7,496 research outputs found

    Low power techniques for video compression

    Get PDF
    This paper gives an overview of low-power techniques proposed in the literature for mobile multimedia and Internet applications. Exploitable aspects are discussed in the behavior of different video compression tools. These power-efficient solutions are then classified by synthesis domain and level of abstraction. As this paper is meant to be a starting point for further research in the area, a lowpower hardware & software co-design methodology is outlined in the end as a possible scenario for video-codec-on-a-chip implementations on future mobile multimedia platforms

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Models for reducing power consumption in CPLD and FPGA devices

    Get PDF
    Usage of programmable logic devices PLD has increased in the latest years because of the ability to quickly implement complex types of electronic systems while reducing cost and time of synthesis. This technology enables dynamic reconfiguration of different applications according to specific requirements. Also, power consumption and its loss is becoming an increasingly important requirement in the design of systems for portable applications fed by batteries. Other factors to be taken into account in the consumption of power are elements that are used for manufacturing, packaging, and cooling systems. Power consumption must be taken into consideration especially for wireless applications where battery technologies provide power 20 W/h and voltage 1.2 volts. Despite improvements in battery technology, the development of methods for reducing power consumption plays a decisive role in portable applications. Therefore, modeling of power consumption has become a requirement with the highest impact in the performance of FPGA elements. Despite generated models of the different manufacturers of these elements, this article will appear comparisons of models based on experimental measurements performed on both CPLD and FPGA elements. Based on these models is selected to simulate a system that will be implemented in two elements and see how reduced power consumption, without affecting system performance. Experimental results show that FPGA elements have better performance and significantly reduce the power consumption

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201
    corecore