8,916 research outputs found

    Activity Classification Using Raw Range and I & Q Radar Data with Long Short Term Memory Layers

    Get PDF
    This paper presents the first initial results of using radar raw I & Q data and range profiles combined with Long Short Term Memory layers to classify human activities. Although tested only on simple classification problems, this is an innovative approach that enables to bypass the conventional usage of Doppler-time patterns (spectrograms) as inputs of the Long Short Term Memory layers, and adopt instead sequences of range profiles or even raw complex data as inputs. A maximum 99.56% accuracy and a mean accuracy of 97.67% was achieved by treating the radar data as these time sequences, in an effective scheme using a deep learning approach that did not require the pre-processing of the radar data to generate spectrograms and treat them as images. The prediction time needed for a given input testing sample is also reported, showing a promising path for real-time implementation once the Long Short Term Memory layers network is properly trained

    Radar for Assisted Living in the Context of Internet of Things for Health and Beyond

    Get PDF
    This paper discusses the place of radar for assisted living in the context of IoT for Health and beyond. First, the context of assisted living and the urgency to address the problem is described. The second part gives a literature review of existing sensing modalities for assisted living and explains why radar is an upcoming preferred modality to address this issue. The third section presents developments in machine learning that helps improve performances in classification especially with deep learning with a reflection on lessons learned from it. The fourth section introduces recent published work from our research group in the area that shows promise with multimodal sensor fusion for classification and long short-term memory applied to early stages in the radar signal processing chain. Finally, we conclude with open challenges still to be addressed in the area and open to future research directions in animal welfare

    Real-Time Radar-Based Gesture Detection and Recognition Built in an Edge-Computing Platform

    Full text link
    In this paper, a real-time signal processing frame-work based on a 60 GHz frequency-modulated continuous wave (FMCW) radar system to recognize gestures is proposed. In order to improve the robustness of the radar-based gesture recognition system, the proposed framework extracts a comprehensive hand profile, including range, Doppler, azimuth and elevation, over multiple measurement-cycles and encodes them into a feature cube. Rather than feeding the range-Doppler spectrum sequence into a deep convolutional neural network (CNN) connected with recurrent neural networks, the proposed framework takes the aforementioned feature cube as input of a shallow CNN for gesture recognition to reduce the computational complexity. In addition, we develop a hand activity detection (HAD) algorithm to automatize the detection of gestures in real-time case. The proposed HAD can capture the time-stamp at which a gesture finishes and feeds the hand profile of all the relevant measurement-cycles before this time-stamp into the CNN with low latency. Since the proposed framework is able to detect and classify gestures at limited computational cost, it could be deployed in an edge-computing platform for real-time applications, whose performance is notedly inferior to a state-of-the-art personal computer. The experimental results show that the proposed framework has the capability of classifying 12 gestures in real-time with a high F1-score.Comment: Accepted for publication in IEEE Sensors Journal. A video is available on https://youtu.be/IR5NnZvZBL

    Radar signal processing for sensing in assisted living: the challenges associated with real-time implementation of emerging algorithms

    Get PDF
    This article covers radar signal processing for sensing in the context of assisted living (AL). This is presented through three example applications: human activity recognition (HAR) for activities of daily living (ADL), respiratory disorders, and sleep stages (SSs) classification. The common challenge of classification is discussed within a framework of measurements/preprocessing, feature extraction, and classification algorithms for supervised learning. Then, the specific challenges of the three applications from a signal processing standpoint are detailed in their specific data processing and ad hoc classification strategies. Here, the focus is on recent trends in the field of activity recognition (multidomain, multimodal, and fusion), health-care applications based on vital signs (superresolution techniques), and comments related to outstanding challenges. Finally, this article explores challenges associated with the real-time implementation of signal processing/classification algorithms

    Spectro-temporal modelling for human activity recognition using a radar sensor network

    Get PDF

    Temporal convolutional networks for multi-person activity recognition using a 2D LIDAR

    Get PDF
    Motion trajectories contain rich information about human activities. We propose to use a 2D LIDAR to perform multiple people activity recognition simultaneously by classifying their trajectories. We clustered raw LIDAR data and classified the clusters into human and non-human classes in order to recognize humans in a scenario. For the clusters of humans, we implemented the Kalman Filter to track their trajectories which are further segmented and labelled with corresponding activities. We introduced spatial transformation and Gaussian noise for trajectory augmentation in order to overcome the problem of unbalanced classes and boost the performance of human activity recognition (HAR). Finally, we built two neural networks including a long short-term memory (LSTM) network and a temporal convolutional network (TCN) to classify trajectory samples into 15 activity classes collected from a kitchen. The proposed TCN achieved the best result of 99.49% in overall accuracy. In comparison, the TCN is slightly superior to the LSTM network. Both the TCN and the LSTM network outperform hidden Markov Model (HMM), dynamic time warping (DTW), and support vector machine (SVM) with a wide margin. Our approach achieves a higher activity recognition accuracy than the related work

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp
    • …
    corecore