2,069 research outputs found

    Achieving dynamic road traffic management by distributed risk estimation in vehicular networks

    Get PDF
    In this thesis I develop a model for a dynamic and fine-grained approach to traffic management based around the concept of a risk limit: an acceptable or allowable level of accident risk which vehicles must not exceed. Using a vehicular network to exchange risk data, vehicles calculate their current level of accident risk and determine their behaviour in a distributed fashion in order to meet this limit. I conduct experimental investigations to determine the effectiveness of this model, showing that it is possible to achieve gains in road system utility in terms of average vehicle speed and overall throughput whilst maintaining the accident rate. I also extend this model to include risk-aware link choice and social link choice, in which vehicles make routing decisions based on both their own utility and the utility of following vehicles. I develop a coupled risk estimation algorithm in which vehicles use not only their own risk calculations but also estimates received from neighbouring vehicles in order to arrive at a final risk value. I then analyse the performance of this algorithm in terms of its convergence rate and bandwidth usage and examine how to manage the particular characteristics of a vehicular ad-hoc network, such as its dynamic topology and high node mobility. I then implement a variable-rate beaconing scheme to provide a trade-off between risk estimate error and network resource usage

    Implicit personalization in driving assistance: State-of-the-art and open issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With the consideration of driving preferences and driver characteristics, these systems become more acceptable and trustworthy. This article presents a survey on recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, benefits of personalization, application prospects, and future focal points. Both relevant driving datasets and open issues about personalized driving assistance are discussed to facilitate future research. By creating an organized categorization of the field, we hope that this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the application of these techniques within the driving automation community</h2

    Data Transmissions using Hub Nodes in Vehicular Social Networks

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Vehicular Social Networks (VSNs) consist of groups of individuals (i.e., people) who may share common interests, preferences and needs in the context of temporal spatial proximity on roads. In this environment, the impact of human social factors, such as mobility, willingness to cooperate and personal preferences, on vehicular connectivity is taken under consideration, thus extending the concept of Vehicular Ad-hoc Networks. In VSNs, vehicles are classified based on their social degree, a vehicle considered to be a ¿social¿ one if it accesses the vehicular social network and posts messages with a frequency higher than a given threshold. Therefore, to speed up the data dissemination process within a vehicular social network, a packet should be forwarded to those vehicles showing high social activity. In a previous paper, we introduced a new probabilistic-based broadcasting scheme called SCARF (SoCial-Aware Reliable Forwarding Technique for Vehicular Communications), and we analytically demonstrated its effectiveness in packet transmission reduction while guaranteeing network dissemination. In this paper, we assess SCARF in more realistic scenarios with real traffic traces, and we compare it with other similar techniques. We show that SCARF outperforms other approaches in terms of delivery ratio, while guaranteeing acceptable time delay values and average number of forwardings.Vegni, AM.; Souza, C.; Loscrí, V.; Hernández-Orallo, E.; Manzoni, P. (2020). Data Transmissions using Hub Nodes in Vehicular Social Networks. IEEE Transactions on Mobile Computing. 19(7):1570-1585. https://doi.org/10.1109/TMC.2019.2928803S1570158519

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201
    • …
    corecore