs

(3.17)

The ratio of transformation between axial force F and torque τ depends on the direction of the
movement of the load at the ball screw. This is influenced and quantified by the friction angle
ρbs. With the efficiency ηh = 0.85, the slope pbs and the diameter dbs of the ball screw given by
the producer, ρbs,ideal can be estimated.

αbs =arctan
�

pbs

πdbs

�

ρbs,ideal =arctan
�

tan(αbs)
ηh

�

−αbs

(3.18)

The resulting value for ρbs,ideal presents an optimum for a new ball screw in the best condition.
To gain a realistic behavior ρ must be bigger than the optimum ρideal. For lack of a better value
the friction angle is set to ρ = 1.2 ρideal. Experiments show a realistic behavior with this value
(see Fig. 3.12 and Fig. 3.13). The behavior of the ball screw changes with the change of direction
of the movement, which is taken into account through this measurements.
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One additional property of the ball screw that can be found, is a velocity dependent friction.
A stiction force that is bigger than the coulomb friction force, has to be taken into account.
To include this in the simulation model, a velocity dependent force Fbs, v acting against the
direction of movement is added. It bases on a friction model by Stribeck [18]. In chapter 3.2.5
it is explained properly. At this point only the found parameters to gain realistic behavior are
presented.

Fbs, v =

�

Fc,bs + (Fs,bs − Fc,bs)exp

�

−
�

�

�

�

ẋbs

vs,bs

�

�

�

�

δs,bs
��

tanh(800 ẋbs) + (Fv,bs ẋbs) (3.19)

The friction force Fbs, v is dependent on different parameters Fc,bs, Fs,bs, vs,bs, δs,bs and Fv,bs,
which represent the behavior of the force in different regions of velocity ẋbs.

For example a high force is necessary to start the movement of the drive-train. The coulomb
friction is relative low compared to this force. A course of the force over a velocity is shown in
Fig. 3.11. At every turning point of the movement (the velocity is zero) high force values are
necessary to start the movement again.
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Figure 3.11.: The course of the friction force influencing the ball screw.

The whole force-torque transmission by the ball screw is now given by:

τ= F rbs tan(αbs ±ρbs)− Fbs, v (3.20)

The values for the friction model are varied to meet the real conditions in the ball screw. To
compare the test-bed and the simulation model, an experiment with a sinusoidal oscillation of
the input current of the motor has been performed.

The oscillation is performed over a time of ten seconds. Results of the simulation show that with
fixed values for ρbs and the friction parameters the oscillation stabilizes to a certain amplitude of
angular velocity of the motor (see Fig. 3.12). The difference between the both directions is due
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Figure 3.12.: [EXP+SIM] Comparison of the angular velocity φ̇M with attached transmission and
ball screw of the test-bed (a) and the drive-train model (b). Both systems got a
sinusoidal current input of iM = 3.5 A and a frequency of f = 1 Hz. Simulation and
experiment show similar apex values and the behavior around a zero velocity is also
similar.

to the direction dependent behavior of the ball screw mentioned before. In the simulation and
the test-bed similar results for the angular velocity of the motor φM can be gained. Especially the
behavior near a velocity φ̇M = 0 is very similar in experiment and simulation.

The movement of the carriage attached to the ball screw is shown in Fig. 3.13. The two left
figures((a) and (b)) show experimental behavior of the test-bed. The start from the initial
position is shown in Fig. 3.13(a). Fig. 3.13(b) shows the end of the experiment when the carriage
hits the bed-stop. The third figure Fig. 3.13(c) shows the behavior of the model.

Each experiment is performed over a period of ten seconds. All three cover a distance of
approximately l = 0.03 m over this time. The behavior of the test-bed is not very smooth. There
are several possible reasons for this.

On the one hand the current of the motor is not as ideal as in the simulation. The internal current
control can not result in an exact sinusoidal pattern. Second, the friction can also depend on
the current location of the carriage/ball screw. Third, the value for the direction dependency
ρbs may not be correct. Some motor parameters like the damping constant dM are also only
a approximation of the reality. All this together results in a complicated interdependency of
parameters and effects on the results. Therefore, the gained behavior of the simulation model
should is regarded as valid with the results achieved by the presented method.
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Figure 3.13.: [SIM+EXP] Comparison of the position of the carriage xbs with attached transmission
and ball screw of the test-bed ((a), movement from inital position and (b), movement
until hit of bed-stop) and the drive-train model ((c), movement from initial position).
Both systems got a sinusoidal current input of iM = 3.5 A and a frequency of f = 1
Hz. All three cover a distance of approximately l = 0.03 m during the oscillation.
The behavior of the test-bed is not very steady. Reasons for this lie probably in a
location dependent behavior of the ball screw and the non-ideal current control of
the motor.

Limitation of movement during hopping motion

The presented friction model for the ball screw is unable to explain certain behavior during
hopping experiments. Especially the behavior during the fall of the leg after the apex point is
slower in the experiment than it is in the simulation. Most likely the current control of the motor
is responsible for this behavior. The actual current is oscillating very much, though the desired
value is constant (see Fig. 5.4 in chapter 5.2.1).

The assumption is made that these oscillations slow down the fall of the leg. It was not possible
to model this behavior of the current to gain the same results. Another way is to model this
behavior through a property of the drive train that slows down the fall of the leg similar to the
test-bed. It is possible to gain the same behavior in the experiment as in the simulation although
not for the same reasons.

One possibility is the presented way.

Fbs,v = tanh(30 ẋbs)
kbs,v

exp(80 ẋbs)
τbs =F rbs tan(αbs)− Fbs,v

(3.21)

The suggested function for Fbs,v is over most of the parameter range equal to zero. For a certain
velocity lower than zero the function gets a very high slope and limits the velocity of the carriage
by the resulting force.

The course of the function is only tuned by one parameter kbs,v. Therefore it is easier to
modify and to adjust to the reality, than the friction force in the paragraph before. For hopping
experiments this force function is recommended for the easier handling and the agreement with
complex experiments.
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Mass moment of inertia ball screw

Another value of the ball screw that has to be estimated is the moment of mass inertia θbs. It is
estimated by the moment of mass inertia of a cylinder in respect of its rotational axis.

θ =
1
2

mr2 (3.22)

The mass of the ball screw mbs is estimated by its length lbs, its diameter dbs and the density of
steel ρsteel.

mbs = π(
dbs

2
)2lbs ρsteel (3.23)

Table 3.9.: Properties of the ball screw used in the model

Properties of ball screw

length ball screw lbs = 0.428 m
diameter ball screw dbs = 0.02 m

slope ball screw pbs = 0.02 m
density steel ρsteel = 7900 kg m−3

mass ball screw mbs = 1.06 kg
mass moment of inertia ball screw θbs = 5.3 ∗ 10−6 kgm2

slope angle αbs = 0.31 rad
friction angle - ideal ρideal = 0.05 rad

friction angle ρ = 0.06 rad
efficiency -ideal ηh = 0.85

efficiency ηbs = 0.72
friction model "‘stiction"’ Fs,bs = 290 N

friction model "‘coulomb"’ Fc,bs = 29 N
friction model "‘viscous"’ Fv,bs = 0 Ns m−1

friction model "‘velocity"’ vs,bs = 0.003 m s−1

friction model "‘exponential"’ δf,bs = 1
friction model, alternative kbs,v = 10

Carriages

The carriages are defined in the simulation as certain points where friction forces are added.
They do not possess any mass or other properties. Only a change of the transmitted force by the
friction of the carriage is done.

Also for the carriages the Stribeck-model for friction is used. There are four carriages (hip, foot,
drive-train at the end of the ball screw and on the end of the cable[they are assumed as one in
the model]) in the system, which are tuned with different parameters. An explanation of the
way leading to the used friction parameters is explained in chapter 3.2.5. At this place only the
summarized parameters are shown in Fig. 3.10.
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Table 3.10.: Properties of the carriages in the simulation

Properties of carriages

friction constant "‘stiction"’ hip Fs,h = 5 N
friction constant "‘coulomb"’ hip Fc,h = 4 N
friction constant "‘viscous"’ hip Fv,h = 5 Ns m−1

friction constant "‘velocity"’ hip vs,h = 0.001 m s−1

friction constant "‘exponential"’ hip δf,h = 1
friction constant "‘stiction"’ foot Fs,f = 4.5 N

friction constant "‘coulomb"’ foot Fc,f = 3.6 N
friction constant "‘viscous"’ foot Fv,f = 5 Ns m−1

friction constant "‘velocity"’ foot vs,f = 0.001 m s−1

friction constant "‘exponential"’ foot δf,f = 1
friction constant "‘stiction"’ drive-train Fs,dt = 5 N
friction constant "‘coulomb"’drive-train Fc,dt = 4 N
friction constant "‘viscous"’drive-train Fv,dt = 5 Ns m−1

friction constant "‘velocity"’drive-train vs,dt = 0.001 m s−1

friction constant "‘exponential"’drive-train δf,dt = 1

Cable

The cable used in the test-bed is respected in the simulation through a spring with a very high
stiffness that only takes effect in one direction (the difference between the position of the carriage
and the cable on the pulley must be positive, if negative the force gets zero).

The spring is virtually attached between the position of the carriage xbs and the position of the
cable on the pulley and connects the model of the segmented leg and the model of the drive-train.
Forces generated through a lengthening of the cable (difference between the positions of carriage
and the cable on the pulley) transfer the force from the drive-train to the torque at the leg τ.

τ= rpηckc

�

xbs − rp

�

φ − arcsin
� xh,0

2 ll

���

(3.24)

For this calculation the stiffness kc and the efficiency ηc of the cable, the position of the carriage
attached to the ball screw xbs and the necessary parameters for calculating the end position of
the cable on the pulley (the radius of the pulley rp, the knee angle φ the initial position of the
hip xh,0 and the length of a segment of the leg ll) are necessary.

To calculate the stiffness of the cable some assumptions were made. It is assumed that the
stiffness of a cable could be approximated by the tension stiffness of a bar with the same section
area Ac and a reduced E-modulus Esteel, red of the material. The value of 0.75 for the reduction of
the E-modulus was chosen because steel in the form of cables inherits a reduced stiffness. The
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experiments with the test-bed resulted in a similar behavior, the simulation models shows with
this parametrization. Therefore, is the value for the reduced stiffness assumed as valid.

Ac =π
�

dc

2

�2

Esteel, red =0.75 Esteel

kc =Ac
Esteel, red

lc

(3.25)

As described in chapter 2.1.4 the cable connected to the segmented leg makes it possible to
calculate a range for an eigen-frequency for the cable attached to a rigid point while the other
end is attached to the segmented leg.

Table 3.11.: Properties of the cable in the model

Properties of cable

length cable lc = 0.5 m
diameter cable dc = 1.5 mm

reduced E-modulus Esteel, red = 157.5 kN mm−2

stiffness cable kc = 556.65 kN m−1

efficiency cable [9] ηc = 0.9

3.2.4 Ground model

The ground has an influence on the oscillation when the mass of the foot m4 is bigger than zero
and the motion of the leg includes a flight phase. Impacts of the foot after each hop and the
displacement of the ground are the main reason for energy losses.

There are two ground models used in the simulation. The first one contains a spring and a damper
in parallel (see Fig. 3.9). Both of them generate a reaction force linear to the displacement ∆xg
and the velocity ∆ ẋg of the ground. This displacement is equal to the position of the foot or hip
if the position of the foot is lower than zero xf < 0 respectively if the position of the hip is lower
than the position of the hip-stop xh < xhs. Therefore, the ground reaction force is only bigger
than zero if this condition is met. A second condition that the ground model must meet is that
the ground reaction force must always stay positive. The ground can not pull at the foot or the
hip.

FGRF =kg ∆xg + dg ∆ ẋg

=kg (xf/h,0 − xf/h) + dg ẋf/h
(3.26)

This model is used to calculate the reaction force of the hip stop and it shows satisfying results.
The parameters kg and dg were tuned by hand in the beginning. They have been changed until
the model showed the wished behavior (close to a rigid bed-stop, low oscillations after an impact
and fast decay of oscillations).
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For the ground beneath the foot shows a different behavior than the hip stop, another model
had to be found. This second possibility bases on the ground model used in [31]. A nonlinear
spring-damper system generates the ground reaction force opposing the movement of the foot.
The two parameters ag and bg are slightly adopted values of the ones found in [31]. For the
behavior of the second ground model the same conditions are valid as in the first one. The force
is only active when the foot goes beneath the zero position and can only produce positive force
values.

FGRF = ag

�

�xg

�

�

3
(1− bg ẋg) (3.27)

The values for the used ground models are summarized in Fig. 3.12.

Table 3.12.: Properties of the ground models for hip and foot

Properties of ground models

spring rate ground model 1 kg = 106 N m−1

damping rate ground model 1 dc = 100 Ns m−1

non-linear spring rate ground model 2 ag = 0.25 109 N m−3

damping rate ground model 2 bg = 3 s m−1

3.2.5 Friction model

In different places of the test-bed friction forces influence the dynamics of the whole system.
Friction forces and torques always act against the direction of movement. The major points,
where friction forces effect the system, are the bearings. Existing bearings can be divided in
rotational and translational bearings.

The calculation of friction torques in the roller bearings has been discussed in chapter 3.2.2. The
outcome was to neglect the friction torque in the roller bearings for the low resulting values.

For the friction force in the translational bearings less information is available. The producer
suggests to include a constant force Fcarriage, trans = 10N in the opposite direction of movement
[5]. This force results from the contact of the sealing of the bearing against its rail. The actual
force is lower than that and has also to respect coulomb- and viscous friction. Experiments with
a stiction force Fcarriage, trans = 10N did not result in a behavior observed in the test-bed.

There are different models to respect friction forces Ffr in simulations. One way is to add a
constant amount of friction force F1 always in the opposite direction of the movement x at the
point of the carriages.

Ffric = −sign( ẋ)F1 (3.28)

This model contains only coulomb friction. Possible parts of stiction and velocity dependent
friction are neglected. One problem with this type of friction modeling is the numerical chattering
in the simulation gained through this method for the signum-function is unsteady. Solvable is
this problem by replacing the signum-function.

sign( ẋ)≈ tanh(C ẋ) (3.29)
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For a high value of C the function approximates the signum function. For most friction models in
the simulation the parameter is set to C = 800.

For a noncontinuous force leads to problems in the simulation, a method is chosen to consider
friction forces in a continuous manner. An approach after Stribeck is used [18][p. 50]. The
approach considers stiction, coulomb- and viscous-friction. A resulting force depends on the
velocity ẋ , the stribeck-velocity vs, the stribeck exponential shape constant δs. In the beginning
the values for vs = 0.001m/s and δs = 1 were chosen similar to [18][p. 50]. The characteristic
forces Fc (coulomb), Fv (viscous) and Fs (stiction) are chosen to gain realistic behavior. Also the
approach for replacing the signum-function is used.

Ffr =FStribeck tanh(800 ẋ) + (Fv ẋ)

FStribeck =Fc + (Fs − Fc)exp
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ẋ
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δs
�

(3.30)

The relationship between the velocity and the resulting friction force at the linear bearing of the
hip is shown in fig.3.14. The behavior of the friction could be adjusted easily to other places in
the test-bed were friction force are existent.
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Figure 3.14.: [SIM] The relationship between the velocity of the bearing and the friction force at
the bearing of the hip Ffr,h. The parameters for the calculation of the friction force
are vs = 0.001 m/s, δs = 1, Fc,h = 4 N, Fs,h = 5 N, Fv,h = 5 Ns/m.

Different tests for the linear bearings in the test-bed have been performed to adjust each model
properly. The test for the adjustment of the friction in the ball screw has been discussed in
chapter 3.2.3. The development of the parameters for the carriages of foot and hip is shown here.
To determine the parameters of the friction in the hip- and foot-bearing, an experiment in the
test-bed was performed. The stretched leg was lifted up to a position near xh = 0.5 m. After that
the leg was released and the motion of this fall was recorded. The same experiment has been
performed with the simulation model. For only friction forces of the bearings oppose the falling
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Figure 3.15.: [SIM+EXP] The comparison between the fall of the segmented leg in the simulation
(solid line) and in an experiment (dashed line) from a certain release height xh,0 ≈
0.5 m. The parameters for the calculation of the friction force are vs,h/f = 0.001 m/s,
δs,h/f = 1, Fc,h = 4 N, Fc,f = 3.6 N, Fs,h = 5 N, Fs,f = 4 N,Fv,h/f = 5 Ns/m.

motion, the effect of them can be quantified. Values for both friction models have been adjusted
until the behavior comes close to each other. The gained values are shown in Fig. 3.10.
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4 Control
After the development of a theory to control a segmented leg in the fashion of a single mass
oscillator and the work on the test-bed, a control strategy shall be developed.

This strategy bases on the theoretical derived laws for generating a desired torque at the knee in
combination with measures that are necessary through limitations or properties of the test-bed.
Especially the interaction between drive-train and the segmented leg is a matter, which has not
been mentioned before. Laws for calculating desired torque values with the ideal segmented leg
without the consideration of a drive-train could show some weaknesses through the coupling of
both sub-systems. The goal is to enable the test-bed to perform the theoretically possible hopping
motions.

If nothing else is mentioned the maximal current of the motor is set to iM,max = 10.5 A, the
nominal current given by the producer.

4.1 Force control - feed forward control

The basic idea of the force control approach in the manner of a feed forward control is that the
desired force is given to the motor without the consideration of the actual force at the force
sensor. Only properties of the drive-train are considered to calculate a desired current from the
desired force.

The desired force Fdes is calculated from eq. 2.47. This desired torque at the knee is transformed
to a force at the end of the drive-train through the radius of the pulley rp and the efficiency of
the cable ηc.

Fdes =
τdes

rpηc
(4.1)

With the desired force Fdes, the transmission ratios of the motor-transmission iT and the ball
screw ibs and the efficiencies of these parts ηT and ηbs a desired current iM can be calculated.

iM = Fdes
1

ibsiTηbsηTkM
(4.2)

First experiments with this approach show characteristics of this control scheme.

The first comparison is made between the simulation of the segmented leg driven by an ideal
torque and the segmented leg with an attached drive-train. Friction forces and the loss character-
istics of the ball screw are neglected at this point.

As shown in fig.4.1 the segmented leg can meet the expectations and perform a motion similar
to the single mass oscillator. This movement of the system without drive-train sets the goal to
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Figure 4.1.: [SIM] Comparison between the simulation of the multi-body system without (a)
and with (b) an attached drive-train. The multi-body system without an attached
drive-train acts like a single mass oscillator, as shown before. Both systems are set to
the same desired torque at the knee. kv is set to meet the condition ofωset = 6 rad/s.
Shown are the time dependent positions of hip (solid line) and foot (dashed line). All
friction forces in the system are turned to zero. The mass distribution is chosen to be
like in the test-bed. The solver used is ODE23.

reach. The segmented leg with the attached drive-train reacts to the given current values with
an unstable oscillation. With an open feed forward control neither the desired frequency nor
the amplitude of the oscillation can be reached. To control the system only with a feed-forward
control approach is not feasible.

In this first experiment friction forces were neglected. If the realistic friction forces are applied to
the simulation model of the segmented leg, no oscillation with the parameters, used so far, is
possible. The friction acts against the virtual spring and lets the leg stuck at a certain position
when the friction forces and the force resulting from the knee torque are balanced (see Fig. 4.2).
For the goal of this thesis is the realization of hopping motions, the focus will lie on methods
making this possible. The realization of certain frequencies and amplitudes of oscillation will not
be a part of the further discussions.

The effect of the friction of the bearings is best shown through some simulations performed with
the segmented leg without drive-train. Without friction in the bearings it can behave like a single
mass oscillator. The friction changes the behavior very strong. A hopping motion is set through
the choice of eq. 2.42 and a desired hopping height of ∆h = 0.3 m. The ’take-off’ of the leg
occurs before reaching the rest-length of the spring.

The reason for this is that the knee stop prevents a further extension of the leg. The angle of
the knee stop is tuned to the possible knee angle in the test-bed. Experiment and simulation are
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better comparable. In all figures the position of a fully stretched leg will be marked by a blue,
solid line.
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Figure 4.2.: [SIM] Comparison between the simulation of the multi-body system without (a) and
with (b) friction in the bearings of hip and foot. Both systems are set to the same
desired torque at the knee. kv is set to meet the condition of∆h= 0.3 m. Shown are
the time dependent positions of hip (solid line) and foot (dashed line). The vertical
solid line shows the position of the stretched leg/’take-off’(the leg hits the knee stop).
The mass distribution is chosen to be like in the test-bed. The solver used is ODE23.

In both systems losses through the ground occur. Therefore, also the system with a friction of
zero in the bearings results in a decreasing motion (see Fig. 4.2(a)). The losses in the system
with included friction forces in the bearing of hip and foot are bigger (see Fig. 4.2(b)). The hip
reaches a far smaller apex height and the movement ceases after one hop. Both systems do not
reach the desired hopping height of l0 +∆h.

The assumptions made to develop the law in eq. 2.48 are not the same as in the complex system.
The change of height after take-off ∆h, does not serve anymore as a parameter that determines
the exact hopping height, but as a tuning parameter. In the presence of uncertain losses by
bearings and ground it is expected that an exact determination of a hopping height through
simple models is impossible. The choice of ∆h sets a certain amount of energy added to the
system. In the case of an ideal model free of losses the additional energy would be transformed
in potential energy and, therefore, into a certain hopping height l0 +∆h. In the presence of
losses, this amount of energy is used to counterbalance the losses. The remaining energy sets the
hopping height. For its simplicity, this law is used for first experiments.

There are at least three things in which the real test-bed will differ from the ideal dynamic model
shown in chapter 2.2.2.
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First, there occur losses through friction and damping in all bearings (bearings at the hip, the
foot and in the drive-train). Second, the impact and deformation of the ground causes also
losses, which were not respected before. Third, the attachment of a drive-train will influence the
behavior of the segmented leg. To realize a stable hopping motion all these influences have to be
respected and counter-measures have to be found.

4.1.1 Feed forward control - bang-bang control

The multi-body system is actuated with the same torque law (eq. 2.47) as before . The calculation
of the value for kv is changed to the law derived in chapter 2.2.1 through eq. 2.42. The tuning of
kv is realized by ∆h. The idea behind this control is to vary the stiffness kv during the different

Figure 4.3.: Control block diagram of the bang-bang control approach. The darker boxes show
the basic (feedforward) control mechanism for a SLIP based virtual model control
(VMC). The lighter loss compensation box is an optional mechanism that enhances
the performance of the real system. It contains the additional current values iM- and
iM+ compensating the effects of the ball screw (see chapter 4.1.1).

phases of the hopping motion. While the motion is directed upward, the stiffness is set to kv 6= 0.
At a certain position of the hip xh+ the stiffness is set to zero kv = 0. The segmented leg can fall
free for the torque at the knee becomes also zero. When the hip reaches a certain height above
the stop of the hip xx-, the stiffness kv is set again to the value bigger than zero. A resulting knee
torque stops the fall of the structure and initializes another hop. Shown is the scheme of the idea
in Fig. 4.3.

As to see in Fig. 4.2 a continuous virtual spring rate bigger than zero results in a decreasing
oscillation. The system aspires to the point where the force by the virtual spring and the weight
force of the leg are in equilibrium. The friction force and the losses in the ground reduce the
amount of energy stored in the system. A non-continuous spring rate injects new energy in every
cycle of the movement and could counterbalance the losses.

Comparison of hopping motions with or without included friction forces

In fig. 4.4 a comparison between the system with and without the influence of friction forces is
shown. No drive-train is attached to the segmented leg. Only the influence of the friction in the
bearings of hip and foot is discussed. The switching points of the control are set to xh+ = 0.45 m
and to xh- = 0.22 m. These values showed the wished behavior. In both cases a stable hopping
motion is feasible. The friction influences the reached height of the hopping, the frequency of the
movement and also the shape of the motion. The influence of the friction disturbs the symmetry
of the movement. When the hip moves down it takes longer than the upward movement. During
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Figure 4.4.: [SIM] Comparison of hopping motions of the multi-body system with free fall and
without (a) or with (b) the effect of friction at the linear bearings at the hip and the
foot. Shown are the plots of the position of hip and foot. The vertical solid line shows
the position of the stretched leg/’take-off’(the leg hits the knee stop). ∆h= 0.15 m
in this setup. The switching points are set to xh+ = 0.45 m and to xh- = 0.22 m. Both
systems can produce stable hopping motions. The solver used is ODE23.

the fall only friction forces oppose the motion. When the hip is accelerated upward, the opposing
friction force is compensated through the torque at the knee. The fall is purely passive.

Even the model of the segmented leg is not that far away from the ideal dynamic model developed
in chapter 2.2.2, the resulting movement patterns are very different due to the perturbations
through the bearings. The approximation of a SLIP model through the test-bed is made difficult
by this fact.

Comparison of multi-body system with or without the drive-train

In fig. 4.5 results gained with the multi-body system with and without the drive-train are
compared. In both models friction forces are neglected. Without further measures a stable
hopping motion with the drive-train is not possible.

The oscillation of the segmented leg is increasing due to the drive-train. A reason for the
increasing of the oscillation is that the motor drives in the negative direction, further than its
initial position.

When a new cycle of hopping begins, the motor and therefore, the attached carriages on the
drive-train which hold the cable, can accelerate over a larger distance and inject more energy in
the system. The energy and also the hopping height of the segmented leg increases.
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Figure 4.5.: [SIM] Comparison between the simulation of the multibody-system without (a) and
with (b) attached drive-train. Friction forces are neglected. The bang-bang control
method is used with∆h= 0.15 m. The switching points are set to xh+ = 0.45 m and
to xh- = 0.22 m. Shown are the time dependent positions of the hip and the foot.
The vertical solid line shows the position of the stretched leg. The solver used in the
simulation is ODE23.

In reality this effect is counterbalanced by the friction in the drive-train. The weight of the leg
could not move the drive-train on its own. There is always a amount of negative motor current
necessary, to move the drive-train back to its initial position.

Segmented leg with drive-train and inclusion of friction forces

When friction forces at all places of the drive-train are respected, the parameter ∆h has to be
increased to overcome the opposing forces.

Also further measures have to be taken, to consider the effects of the drive-train. If the loss
model of the ball screw is respected, the leg is not able to fall down and to move the drive-train
in the opposite direction. The opposing force in the ball screw-transmission-motor combination
is higher than the force resulting from the weight of the segmented leg pulling at the cable.

Therefore, an additional current iM- = −2.5 A has to be added to the motor control during the
fall of the leg. This current serves only to counteract the effects of friction in the drive-train. It is
also switched in the manner of the switching of the stiffness kv. During the upward motion also a
current iM+ = 1 A is added to counterbalance the friction during this part of the movement. The
values of current for this friction compensation were developed on the test-bed and chosen due
to their performance. In the block diagrams this mechanism is symbolized by the "‘compensation
losses"’ box.
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Figure 4.6.: [SIM] Comparison between the simulation of the multi-body system with drive-train
and the consideration of friction forces (b) and the simulation of the segmented leg
without drive-train but the same parameters for the friction models (a). The method
of free fall is used with ∆h = 0.15 m. The switching points are set to xh+ = 0.45 m
and to xh- = 0.22 m. Shown are the time dependent positions of the hip and the
foot. The solver used in the simulation is ODE23.

As to see in Fig. 4.6 the apex point of the movement and also the hopping frequency is further
reduced. Nonetheless, a stable hopping motion is possible. The next step is to implement the
developed control strategy on the test-bed.

Comparison of simulation and experiment

The control approach combining feed forward control and the bang-bang approach of stiffness
manipulation is used on the test bed to test its usability. In fig. 4.7 the results are shown.

A stable hopping motion is the result in the simulation and in the experiment. At one point the
experimental movement is disturbed but reaches again a hopping motion after this event. The
hopping height is comparable and also the velocity of the upward motion. In the experiment the
fall of the hip to the initial position takes a longer time than predicted in the simulation. Because
of this longer duration the frequency of the hopping motion is reduced. Reasons for this slower
movement lie probably in an incorrect adjusted value for the friction compensation current iM-
and the realization of the desired current course by the internal current control of the motor.

Summary bang-bang control

The method of the feed-forward control in combination with a bang-bang approach for adjusting
the virtual stiffness kv is able to produce hopping motions in simulation and on the test-bed.
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Figure 4.7.: [SIM+EXP] Comparison between the simulation of the multi-body system with drive-
train and included friction effects (a) and an experiment with the same control
parameters with the test-bed (b). The method bang-bang control is used with
∆h= 0.3 m, xh- = 0.22 m and xh+ = 0.45 m. The last ten seconds of the experiment
are shown. The solver used in the simulation is ODE23.

One property of the bang-bang control approach is the discrete nature of the control. The
function for the stiffness is a periodic step-function. Motor currents and also forces are changing
very abrupt. This behavior is not biologically inspired and is also not desirable for the actuator.
For this reason another method for the control of the test-bed through an adjustment of the
virtual spring stiffness kv is developed.

4.1.2 Feed forward control - continuous change of spring stiffness

In [17] a method called "‘constant energy supply"’ is suggested to control the test-bed MARCO
Hopper. It is a possible energy management technique to produce stable hopping motions even if
the movement is confronted with perturbations or uncertain underground. In this method the
virtual spring stiffness is changed continuously over the leg length.

In the phase after midstance (the lowest point of the movement, the ground reaction force is
maximal) the stiffness of the virtual spring is raised to inject a certain amount of energy ∆W in
the system during every hop. The additional stiffness ∆k is calculated by:

∆k = 6 ∆W
xh − xf − x0

(l0 − x0)3
(4.3)

l0 describes the rest length of the virtual spring. Experiments in [17] show that a certain amount
of energy leads to a hopping height, where losses and additional energy are in equilibrium.
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Figure 4.8.: Control block diagram of the continuous change of spring stiffness approach. As
before the black boxes show the basic feed-forward mechanism of the system. An
additional stiffness∆k is added to the system dependent on the positions of hip and
foot. The compensation of losses in the real system can enhance the performance of
the system. It contains the additional current values iM- and iM+ compensating the
effects of the ball screw (see chapter 4.1.1).

Now the virtual spring stiffness contains two parts. A basic stiffness k0 and the additional stiffness
∆k inject a certain amount of energy ∆W during each hop in the system. ∆k is only active
during the upward movement (from ’midstance’ to ’take-off’). The switching between the stiffness
calculation laws happens again at the points xh+ = 0.45 m and xh- = 0.22 m.

kv = k0 +∆k (4.4)

The basic stiffness k0 will be set to the value, which is necessary to reach the rest length of the
spring (see eq. 2.9).

k0 =
2mg

l0 − x0
(4.5)

The amount of energy added to the system ∆W compensates the losses by friction and the
ground. It is adjusted during the experiments to values that can generate stable hopping motions.

In this chapter it is shown that the multi-body system can perform hopping motions with the
concept of a continuous change of the spring stiffness. The chosen control strategy is the feed
forward approach as used before for the bang-bang calculation of the stiffness. The current iM
set to the motor is calculated like in eq. 4.8. A desired force Fdes is calculated with eq. 2.47.

For testing the control strategy, the same procedure shall be used as for the test of the bang-bang
approach. First, the strategy will be tested on the multi-body model without drive-train and the
results gained under the influence of friction forces are shown. After that the suitability for the
model with drive-train is tested. Last, the strategy will be used to control the test-bed.

Comparison of hopping motions with or without included friction forces

The differences in the motion deriving between a model with and without the influence of friction
forces are shown. In this experiment the drive-train is not included. The stiffness of the virtual
spring is set to a value of kv, which is necessary to reach the rest length. ∆W is varied. A
comparison between the behavior of the system with and without the influence of friction forces
is shown in Fig. 4.9. A hopping motion is feasible only for the system without the influence of
friction. The opposing force of the friction lets the oscillation cease. At some point the force
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Figure 4.9.: [SIM] Comparison of hopping motions of the multi-body system with a continuous
change of spring stiffness during the upward movement. In (a) the friction in the
bearings have been turned to zero. In (b) realistic friction forces act in the bearings.
The switching points are set to xh+ = 0.45 m and to xh- = 0.22 m. The solid black lines
show the behavior with a∆W = 0 J, while the dashed black lines show the behavior
with∆W = 3 J. A stable hopping motion is producable in the system without friction.
The friction lets the oscillations decease. The solver used is ODE23.

generated by the motor, the friction force and the weight force of the leg are in balance and the
motion stops. Therefore, an implementation on the model with drive-train is not promising.

Through the method with the bang-bang adjustment of the virtual stiffness, the effects of the
opposing friction force has been bypassed. During the downward movement no force is generated
by the motor. The only force opposing the weight is the friction force. So the movement can not
stuck if the weight force is higher than the stiction and the movement is not hindered by the
drive-train. This method shall also be be applied to the continuous change of the spring stiffness.

4.1.3 Feed forward control - bang-bang control and continuous change of the spring
stiffness

The idea is to combine both, bang bang control, for its performance in the downward movement,
and the continuous change of the spring stiffness, for its smother motion upwards. At this point
the idea of [17] is changed. In the work of Kalveram the spring-rate k is never turned to zero.
Due to the properties of the drive-train of MARCO II this measure seems necessary.

The switching positions are kept at xh+ = 0.45 m and xh- = 0.22 m. At this point the approach
should be presented in a closed form. During the development some parameters and assumptions
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have been changed a lot. This closed sequence for the control approach makes it easier to follow
the control idea. The principle is also shown in Fig. 4.8.

The knee torque τ is calculated to gain the behavior of a single mass oscillator with a segmented
leg.

τ= 2cos
�

φ

2
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ll
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2
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g
�

(4.6)

This torque is used to calculate a desired force Fdes attacking the end of the cable respectively the
end of the drive-train. At this point the force can be measured. Therefore, it serves as a control
value for a possible force-control approach. The desired torque τdes derives from the equation
above and the adjustment of the virtual spring stiffness kv.

Fdes =
τdes

rpηc
(4.7)

The parameters of the drive-train make it possible to calculate a desired current of the motor to
gain the desired force.

iM = Fdes
1

ibsiTηbsηTkM
(4.8)

The motor is presented with this current (on the test-bed the motor controller is presented with
this desired current, errors resulting from the internal control of the motor setting this current
downgrade the performance).

To manipulate the motion, a certain value for kv is calculated:

kv = k0 +∆k (4.9)

The basic stiffness k0 is set to reach the rest length of the spring in a system where friction is
neglected.

k0 =
2mg

l0 − x0
(4.10)

The additional stiffness ∆k is changed over the position of the leg and adds energy in a smooth
way:

∆k = 6 ∆W
xh − xf − x0

(l0 − x0)3
(4.11)

The bang-bang part of the approach changes kv between kv = 0 and kv = k0 +∆k, dependent
on the position of the hip and the direction of movement. The goal is to let the leg fall free to
counterbalance friction effects of the bearings of hip and foot. During kv is set to zero the motor
current is set to certain negative value iM- to move the drive-train and to counterbalance the
effects of friction and damping in the drive-train.

If this method is used, the motion in Fig. 4.10 occurs. The approach is tested on the simulation
model without drive-train (a) and the model with an attached drive-train (b). In the simulation
of the segmented leg driven by an ideal torque, the torque is set to zero during the fall of the leg.
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Figure 4.10.: [SIM] Comparison between the multi-body system with (b) and without (a) an
attached drive-train. Both simulations were performed under the influence of
friction forces. The approach to control the movement is a combination of constant
energy supply with ∆W = 3 J and free fall during the downward motion. A solid
vertical line marks the position of the complete stretched leg. The solver used in the
simulation is ODE23.

Both systems are able to perform stable hopping motions. The system without the drive-train
describes the ideal movement with the control approach if it was possible to actuate the knee
with an ideal torque source. In the system with drive-train a lot of the used energy serves to
overcome the losses of the drive-train. Also the torque at the knee is not the ideal torque at
all times, due to the inertia of the drive train, the losses in it and the elasticity of the cable.
Therefore, the reached hopping height is smaller than in the ideal model.

Implementation on the test-bed

The developed control is implemented on the test-bed. Results are shown in Fig. 4.11. Like in
all experiments before the hopping height in experiment and simulation is comparable. The
frequency of the hopping motion in the simulation is higher. The reason for this phenomenon
is the slower fall down of the leg in the experimental setup. As to see in Fig. 4.11 (b) a stable
hopping motion is only possible over two repeats. There were some problems with the power
source of the test-bed during the execution of this experiment. The available current fell down to
half of the desired current. It is assumed that a stable motion is possible if the power source does
not limit the current.
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Figure 4.11.: [SIM+EXP] Comparison of the simulated test-bed with attached drive-train (a) and
the real test-bed (b). The approach to control the movement is a combination of
constant energy supply with∆W = 5 J and free fall during the downward motion.
A solid vertical line marks the position of the complete stretched leg. The solver
used in the simulation is ODE23.

Summary feed forward control

It has been shown that with a model based feed forward control approach a hopping motion
of the segmented leg in simulation and experiment is feasible. It is not necessary to measure
process values of the system, but the positions of the hip and the foot, to realize the control
approach. Important parameter settings of the experiments are summarized in Fig. 4.1.

The most promising approach is the combination of the bang-bang control with the continuous
change of the spring rate over the leg length. So far the hopping height was small. The
performance is limited by the available current of the motor. The question is if an overlie of a
force-control can enhance the performance of the system.

Table 4.1.: Parameters of the experiments with bang-bang control and continuous change of the
stiffness

parameters - feed forward

switching height 1 xh+ = 0.45 m
switching height 2 xh- = 0.22 m

angle knee stop φmax = 120 °
maximum current of the motor iM,max = 10.5 A
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4.1.4 Feed forward control + PID - bang-bang control and continuous change of spring
stiffness

To gain a better performance, the feed-forward control is combined with a PID-controller (shown
is the principle in Fig. 4.12). Its parameter settings depend on the force error. The overlain
controller also influences the current signal of the motor. Within this experiments the limit of the
motor current is neglected. The primary goal is to find optimized control parameters.

Figure 4.12.: Control block diagram of the continuous change of spring stiffness approach with
an additional PID-force-control part. As before the darker boxes show the basic
feed-forward mechanism of the system. An additional stiffness ∆k is added to
the system dependent on the positions of hip and foot. The error resulting from
the desired- and actual force is used to control the system with a PID-controller.
The compensation of losses in the real system can enhance the performance of
the system. It contains the additional current values iM- and iM+ compensating the
effects of the ball screw (see chapter 4.1.1).

To optimize the behavior of the controlled system, the desired current value calculated by the
controller is added to the motor with the same logic, in which the systems changes between the
stiffness values kv for the calculation of the desired torque/force.

During the fall of the leg the PID-controller current is set to zero. The system reaches a high level
of force when hitting the knee stop, which results in a very high error in the force control. If not
turned of during these events, the controller would produce unreasonable high values for the
desired current. Early simulations showed that these peaks downgrade the performance of the
system.

A criterion to evaluate the performance of the controller can be the integrated absolute error of
the force over the time Ferr,int. Necessary values are the desired force at the end of the drive-train
Fdes and the actual force measured by the force sensor Fdt. The error is only recorded when the
controller is active (when kv 6= 0). This circumstance is be expressed by a logic operator cswitch,

76 4. Control



which is set to zero if the stiffness is set to zero, and is set to one when the stiffness is switched
to a value unequal zero.

Ferr,int =

∫

T

(cswitch |(Fdes − Fdt)|) (4.12)

The presented experiment with the feed-forward approach of the combination of bang-bang
control and the continuous change of the spring stiffness serves as a benchmark. Parameters of
this benchmark test are shown in Fig. 4.2.

Table 4.2.: Benchmark parameters of the experiment with bang-bang control and continuous
change of the stiffness

parameters - feed forward

switching height 1 xh+ = 0.45 m
switching height 2 xh- = 0.22 m

angle knee stop φmax = 120 °
maximum current of the motor iM,max = 100 A

length of the experiment T=5s
energy injection through change of spring rate ∆W = 5 J

integrated absolute error Ferror, int = 513.5 N

Model based control parameter determination I

To derive values for the constants of the PID-controller, a connection between the values has to
be found. The procedure is inspired by a method presented in [10].

The starting point lies in the equation of equilibrium between the force acting at the end of the
drive-train at the cable Fdt and the force driving the knee at the pulley F . They attack at both
ends of the cable with the stiffness kc. With this elasticity and the positions of both ends of the
cable xS1 and xS2, a relationship between both forces can be derived.

Part 1 :

0=Fdt − kc(xS1 − xS2)

Part 2 :

0=− F + kc(xS1 − xS2)
so:

Fdt =F

(4.13)

Fdt is the force at the end of the drive-train and it is assumed that it can be controlled ideally via
the motor through the current. The force consists of the desired force Fdes, the feed forward part
described before and a part that depends on the difference between the desired force and the
actual force Fdt. This value is the error Ferr of the controlled parameter.

Ferr = Fdes − Fdt (4.14)
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The value of the error and its derivations are used to change the desired force signal, with the
goal to minimize the error. The force resulting from the drive-train now consists of a part given
through the desired force and a part resulting from the force error. If the force error becomes
zero, the force at the end of the drive-train corresponds with the desired force.

Fdt = Fdes + kPFerr + kD Ḟerr + kI

∫

Ferr (4.15)

The parameters kP, kI and kD can be tuned to gain different system behavior. Fdt is equal to the
actual force Fact measured with the force sensor. As shown the elasticity of the cable kc does not
influence the results of this approach. With some operations the equation can be transformed
in a second order differential equation. In [20] a condition for the critical damping of second
order differential equations is given. One parameter of kP, kD and kI can be chosen to realize this
condition.

Fdes + kPFerr + kD Ḟerr + kI

∫

Ferr = Fact

Ferr + kPFerr + kD Ḟerr + kI

∫

Ferr = 0

Ḟerr + kP Ḟerr + kD F̈err + kIFerr = 0

F̈err +
1+ kP

kD
Ḟerr +

kI

kD
Ferr = 0

(4.16)

condition for critical damping of the system:

1+ kP

2kD
=

√

√ kI

kD

kI =
(1+ kP)2

4kD

(4.17)

One of the parameters is fixed with this condition. The other two can be chosen dependent on
a performance criteria. The experiment performed in fig. 4.13 shows the comparison of the
uncontrolled and the controlled hopping motion. With a control the error of the force can be
reduced, resulting in a higher hopping height.

In this experiment the chosen performance criteria, the integrated error Ferror, int, sums up to
Ferror, int = 153.4 N, less than a third of the uncontrolled system over the same time period.

On the other hand there are maximum values for the current bigger than iM = 60 A and forces
on the cable bigger than F = 2500 N. These values are not bearable for the real test-bed. A better
performance can be realized in theory but for the limitations of the used components it can not
be realized in reality under this circumstances.

A simulation with the actual current limits of the motor shows that the performance with an
enabled controller comes near to the same results as without one.
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Figure 4.13.: [SIM] Comparison of the motion patterns of a segmented leg with drive-train under
the influence of a force PID-control (solid line). The system without PID-control is
shown by the dashed lines. The control parameters are set to kP = 1, kD = 0.03 and
kI = 33.3. The vertical solid line shows the position of the stretched leg. The injected
energy through the control is set to∆W = 5 J. The solver used in the simulation is
ODE23.

Optimization of the PID parameters

Up to now the values for kP and kD were chosen by trial and error. kI has been calculated by the
derived law.

Now a map is be presented that shows the performance over a certain range of values for kP and
kD. The chosen area for these parameters is kP = 0.1+N0.2 and kD = 0.01+N0.02 for N = 1−9.
All combinations of these set of parameters were combined and the resulting performance is
evaluated by Ferr,int over a time of T = 3 s. The parameter of the stiffness control is set to∆W = 5
J (the results are listed in Fig. A.2).

The optimum point within this range of values is at the point kP = 2, kD = 0.05 and through the
calculation kI = 45. The integrated error sums up to Ferr,int = 31.68 N. The benchmark value for
a system without control over a period of three seconds is Ferr,int = 214.

A problem lies within the values for the current (peaks over iM = 80 A) and the force on the cable
(peaks over Fdt = 6000 N). One possibility to reduce this values is to choose control parameters
that are not in the optimum but are near to an optimum in the possible range of current and force
values. A possibility is to reduce the kP and kD values. As to see in Fig. 4.14, sets of parameters
are possible where low values of error are reached and the control parameters are relative low.

An experiment for kP = 0.5 and kD = 0.03 is performed. The integrated error is Ferr,in = 164.4
N. The maximum peak value for the motor current is reduced to iM ≈ 50 A, while the force in
the drive-train can not be reduced and is also about Fdt = 2500 N. Beside the peaks values the
highest values for the motor current are about iM ≈ 20 A.
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Figure 4.14.: [SIM] The integrated error Ferr, int over the parameters kP in the range 0.1 to 2 and
kD in the range 0.01 to 0.2. The simulation is performed over a time period of 3
seconds. There is a optimum point for the control parameters. The solver used in
the simulation is ODE23.

Model based control parameter determination II

Similar to the chosen concept, the section before, a second model based approach is developed.
This time some more information of the drive-train is included in the development. Whereas
before a relationship of forces at the end of the drive-train was used, this approach begins with
the dynamic equations of the motor.

A variation of the same idea as in the first approach is used. The load torque, represented by
the actual force Fact, and the motor torque, represented by a certain desired current, attack at
the motor. The motor torque can be calculated by the desired current and the torque constant
kM. The desired current derives from a desired force Fdes (calculated through the virtual model
control) and an additional term consisting of derivations of the force error Ferr. If both, the
error and the acceleration of the motor, become zero, the actual force and the desired force are
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Figure 4.15.: [SIM] Comparison of the motion patterns of a segmented leg with drive-train under
the influence of a force PID-control (solid line). The system without PID-control is
shown by the dashed lines. The control parameters are set to kP = 0.5, kD = 0.03
and kI = 18.75. The vertical solid line shows the position of the stretched leg. The
injected energy through the control is set to ∆W = 5 J. The solver used in the
simulation is ODE23.

the same. The same approach of critical damping is chosen for the adjustment of the control
parameters.

θφ̈M = −Fact
1

iTibsηTηbs
+ kM

�

Fdes
1

iTibsηTηbskM
+ kPFerr + kD Ḟerr + kI

∫

Ferr

�

θφ̈M = Ferr
1

iTibsηTηbs
+ kM

�

kPFerr + kD Ḟerr + kI

∫

Ferr

�

θφ̈M = Ferr
1

iTibsηTηbs
+ kMkP + kMkD Ḟerr + kMkI

∫

Ferr

θ
...
φ = F̈err + Ḟerr

 1
iTibsηTηbs

+ kMkP

kMkD

!

+
kI

kD
Ferr

particular part:

0= F̈err + Ḟerr

 1
iTibsηTηbs

+ kMkP

kMkD

!

+
kI

kD
Ferr

(4.18)
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condition for critical damping of the system:
 1

iTibsηTηbs
+ kMkP

2kMkD

!

=

√

√ kI

kD

kI =

�

1
iTibsηTηbs

+ kMkP

�2

4k2
MkD

(4.19)

Also an optimization of the control parameters has been performed. It has been chosen the same
parameter range as in the first approach. The area for these parameters is kP = 0.1+ N0.2 and
kD = 0.01+ N0.02 for N = 1− 9. All combinations of these set of parameters were combined
and the resulting performance is evaluated by Ferr,int over a time of T = 3 s. The parameter of
the stiffness control is set to ∆W = 5 J (the results are listed in Fig. A.3).

The resulting error over the range of parameters is shown in Fig. 4.16. Unequal to the parameter
map of the first approach, there is no area where the error stays low over a wide range of
parameters. If this approach is chosen, the exact choice of parameters is more important. The
lowest error can be reached with control values of kP = 2 and kD = 0.03. The optimal point lies
in the same region as in the approach before. An integrated error of Fer r,int ≈ 37 N is reached.
Therefore, the performance of the more complicated approach is worse than of the first one.

The simulation with the controller model based on the motor is shown in Fig. 4.17. The same
energy injection setup of ∆W = 5 J for the values of kP and kD is used to make the results
comparable. The performance is also enhanced and the integrated error comes to Ferror, int = 151.1
N.

This is close to the half of the uncontrolled system but also a much higher value than for the first
control approach. The desired current is reduced to values less than i = 30 A most of the time.
Also the forces on the cable are less than F = 2700 N. This is still to high for the test-bed.

Current limitation and performance

The error map over the control parameters kP and kD is shown in Fig. 4.18. The third parameter
kI is calculated through the first model based calculation. During the development of this map
the current in the system was limited to iM = 10.5 A. The same limit is given by the properties of
the test bed.

As shown, the lowest error for this constellation is given when the control parameters are near
to zero. Every setup of control parameters downgrades the performance of the system. With
the actual limitations of the current and the developed control strategies an improvement of the
performance is not possible.

Summary model based PID control in combination with virtual model control

An improvement of the performance of the control can be produced by the use of a PID-control in
combination with the most developed calculation approach for kv. Two methods for the choice of
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Figure 4.16.: [SIM] The integrated error Ferr, int over the parameters kP in the range 0.1 to 2 and
kD in the range 0.01 to 0.2. The simulation is performed over a time period of 3
seconds. The solver used in the simulation is ODE23.

control parameters have been presented. The first approach is recommended, as it is simpler. A
choice of the free parameters is very flexible and not as sensitive to improper chosen parameters.
Over a wide parameter range, good results can be reached.

One problem of the control approaches is the limitation of the possible current. An improvement
of performance is always connected with higher values of motor current iM and of the force at
the cable Fdt. These values can not be realized in the current state of the test bed. So the force
control approach is promising but not easy to realize.
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Figure 4.17.: [SIM] Comparison of the motion patterns of a segmented leg with drive-train under
the influence of a force PID-control (solid line). The system without PID-control is
shown by the dashed lines. The control parameters are set to kP = 2, kD = 0.03 and
kI = 34. The vertical solid line shows the position of the stretched leg. The injected
energy through the control is set to∆W = 5 J. The solver used in the simulation is
ODE23.

4.2 Force control - PID

In this section the possibility of a force PID-control for the test-bed shall be investigated. The
principle is shown in Fig. 4.19. The change of the concept lies in the instance that the direct
connection from the virtual model control to the actuator is erased. The PID-controller sets,
dependent on the force error, the desired current values to the motor. There is no feed-forward
term in the system.

For the test of this approach the adjustment law for the control parameters from the last section is
used, kP = 2, kD = 0.03, kI = 75 and ∆W = 5 J. The PID-controller is still switched in the same
manner as the stiffness for the virtual model control part. The results are shown in Fig. 4.20. In
Fig. 4.20 (a) the current is not limited. In Fig. 4.20 (b) the current is limited to iM = 10.5 A. The
first thing to note is that it is possible to control a stable hopping motion through a PID-control
approach.

Even in the case of limitation of the motor current a stable hopping motion is feasible. The
hopping height and frequency is comparable to the values reached through the combination of
bang-bang control and a continuous change of spring stiffness (see Fig. 4.11). With the simpler
approach of the combination of bang-bang control and a continuous change of spring stiffness,
the same results are feasible. No further sensor information than the positions of hip and foot
are necessary for this method.
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Figure 4.18.: [SIM] The integrated error Ferr, int over the parameters kP in the range 0.1 to 2 and
kD in the range 0.01 to 0.2. The simulation is performed over a time period of 3
seconds. ∆W = 5 J and the current is limited to iM = 10.5A. The solver used in the
simulation is ODE23.

In the case of the PID-control the information of the actual force is needed as well, which
increases the complexity of the system and makes it more prone to disturbances. Furthermore,
the incorrect adjustment of control parameters could downgrade the performance.

For this reasons a PID control is not recommended. Only if a possibility is found to extend the
range of motor current, the PID-control could enhance the performance of the feed-forward con-
trol schemes. With additional sensor information and signal conversion processes the probability
of errors rises.

4.2. Force control - PID 85



Figure 4.19.: Control block diagram of an alternative to the continuous change of spring stiffness
approach. The current is now controlled with an additional PID-force-control part.
As before the darker boxes show the basic mechanism of the system. An additional
stiffness∆k is added to the system dependent on the positions of hip and foot. The
error resulting from the desired- and actual force is used to control the system with
a PID-controller. The compensation of losses in the real system can enhance the
performance of the system.

4.3 Position control - SEA

A possibility, not mentioned before, is the combination of a serial elastic actuation (SEA) concept
with a position control. This method is used in [23] and [24]. In these works the virtual model
control approach is used to generate desired values for certain forces. The force is not controlled
directly.

At each point, where the force should be controlled, an elasticity in combination with the actuator
and one position sensor at each end, is fixed. With the knowledge of the positions and the value
of the stiffness of the elasticity, the actual force can be determined. Therefore, a force control can
be implemented as a position control and without the need of a force sensor. If certain positions
(or differences between positions) are reached, the desired force could be accomplished.

This method is also possible for the drive-train of MARCO Hopper II. In this case a spring has to
be attached between the two carriages in the drive-train (see Fig. 4.21). The position of the first
carriage xbs can be determined by the angular sensor of the motor and the transmission ratios of
motor transmission iT and ball screw ibs.

xbs =
φM

iTibs
(4.20)

A position of the second carriage xc2 can be measured by an own potentiometer sensor already
attached on the test-bed. The force in the drive-train Fdt can be calculated with these positions,
the rest length of the spring l0,SEA and its spring rate kSEA.

Fdt = kSEA

�

xbs − xc2 − l0,SEA

�

(4.21)
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Figure 4.20.: [SIM] Comparison of the motion patterns of a segmented leg with drive-train under
the influence of a force PID-control. The control parameters are set to kP = 2,
kD = 0.03 and kI = 34. The vertical solid line shows the position of the stretched leg.
The injected energy through the control is set to∆W = 5 J. The difference of both
systems lies in the limitation of the current. In (a) the current is not limited, while
in (b) the current is limited by iM„max = 10.5 A. The solver used in the simulation is
ODE23.

The desired difference between the positions of the carriages ∆xbs,des becomes the control
parameter when a desired force is given.

Fdt =Fdes

xbs − xc2 =∆xbs

∆xbs,des =
Fdes

kSEA
+ l0,SEA

(4.22)

For this approach has neither been implemented on the test-bed nor has been tested in simulation,
no further developments are shown at this point.
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Figure 4.21.: Possible attachment place of a spring in the drive-train. The elasticity is attached
between the carriages of the drive-train. The position of both carriages could
be determined (the left one through the motor position, the right one with a
potentiometer position sensor, comparable to the one used to measure the foot
position). With these positions a force/position control could be implemented.
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5 Experiments and suggestion for changes
This section includes specialties of the approach and goes into some characteristics of the test-bed
and the control, which were not mentioned before. Furthermore, suggestions will be made to
enhance the performance of the test-bed.

5.1 Experiments

Some special characteristics of the test-bed and simulation and also a comparison with an
example of human hopping are shown.

5.1.1 Theoretical power consumption and motor current requirements

A maximum required power of P = 23.7 W was assumed in the development of MARCO Hopper II
[9]. Examinations of the simulation models developed in this thesis show that the true necessary
power goes beyond this value.

As an example the simulation of a hopping motion with bang-bang control and continuous
change of spring stiffness with a ∆W = 5 J is performed and the resulting power consumption
will be shown.

The results are shown in Fig. 5.1. Negative peak values of the power result from the circumstance
that the motor drives in the stretched cable when the leg hits the knee stop. The second periodic
negative peak value of lesser magnitude marks the change of direction of the motor when the
stiffness is changed through the bang-bang control.

The crucial peak value is the positive value of PM ≈ 70 W. This power is necessary to perform the
hopping motion. Although the resulting hopping motion is not that high, the power consumption
is more than twice as high as assumed during the concept development of MARCO Hopper II in
[9]. The motor is able to provide power up to PM = 200 W but the motor current is most of the
time at its limit of iM = 10.5 A during this experiment.

A possibility for using the power of the motor is to use the whole range of motor velocity. A
change of transmission ratios can make this possible. A lower value of current is necessary to
gain the same forces at the end of the drive-train. This circumstance is easy to see with the
equation for the desired torque τdes.

iM =
τdes

rpηc

1
ibsiTηbsηTkM

(5.1)

The desired torque will stay the same. To lower the desired current, all other values have to be
raised. The efficiencies ηc, ηbs and ηT can not be changed. The transmission of the ball screw ibs
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Figure 5.1.: [SIM] Power consumption of the motor PM (a) (calculated with the angular velocity
of the motor φM and the load torque on the motor τM) and motor current iM (b)
during the hopping experiment shown in Fig. 4.11. The injected energy is tuned to be
∆W = 5 J.

is also fixed. A ball screw with different properties is difficult to implement in the drive-train and
is also expensive.

The most promising measures are to change the radius of the pulley rp and to attach a different
motor transmission iT. A motor transmission is also expensive but easy to change in the test-bed.
The easiest part to change is the pulley.

It has to be considered that a raise of transmission values always raises the necessary motion
range of the drive-train. The limits of the ball screw have to be respected.

5.1.2 Ground reaction force - leg length relationship

A relationship that is regarded for locomotion experiments and theory is the relationship between
the ground reaction force FGRF and the leg length lleg (depending on the positions of hip xh and
foot xf).

lleg = xh − xf (5.2)

The comparison of this relationship between a single mass oscillator and the segmented leg is
shown in Fig. 5.2. A fixed value for k (the black lines) and a continuous change of the spring
stiffness with bang-bang control (k0 +∆k, the blue lines) is shown for both systems. The basic
stiffness was set to the value, which is necessary to reach the rest-length of the spring. The
injected energy is set to ∆W = 1 J for both systems. The system switches between kv = k0
and kv = k0 +∆k. The peaks of the force in the beginning of Fig. 5.2 come from the sudden

90 5. Experiments and suggestion for changes



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

5

10

15

20

25

30

35

40

45

50

lleg (m)

F
G
R
F
(N

)

(a)

0.2 0.25 0.3 0.35 0.4 0.45
0

10

20

30

40

50

60

70

80

lleg (m)
F
G
R
F
(N

)

 

 

(b)

Figure 5.2.: [SIM] Comparison of the relationship between ground reaction force and rest length
of a single hop with a control tuned to∆W = 1 J. Friction forces are turned to zero.
The single mass oscillator (a) has a mass of m = 1 kg. Different line-types stand for
the different calculation methods for k. The solid line has a fixed value of k, a linear
spring. For the dashed line the stiffness was changed in the fashion of the continuous
change of stiffness with bang-bang control. The segmented leg (b) is tuned with its
real masses.

deformation of the ground in the beginning of the motion and do not have a further meaning.

A characteristic of the segmented leg is the knee stop that prevents the leg from reaching the
rest-length of the virtual spring. A hop starts when the leg length is lleg ≈ 0.43 m. The ground
reaction force is already zero while the spring would exert further force on the leg.

The area underneath the lines determines the energy injected in the system. A difference between
a fixed stiffness and a variable stiffness and the energy that is additional injected through the
continuous change of spring stiffness can be determined that way. For future work on the test-bed
and additional actuation methods, examinations of this relationships can be interesting.

5.1.3 Comparison to human hopping motions

It has been shown that the model of the segmented leg with distributed masses can be controlled
in the fashion of a single mass oscillator respectively the SLIP model. Now the resulting motion
and also the pattern of the ground reaction forces are compared with human hopping data.

For it was not possible to gather special locomotion data that fits the requirements and parameters
of this thesis, the comparison shall be made with existing research results from [17]. In this
work also the reaction to perturbations, in form of a changing ground level, was examined.
Therefore, the perturbation is shown in the motion and force patterns. For this comparison only
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the frequency of the motion and the pattern of the ground reaction force and the movement are
regarded.

The simulation is performed with the model of the segmented leg, without an attached drive-train.
Also the friction forces in the bearings of the hip and the foot were turned to zero. In the case of
a real segmented leg there are no bearings that influence the motion.

Also the force by the hip bed-stop was turned to zero. The leg can now be imagined as a
segmented leg moving in one direction, only influenced by the ground reaction force and the
driving torque τ at the knee.

It was chosen the bang-bang approach with a continuous change of stiffness in the fashion of
chapter 4.1.3 for the actuation. One difference is given in the circumstance that in this experiment
the stiffness is not turned to zero, but to the basic value k0. So the same control pattern as in
[17] was chosen. This makes the results more comparable.
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Figure 5.3.: Comparison of the patterns of motion and ground reaction force of the segmented
leg and a human hopping motion. The human hopping data (a) is from [17]. Parame-
ters of the experiment in (b) are∆W = 1 J and switching points of xh+ = 0.45 m and
xh- = 0.22 m. The solver used is ODE23.

The pattern of movement and also the pattern of ground reaction forces are similar but not
equal. A stable hopping motion with an almost constant level of hopping height can be realized.
The peak and course of the force pattern is smoother for the human model. The course of the
force during the first hop in the simulation comes very close to the pattern of the human model.
Also the force pattern during the second half of each hopping cycle (maximum compression to
take-off) comes close to the human model.

A likely explanation is that there are deviations from a realistic situation in the impact model-
ing/ground model of the simulation. Second, the segmented leg consists only of two segments.
The influence of the foot is not regarded.
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In this experiment a look at the model of the segmented leg has been taken, that is separated
from the drive-train and the influence of the friction forces on the leg.

The smooth motion and force patterns derived here, are only possible when the leg is seen as an
ideal model. Losses only are introduced through the ground and the demanded torque at the
knee could be provided at all times.

The experiments with the real test-bed show that the resulting movements change due to the
losses and influences of the bearings and the imperfections of the drive-train. A suitable indicator
for this circumstance is the adjustment of the control parameter ∆W . The hopping motion
performed for the segmented leg needs an energy injection of ∆W = 1 J. At least a value of
∆W = 5 J was necessary to perform a hopping motion on the test-bed for the experiments
performed in the control chapters.

Nonetheless a hopping motion can be performed with the shown control schemes but the distance
to the biological inspiration is getting higher due to the characteristics of the test-bed. Concepts
of actuation can be tried but the performance and comparability is limited.

5.2 Problems and suggestion for changes

In this section suggestions for the enhancement of performance of the test shall be made.

5.2.1 Motor controller

An internal current control of the motor controller sets the desired currents to the motor. This
task is performed by a controller from maxxon the Escon Module 50/5, 4-Q. The internal control
is realized by a PI controller with the current values of kP = 59 and a reset time of TN = 0.286 s.
The control values can be tuned manually or by an automatic tuning. This controller is presented
with a desired current value by the embedded hardware controller MyRIO and controls the
current in the motor.

The problems deriving from the current control are shown in Fig. 5.4. Oscillations around the
desired value happen most of the time. Especially during the backward movement (the current is
negative) this oscillations could influence the system behavior in a negative way. The oscillations
around the desired value are compared to this value rather high (the current fluctuates between
iM ≈ −1 A and iM ≈ −3 A. The backward motion of the carriages is probably disturbed. The
assumption is, that this behavior leads to the slow backward motion of the drive-train. A test for
this assumption has to be performed yet.

A second problem is shown during the third cycle of the experiment. The current suddenly drops
to iM ≈ 5 A. This behavior is responsible for the unstable motion in Fig. 4.7 and Fig. 4.11. The
hopping motion can not be performed further on because the necessary current to drive the
motor can not be reached.

These problems can not be solved until the current moment. A proper tuning of the motor
controller and a fix for the problem with the dropping current are necessary to produce a stable
hopping motion and to improve the performance.
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Figure 5.4.: [EXP] The course of the desired (black line) and the actual motor current (lighter line)
during an experiment on the test-bed.

5.2.2 Change of the knee pulley

For the test-bed is driven in the limits of its capability (e.g. current limit, strain of the cable) a
lowering of the necessary forces in the drive-train can improve the performance and lessen the
needed power of the motor.

A lesser force with a constant torque at the knee can be realized through a higher radius of the
knee pulley. The new knee pulley with a diameter of dp = 98 mm instead of the old pulley with a
diameter of dp = 80mm has been attached to the segmented leg. Up to this moment no further
experiments could be performed with the changed test-bed. Simulations show some positive
effects of a bigger pulley.

The condition which has to be regarded if a bigger pulley is used is that with the reduced force,
the motion range of the drive-train/ball screw rises. Limits of the possible travel of the drive-train
have to be respected if another bigger pulley is attached.

5.2.3 Power sources

In the current setup of MARCO II the test-bed is supplied by two power sources. The power
source for the sensors is sufficient for this purpose. Problems with the current of the motor are
not exclusive up to the motor controller. The current limit of the actual power supply of the motor
is at i = 10.5 A and it happened that the power supply turned itself off during the experiments.
A power supply with a higher possible current is recommended to avoid this problem.

If the power supply is powerful enough problems with a break-in of the current could be isolated
to the motor controller. First tests with more powerful supplies support this assumption.
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5.2.4 Reduction of friction

A characteristic of the test-bed that downgrades the performance of the control approaches
and also falsifies the motion patterns of the segmented leg is the friction, induced through the
bearings of hip and foot. If the friction was reduced better results, as shown before, would be
expected.

One possibility for the reduction of friction is the separating of the wipers of the linear bear-
ings/carriages. The stiction force could be lowered significantly. Also alternatives to the current
lubrication concept could be considered.
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6 Conclusion and future works
In this thesis the possibility of the control of a segmented robotic leg with the virtual model
control approach has been investigated.

The virtual model control bases on the implementation of virtual components in real devices to
realize a desired behavior. Existing actuators mimic the effects that virtual components would
have. A common template for a biological hopping motion is a single mass oscillator, the spring
loaded inverted pendulum (SLIP) model. Resulting motion and force patterns come close to
the human role model. A virtual spring can be implemented in a segmented leg to mimic the
behavior of the SLIP model and, therefore, the biological role model.

A behavior similar to the SLIP model can be accomplished for an ideal segmented leg without
losses . In the real test-bed MARCO Hopper II the leg is influenced by losses through friction and
damping forces resulting from bearings, the ground and imperfections of the driving forces by the
drive-train. Control methods have been developed to counteract those losses and imperfections
and to adapt the idea to the test-bed. A promising control method that results in hopping motions
in simulation and also on the test-bed has been developed and tested - the bang-bang control
of the virtual spring rate with a continuous adjustment of virtual spring stiffness. Only position
information is necessary to calculate desired values of force and current for the drive-train and
to accomplish the desired behavior (the controlled parameter do not get feedback information).

It has been tested if an overlaid PID force-control can enhance the performance of the test-bed.
This task can be accomplished in simulation but not on the test-bed for restrictions of the energy
supply and possible motor currents.

Finally suggestions for changes of the test-bed and alternative control methods have been
developed.

The idea of serial elastic actuation methods in combination with the derived laws can be
interesting for future works. The reduction of power consumption through the use of SEA and
resonance effects is a possible topic to investigate. Originally the test-bed has been developed for
the possibility of different drive-train concepts and for the resulting advantages and performance
enhancements. Muscle models can be accomplished by an adaptation of the drive-train.

The suggestions made to improve the performance of the test-bed must be regarded and devel-
oped to realizable solutions. Especially improvements on the motor controller and the overall
transmission ratio of the drive-train, through adjustments of the pulley and motor transmission,
have to be accomplished.

There are other possible laws for the calculation of the virtual spring stiffness. A first approach
for a variable virtual stiffness has been tested. More advanced methods could improve the
performance of the control without the necessity of further sensor information. Also a parameter
variation of the rest length of the virtual spring could be tested and analyzed.
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Up to now the motion has not been disturbed through changes of the ground level or intended
forces at different places. A device can be developed to investigate the disturbed behavior and
robustness of the control method. In the course of these developments research on ground models
and the interaction with the ground can be done. The development of an additional extension
of MARCO Hopper II, which holds the possibility of different grounds with an integrated force
sensor and perturbation mechanism can be an promising task.

It is also possible to extend the structure to a leg with three segments. A foot with an additional
actuated or passive joint is a possible next step. In this way a simple method for the actuation of
a whole leg can be realized.
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A Appendix

A.1 Run of the test-bed

To run experiments on the test-bed the following steps have to be followed:

1. start PC

2. turn on power sources sensors and motor

3. turn on power source MyRIO

4. load LabView file

5. set emergency stop to OFF, enable motor controller by switch ON

6. choose function in LabView

• Referenzposition anfahren - carriages drive to reference start position

• Kraftregelung neu - possibility for run with continuous change of spring stiffness control

• more functions will follow

7. initialize data record on the GUI - experimental data of the run will be saved in .xlsx-files

8. start function in LabView

9. stop function in LabView

10. save experimental data on an external data storage medium

11. if problems occur: press emergency stop

Changes of the force-control functions have to be made in the formula node of the Labview-file.
Implementation of a possibility to tune the parameters in the GUI will follow soon.

A.2 Data DVD

The attached DVD contains all relevant data of this thesis. It is organized as follows:

1. latex data + print version thesis:
Included are the latex files, all used figures and photos and the final version of the thesis.

2. presentation:
The presentation of the thesis as .pptx, all used figures and other material.

XXI



3. simulation models::
All relevant simulation models and m-files necessary to produce the results presented in
this thesis.

4. experimental results + analysis:
The results from experiments with MARCO II and necessary m-files for the analysis of the
data.

5. graphics, photos and figures:
All diagrams (as .fig-files) produced during the work on the task. Also photos of different
parts of MARCO II and sketches of different models.

A.2.1 Simulation models and m-files

A short description of the simulation models and m-files is given. All models were tested with the
Matlab versions R2013a and R2012b. Necessary information for the run of the models is given in
the models and in the corresponding m-files. For the simulation of the model only the model and
the m-file are necessary. The simulation is controlled via the m-file and started by the run of the
m-file. m-file and simulation model have to be in the same folder and the model must be open in
Matlab. Name changes have to be executed in both, the simulation model and the m-file.

For most models an iteration over certain parameters, via a for-loop, is possible. The results
are shown in diagrams to estimate effects by the iteration. The arrays used for the parameter
variations are explained in the corresponding m-files.

SLIP model

Included is the simulation model of the SLIP model "‘SLIP_150616.slx"’ and the m-file "‘parame-
ters_SLIP_150616.m"’ necessary to control the model.

The control models of the bang-bang- and continuous-change-of-stiffness-approaches as well as a
constant spring stiffness are implemented on the model and the desired case has to be chosen by
manual switches in the model.

Segmented leg without drive-train

Included is the simulation model of the segmented leg as SimMechanics model "‘ex-
tented_model_150708_VMC.slx"’ and the m-file "‘parameters_model_150708_VMC.m"’ necessary
to control the model.

The control models of the bang-bang- and continuous-change-of-stiffness-approaches are im-
plemented on the model and the desired case has to be chosen by manual switches in the
model.
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Drive-train

Included is the simulation model of the drive-train "‘test_drivetrain.slx"’ and the m-file "‘parame-
ters_test_drivetrain.m"’ necessary to control the model.

The simulation model includes the whole drive-train, up to the carriages attached on the ball
screw. Tests for the drive-train like the following of a desired current signal are possible. Also a
velocity control for the drive-train is implemented.

Segmented leg with drive-train

Included is the simulation model of the segmented leg with attached drive-train "‘drive-
train_multibody_3DOF.slx"’ and the m-file "‘parameters_drivetrain_multibody_3DOF.m"’ necessary
to control the model.

The control models of the bang-bang- and continuous-change-of-stiffness-approaches are imple-
mented on the model and the desired case has to be chosen by manual switches in the model.
The model is the combination of the segmented leg model and the drive-train model. Specialties
of both can be found in this.

The m-file of the most complex model is shown here. All other m-files could be found on the
data-DVD.

• parameters_drivetrain_multibody_3DOF.mm-file for the control of the simulation model
of the segmented leg with attached drive-train

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%s imu la t i on o f the whole sys tem segmented l e g + dr i v e−t r a i n%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c lear a l l ;
6 close a l l ;

%Parameters Motor maxon EC−4po l e 305013
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 theta_M=3.33*10^(−6) ; %[kgm^2]
d_M=0.00005; %damping o f the motor , unklar [Nms/ rad ]
k_M=0.0136; %Drehmomentkonstante [Nm/A]
R_M=0.102; %R e s i s t a n c e motor [Ohm]
L_M=0.0000163; %Induc tance motor [ Henry ]

16 k_E=1/(700/60*2* pi ) ; %Drehzah lkons tante [ rad /(V* s ) ]
i_max_M=10.5; %max . c u r r e n t by motor [A]
t_delay_M =0.00182; %mechanica l de lay o f the motor [ s ]
phi_dt_M_max=25000*2*pi /60; %max . ph i_d t motor [ rad / s ]
V_max=24; %rat ed v o l t a g e motor [V]

21
%parameters t r a n s m i s s i o n maxon GP 42 C 203116
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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theta_T=15*10^(−6) ; % M a s s e n t r gheitsmoment t r a n s m i s s i o n [kgm^2]
26 eta_T =0.81; %Wirkungsgrad t r a n s m i s s i o n

i_T =91/6; %Unte r s e t zung t r a n s m i s s i o n

%parameters t r a n s m i s s i o n s p i n d e l i tem KGT VK14 0.0 .414.32
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31
theta_sp =5.3*10^(−5) ; %mass moment o f i n e r t i a b a l l s c rew [kgm^2]
p_sp inde l =0.02; %s l o p e p o f b a l l s c rew [m]
i _ s p i n d e l=2*pi / p_sp inde l ; %t r a n s m i s s i o n b a l l s c rew
e ta_ sp inde l =0.85; %e f f i c i e n c y b a l l s c rew

36 r_ sp inde l =0.01; %rad iu s s h a f t b a l l s c rew
a lpha_sp inde l =0.31; %rad 0.31
rho_sp inde l =0.016; %f r i c t i o n ang l e b a l l s c rew [ rad ]
F_s_sp=350;%s t r i c b e c k paramter I b a l l s c rew
F_c_sp=3/10*F_s_sp ; ;%s t r i c b e c k paramter I I b a l l s c rew

41 F_v_sp =0.0;%s t r i c b e c k paramter I I I b a l l s c rew
v_s_sp =0.0010;%s t r i c b e c k paramter IV b a l l s c rew
k_v_sp=10;%parameter a l t e r n a t i v e f r i c t i o n model b a l l s c rew

%parameters mechanica l s t r u c t u r e
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%masses , d e n s i t y s
m_top=1.1015; %mass on top [ kg ]
m_foot =0.297; %mass o f the f o o t [ kg ]

51 m_knee=0.3; %mass o f a d d i t i o n a l p a r t s o f the l eg , c o n c e n t r a t e d at the knee [ kg ]
rho_al =2700; %d e n s i t y aluminium [ kg/m^3]; l i n k s got a weight o f ca . 0.3 kg
g=9.81; %g r a v i t a t i o n a l c on s t an t [m/ s^2]

%g e o m e t r i e s
56 h_stop_hip =0.2; %he i gh t o f the hip s t op [m]

phi_stop_knee=120*pi /180; %maximum ang le at the knee , knee s t op [ rad ]
l _ l i n k =0.25; %l e n g t h o f shank / th i gh [m]
w_link =0.005; %width o f shank / th i gh [m]
h_ l ink =0.04; %he i gh t o f shank / th i gh [m]

61 r_pu l l e y =0.034;% %rad iu s o f the p u l l e y / knee [m]
phi_knee_zero=2*asin (0 .5* h_stop_hip / l _ l i n k ) ; %knee ang l e in r e s t p o s i t i o n [ rad ]
x _ i n i t =0.2;%i n i t i a l p o s i t i o n hip [m]
x _ i n i t _ f o o t =0;%i n i t i a l p o s i t i o n f o o t [m]
x_high =0.45;%swi t ch p o s i t i o n + [m]

66 x_catch =0.22;%swi t ch p o s i t i o n − [m]

m_2=l _ l i n k * w_link * h_ l ink * rho_al ; %weight l i n k [ kg ]
t h e t a _ l i n k =1/12*m_2*( l _ l i n k 2̂+w_link^2)+m_2*( l _ l i n k /2)^2;%mass moment o f i n e r t i a

segment [kgm^2]
m_3=1; %mass o f 1DOF O s c i l l t o r to mimic [ kg ]

71
%spr ing−r a t e s and damping c o e f f i c e n t s
k_ground=1000000; %s p r i n g r a t e o f the ground [N/m]
k_bowden=556650; %s t i f f n e s s bowden c a b l e [N/m]
d_ground=100; %damping r a t e o f the ground [N/(m/ s ) ]

76 d_knee=100; %damping c o e f f i c e n t o f the knee s t op [Nms/( rad ) ]

%a l t e r n a t i v e ground model
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a_ground=0.25*10^9;
b_ground=3;

81

%F o r c e s and to rque s
T _ f r i c _ r b =0.0012; %f r i c t i o n torque in the r o l l e r b e a r i ng s [Nm]

86 %f r i c t i o n model − s t r i b e c k
v_s =0.001; %s t r i c b e c k paramter I hip bear ing , c a r r i a g e s d r i v e−t r a i n
d e l t a _ f =1; %s t r i c b e c k paramter I I h ip bear ing , c a r r i a g e s d r i v e−t r a i n
F_s=5; %s t r i c b e c k paramter I I I h ip bear ing , c a r r i a g e s d r i v e−t r a i n
F_c=8/10*F_s ; %s t r i c b e c k paramter IV hip bear ing , c a r r i a g e s d r i v e−t r a i n

91 F_v=5; %s t r i c b e c k paramter V hip bear ing , c a r r i a g e s d r i v e−t r a i n

F_s_ foo t =4.5;%s t r i c b e c k paramter I f o o t bear ing
F_c_foot=8/10* F_s_ foo t ;%s t r i c b e c k paramter I I f o o t bear ing
F_v_foot=1;%s t r i c b e c k paramter I I I f o o t bear ing

96
%V i r t u a l Model Con t ro l
del ta_h =0.3;
delta_W=5;
de l ta_z_0 =0.5; %r e s t l e n g t h v i r t u a l s p r i n g [m]

101
%e f f i c i e n c i e s
eta_BC =0.9; %e f f f i c i e n c y o f the bowden cab l e , ADP Report p . 52

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
106 %s t a r t o f the s imu la t i on and c a l c u l a t i o n o f r e s u l t s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f igure (1) ;
f igure (2) ;
f igure (3) ;

111 f igure (4) ;
f igure (5) ;
f igure (6) ;
%parameters s imu la t i on
StartTime=0;

116 StopTime=5;

set_param ( ’ dr ivetrain_mult ibody_3DOF ’ , ’ StartTime ’ , num2str ( StartTime ) ) ;
set_param ( ’ dr ivetrain_mult ibody_3DOF ’ , ’ StopTime ’ , num2str ( StopTime ) ) ;

121 %d i f f e r e n t a r ray s f o r t e s t o f d i f f e r e n t v a l u e s
i _neg_array =[2.5];%n e g a t i v e c u r r e n t f o r f r i c t i o n compensat ion [A]
P_array =[0];%PID model l I
P_2_array =[0];%PID model l I I
D_array =[0.03];%PID model l I

126 D_2_array=[0 0.0015];%PID model l I I
I _ a r r ay=[0 (2+1)^2/(4*0.03) ] ;%PID model l I
I _2_ar ray=[0 (1/ i_T / i _ s p i n d e l / eta_T / e ta_ sp inde l+k_M*2)^2/(4*k_M^2*0.03) ] ;%PID

model l I I

swi tch_FF_array =[1];%swi t ch f o r i n c l u s i o n o f f e ed−forward term 1=on
131

for i =1: length ( i_neg_array )%parameter i t e r a t i o n I
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% f o r i i =1: l e n g t h ( D_array ) %p o s s i b l e parameter i t e r a t i o n I I f o r
% c o m b i n a t i o n t e s t s

omega_set=sqrt (2*g/( del ta_z_0−x _ i n i t ) ) ;%b a s i c f r e quen cy f o r r ea ch ing r e s t
l e n g t h SMO

136 %omega_set_array ( i );% f o r t e s t i n g o f d i f f e r e n t d e s i r e d f r e q u e n c i e s
k _ v i r t u a l=omega_set^2*m_3;%b a s i c s t i f f n e s s f o r r ea ch ing r e s t l e n g t h SMO

%k _ v i r t u a l=2*g*m_top *( de l t a_h *( m_top+m_foot ) /m_top−x _ i n i t+de l ta_z_0 ) /( x _ i n i t −
de l t a_z_0 )^2;% s t i f f n e s s

%f o r change o f h e i gh t

141 %p o s s i b l e v a r i a t i o n o f parameters in the loop
i_neg=i_neg_array ( i ) ;
P=P_array (1) ;
P_2=P_2_array (1) ;
D=D_array (1) ;

146 D_2=D_2_array (1) ;
I=I_a r r ay (1) ;
I_2=I_2_ar ray (1) ;
switch_FF=switch_FF_array (1) ;

151 a{ i }=[ ’ P = ’ , num2str (P) ] ;%legend o f diagrams dur ing parameter v a r i a t i o n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%beg in o f s imu la t i on o f the model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sim ( ’ dr ivetrain_mult ibody_3DOF ’ ) ;
156

leg_ l eng th=x_top_2−q_foot_2 ;%d i s t a n c e hip− f o o t [m]

i n t _ e r r o r _ a r r a y ( i )=max( i n t _ e r r o r ) ;%det e rmina t i on o f i n t e g r a t e d f o r c e e r r o r [N]

161 %gene ra t i on o f d i f f e r e n t r e s u l t s in diagrams
f igure (1) ;
plot ( leg_ length , F_foot , leg_ length , F_GRF_des , ’ l inewid th ’ ,2) ;
hold on ;
plot ( leg_ length , k_des , ’ k−. ’ , ’ l i newid th ’ ,2) ;

166 xlabel ( ’ l eg length ’ ) ;
ylabel ( ’ ground reac t i on fo r ce ’ ) ;
legend (a ) ;
hold a l l ;
grid on ;

171 %
f igure (3) ;
plot ( F_error , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;

176 ylabel ( ’ F_er ror in N ’ ) ;
legend (a ) ;
hold a l l ;
grid on ;

%
181 % s u b p l o t (3 ,1 ,3) ;

% p l o t ( F_er ror_d t , ’ l i n ew id th ’ , 2 ) ;
% hold on ;
% % p l o t ( T _ s e t _ v i r t u a l , ’ k− . ’ , ’ l i n ew id th ’ , 2 ) ;
% x l a b e l ( ’ t ime in s ’ ) ;

XXVI A. Appendix



186 % y l a b e l ( ’ F _ e r r o r_d t in N/ s ’ ) ;
% l egend ( ’ F_ e r r o r_d t in N/ s ’ ) ;
% hold a l l ;
% g r i d on ;
%

191 f igure (2) ;
plot ( i_M , ’ l inewid th ’ ,2) ;
xlabel ( ’ time in s ’ ) ;
ylabel ( ’ Motor cur ren t in A ’ ) ;
legend (a ) ;

196 grid on ;
hold a l l ;

% %
% % f i g u r e (3) ;
% % p l o t ( phi_k , ’ l i n ew id th ’ , 2 ) ;

201 % % x l a b e l ( ’ t ime in s ’ ) ;
% % y l a b e l ( ’ phi in ’ ) ; %torque at the knee
% % legend ( ’ knee ang l e in ’ ) ;
% % g r i d on ;
% % hold a l l ;

206 %
f igure (4) ;

% s u b p l o t (2 ,1 ,1) ;
% p l o t ( x_1 , ’ l i n ew id th ’ , 2 ) ;
% hold on ;

211 plot ( x_top , ’ l inewid th ’ ,2) ;
hold on ;
plot ([0 StopTime ] ,[2* l _ l i n k * sin ( phi_stop_knee /2) 2* l _ l i n k * sin ( phi_stop_knee /2)

] , ’ b ’ , ’ l inewid th ’ ,2) ;
hold on ;
plot ( x_foot , ’ k−. ’ , ’ l i newid th ’ ,2) ;

216 hold on ;
xlabel ( ’ \ t e x t b f { time in s } ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’ \ t e x t b f { p o s i t i o n of hip / foo t in m} ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’ l a t e x

’ ) ;
t i t l e ( ’ \ t e x t b f { Multibody System − d r i v e t r a i n } ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
legend (a ) ;

221 grid on ;
hold a l l ;

%
% s u b p l o t (2 ,1 ,2) ;
% p l o t ( x_1_dt_dt , ’ l i n ew id th ’ , 2 ) ;

226 % x l a b e l ( ’ t ime in s ’ ) ;
% y l a b e l ( ’ a c c e l e r a t i o n o f body in m’ ) ; %p o s i t i o n o f body and f o o t
% legend ( ’ a c c e l e r a t i o n o f s p ind e l ’ ) ;
% g r i d on ;
% hold a l l ;

231 %
f igure (5) ;
subplot (3 ,1 ,1) ;
plot ( Load_torque , ’ l inewid th ’ ,2) ;
hold on ;

236 plot ( Set_torque , ’ k−− ’ , ’ l i newid th ’ ,2) ;
hold on ;
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plot ( load_torque_rea l , ’ b−. ’ , ’ l i newid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;

241 ylabel ( ’ Torque in Nm ’ ) ;
legend ( ’ Torque_{ load } ’ , ’ Torque_{ s e t } ’ , ’ Torque_{ r e a l } ’ ) ;
grid on ;

subplot (3 ,1 ,2) ;
246 plot ( F_spindel , ’ l inewid th ’ ,2) ;

hold on ;
plot ( F_set , ’ k−− ’ , ’ l i newid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;

251 ylabel ( ’ F sp inde l in N ’ ) ; %
legend ( ’ F sp inde l ’ , ’ F s e t ’ ) ;
grid on ;

subplot (3 ,1 ,3) ;
256 plot ( x_spindel , ’ l inewid th ’ ,2) ;

hold on ;
plot ( d i f f _x_S , ’ k−− ’ , ’ l i newid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;

261 ylabel ( ’ x sp inde l in m ’ ) ; %
legend ( ’ x sp inde l ’ , ’ Abstand Feder sp inde l ’ ) ;
grid on ;

hold a l l ;
266

f igure (6) ;
plot ( i n t _ e r r o r , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;

271 ylabel ( ’ i n t eg ra t ed abso lu te F_{\ t e x t { e r ro r }} ’ ) ;
legend (a ) ;
grid on ;
hold a l l ;

% %
276 f igure (7) ;

subplot (2 ,1 ,1) ;
plot ( F _ f r i c , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;

281 ylabel ( ’ f r i c t i o n fo r ce on bear ing in N ’ ) ;
legend ( ’ v e l o c i t y motor in rad / s ’ ) ;
grid on ;

subplot (2 ,1 ,2) ;
286 plot (T_load_M , ’ l inewid th ’ ,2) ;

hold on ;
xlabel ( ’ time in s ’ ) ;
ylabel ( ’ T_load_M ’ ) ;
legend ( ’ ’ ) ;

291 grid on ;
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f igure (8) ;
subplot (3 ,1 ,1) ;
plot ( x_1 , ’ l inewid th ’ ,2) ;

296 hold on ;
xlabel ( ’ time in s ’ ) ;
ylabel ( ’ x sp inde l in m ’ ) ; %f o r c e at the f o o t
grid on ;

301 subplot (3 ,1 ,2) ;
plot ( x_1_dt , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;
ylabel ( ’ x_dt sp inde l in m/ s ’ ) ;

306 grid on ;

subplot (3 ,1 ,3) ;
plot ( x_1_dt_dt , ’ l inewid th ’ ,2) ;
hold on ;

311 xlabel ( ’ time in s ’ ) ;
ylabel ( ’ x_dt_dt sp inde l in m ’ ) ; %
grid on ;

hold a l l ;
316

hold a l l ;

f igure (9) ;
subplot (2 ,1 ,1) ;

321 plot ( F_foot_2 , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ \ t e x t b f { time in s } ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’ \ t e x t b f {ground rea c t i on fo r ce in N} ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
t i t l e ( ’ \ t e x t b f { Multibody System} ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

326 %legend (a) ;
grid on ;
subplot (2 ,1 ,2) ;
plot ( x_top , ’ l inewid th ’ ,2) ;
hold on ;

331 plot ( x_foot , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ \ t e x t b f { time in s } ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
ylabel ( ’ \ t e x t b f { p o s i t i o n of top point in m} ’ , ’ FontSize ’ ,14 , ’ i n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
t i t l e ( ’ ’ ) ;

336 %legend (a) ;
grid on ;

hold a l l ;

341 f igure (10) ;
plot ( P_motor , ’ l inewid th ’ ,2) ;
hold on ;
xlabel ( ’ time in s ’ ) ;
ylabel ( ’ power consumption of the motor in W’ ) ;
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346 grid on ;
% end ;
end ;

Other models

Included is the simulation model of the segmented leg attached to the cable, which is attached
to a rigid end-point "‘nonlin_leg.slx"’ and the m-file "‘parameters_nonlin_leg.m"’ necessary to
control the model.

Also a m-file "‘stribeck_friction.m"’ is given, which can be used to calculate different setups of
stribeck-friction and to produce diagrams of the resulting friction forces.

A.2.2 Experimental results + analysis

All measured data during experiments is collected here. The data is ordered after the date it was
required. Each folder holds the information, which experiment was performed. In the folders
there are information about the parameters used during the execution of the experiments.

A.2.3 Graphics, photos and figures

The folder is separated in sub-folders.

• Diagrams:
The .fig-files of all produces diagrams are saved.

• Mechanical drawings:
The drawings of the developed adapters as .pdf-files.

• Photos:
All photos of different parts and the whole structure of MARCO II.

• Sketches:
Different sketches of free body pictures, block diagrams and other basic drawings.

A.3 Tables measurement data

The data for the calibration of the force sensor Scaime ZF 0-100 kg is presented. For the load cell
no data is available for the test was performed during the absence of the author and no data has
been recorded.

A.4 Mechanical drawings
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Table A.1.: Data calibration force sensors

Scaime ZF 0-100 kg load cell 0-30 kg
weight in g output voltage in mV weight in g output voltage in mV

571 38.827 no data available
1055 38.707 no data available
1573 38.615 no data available
2075 38.616 no data available
2336 44.107 no data available
2556 61.888 no data available
2816 84.727 no data available
3336 129.126 no data available
3837 173.026 no data available
4318 214.654 no data available
5021 275.111 no data available
10028 707.558 no data available
15024 1139 no data available
20025 1571 no data available

Table A.2.: Presentation of the integrated error Ferr,int over different control parameter settings
for the control parameters model I. The time of the experiment is set to T = 3 s, the
injected energy is set to∆W = 5 J.

kD 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
kP x x x x x x x x x x

0.1 67.74 59.80 67.40 69.79 68.99 67.79 66.86 66.53 66.52 66.79
0.3 75.48 50.29 58.20 60.14 60.48 60.86 60.56 60.60 60.77 61.45
0.5 93.48 43.99 50.62 52.88 53.71 54.33 55.25 55.61 56.04 56.75
0.7 121.57 39.48 44.88 47.21 48.41 49.11 50.19 51.35 51.85 52.67
0.9 155.77 36.70 40.95 43.16 44.13 44.86 45.95 47.15 48.24 48.94
1.1 196.27 34.61 38.02 39.78 40.65 41.22 42.29 43.51 44.80 45.82
1.3 243.51 33.10 35.83 37.19 37.79 38.33 39.14 40.31 41.69 42.96
1.5 289.82 32.33 33.84 35.08 35.45 35.74 36.40 37.58 38.78 40.13
1.7 518.92 31.79 32.67 33.30 33.47 33.49 34.13 35.14 36.38 37.69
1.9 379.48 31.70 31.68 31.88 31.75 31.76 32.15 32.98 34.14 35.41
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Table A.3.: Presentation of the integrated error Ferr,int over different control parameter settings
for the control parameters model I. The time of the experiment is set to T = 3 s, the
injected energy is set to∆W = 5 J.

kD 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
kP x x x x x x x x x x

0.1 102.16 96.52 89.88 84.07 79.10 75.58 73.26 71.92 71.04 70.82
0.3 80.01 82.91 79.92 75.71 71.91 69.36 67.47 66.45 66.03 65.98
0.5 65.79 72.90 71.15 67.67 65.13 63.67 62.38 61.72 61.50 61.55
0.7 56.00 62.69 62.65 60.61 59.00 58.11 58.05 57.57 57.38 57.68
0.9 52.04 54.50 55.89 54.76 53.77 53.45 53.48 53.84 53.87 54.22
1.1 52.16 48.24 50.43 49.97 49.56 49.31 49.69 50.09 50.67 50.95
1.3 55.33 43.62 46.11 46.14 45.83 45.67 46.05 46.78 47.65 48.03
1.5 62.40 40.11 42.68 42.84 42.77 42.66 43.07 43.66 44.62 45.43
1.7 72.10 37.26 39.69 40.26 39.98 39.95 40.21 40.99 41.96 42.85
1.9 87.36 35.20 37.48 37.88 37.76 37.56 37.82 38.57 39.52 40.47

Figure A.1.: Adapter force sensor-carriage, Scaime ZF 0-100kg
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Figure A.2.: Adapter force sensor-carriage, Megatron 0-200kg

Figure A.3.: Adapter foot position sensor
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Figure A.4.: protection plate force sensor ground reaction force

Figure A.5.
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Figure A.6.

A.4. Mechanical drawings XXXV
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