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Temporal convolutional networks for multi-person
activity recognition using a 2D LIDAR

Fei Luo, Stefan Poslad, and Eliane Bodanese

Abstract—Motion trajectories contain rich information about
human activities. We propose to use a 2D LIDAR to perform
multiple people activity recognition simultaneously by classifying
their trajectories. We clustered raw LIDAR data and classified
the clusters into human and non-human classes in order to
recognize humans in a scenario. For the clusters of humans, we
implemented the Kalman Filter to track their trajectories which
are further segmented and labelled with corresponding activities.
We introduced spatial transformation and Gaussian noise for
trajectory augmentation in order to overcome the problem
of unbalanced classes and boost the performance of human
activity recognition (HAR). Finally, we built two neural networks
including a long short-term memory (LSTM) network and a
temporal convolutional network (TCN) to classify trajectory
samples into 15 activity classes collected from a kitchen. The
proposed TCN achieved the best result of 99.49% in overall
accuracy. In comparison, the TCN is slightly superior to the
LSTM network. Both the TCN and the LSTM network out-
perform hidden Markov Model (HMM), dynamic time warping
(DTW), and support vector machine (SVM) with a wide margin.
Our approach achieves a higher activity recognition accuracy
than the related work.

Index Terms—Human activity recognition, trajectory classifi-
cation, long short-term memory (LSTM), temporal convolutional
network (TCN), localization, people tracking

I. INTRODUCTION

HUMAN activity recognition (HAR) has a wide range
of applications in surveillance, healthcare, smart home,

intelligent control, etc. For example, doctors and dietitians
can provide advice remotely for patients and customers based
on their daily dietary activities [1]. People can use gesture
recognition [2], [3] to contactlessly interact with electronic
devices such as TV, computers, smart glasses, etc. Activity
recognition can be used to detect abnormal behaviour patterns
in many surveillance tasks [4], for instance, human falling
detection can be very helpful in providing immediate medical
assistance for the elderly [5].

A range of sensors have been applied for human activ-
ity recognition. Video-based activity recognition has been
well developed. In [6], the authors extracted human skeletal
outlines from videos to perform activity identification and
gesture recognition. In [7], the authors derived a temporal
representation of person-level actions from sport videos and
combined the representation of individual people to recog-
nize group activities. However, video-based systems can be
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affected by insufficient illumination and privacy concerns.
Wearable inertial sensors, including accelerometer, gyroscope,
and magnetometer have increasingly been applied to HAR
as they are fairly ubiquitous, embedded in smart phones,
smartwatches and sport bracelets. In [8], the authors used air-
pressure sensors to measure the change of the air pressure
resulted by muscular activities in order to recognize gestures.
Heterogeneous wearable sensors have been fused in order
to recognize complex human activities with more accurate
results. In [9], the authors proposed a two-layer recogni-
tion framework to classify gym physical activities by fusing
accelerometers and electrocardiograms. However, users may
forget to wear wearable sensors [10] or feel uncomfortable
to wear them [11]. Consequently, wireless sensing has been
increasingly used instead. For example, Wi-Fi [12] and Radar
[13] also have been used in HAR. In [14], the authors used Wi-
Fi channel state information (CSI) to perform fall detection.
In [15], the authors used the range-time-frequency information
obtained from a Doppler Radar to perform subject localization
and heartbeat detection. Compared to cameras and wearable
sensors, Wi-Fi and Radar-based techniques are more suitable
for HAR indoors, which has less interference than outdoors.

Location acquisition systems have been widely applied in
our life and several techniques have been used, such as
GPS, Radar, LIDAR, etc. These systems generate a large
amount of location data, and in the past years, they have
been applied in navigation, route planning, and mapping.
Recently, more and more studies attempt to infer semantic
information from the trajectories formed by the locations of
people, in order to provide a higher level of services, for
example, for personalized recommendation, smarter home or
more intelligent human-like robot interaction. Although there
are many localization techniques, none of these can be applied
ubiquitously for all purposes. GPS hardly works indoors as its
signals cannot penetrate walls. Radars may suffer interference
from the ground surrounding and multi-path effects. Bluetooth
and RFID (Radio-Frequency Identification) can perform in-
door localization, however, due to their short-range sensing
capability, they generally require larger deployments that may
become difficult to maintain. As a surveying and mapping
technique, LIDAR has been increasingly used in self-driving
vehicles and robots due to its high localization accuracy, good
real-time performance, and easy deployment. LIDAR also can
be applied both indoors and outdoors. As 2D LIDARs are
more affordable than 3D LIDARs, this paper proposes to use
a 2D LIDAR to perform multiple people activity recognition
indoors.

A trajectory collected by using a LIDAR is a sequence of
coordinates. A trajectory is a time series that contains both
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spatial and temporal information. Recurrent neural networks
(RNNs) are able to model long-term dependencies in time
series by propagating information through their deterministic
hidden state. As a variant of RNN, LSTM further uses three
gates to regulate the flow of information in and out of each
node, which overcomes the exploding and vanishing gradient
problem that exists in conventional RNNs. TCNs leverage
large receptive fields by stacking many dilated convolutions,
allowing them to model even longer time scales up to the entire
sequence length [16]. Both LSTM and TCNs have achieved
outstanding results in many areas, such as sequential image
classification, audio classification, language modelling, etc.
In this paper, we built an LSTM network and a TCN to
classify human trajectories into predefined activities and made
a comparison between them.

It is more challenging to perform human activity recognition
using wireless sensing techniques than using wearable sensors.
For wearable sensor-based HAR, each person wears sensor
devices, the sensor data is collected from each specific per-
son. However, wireless sensing techniques including LIDAR,
Radar, and Wi-Fi monitor a scenario that contains both humans
and non-human objects such as walls, tables, animals, etc. It
is necessary to differentiate humans from non-human objects
before performing HAR. Another challenge is that multiple
people can appear in the detection area of wireless sensors. For
recognizing the activities of different people, it is necessary to
track each person separately. LIDAR can achieve centimeter-
level localization accuracy, by using this characteristic of
LIDARs, it is possible to separate multiple people in the
spatial dimension. LIDARs also have a very fast response time
that makes them suitable for real-time tracking. These reasons
drove us to choose a 2D LIDAR to perform human activity
recognition.

In this paper, we used a 2D LIDAR to track multiple
people simultaneously and collect their trajectories for activity
recognition. By using a very short sliding window (2.5s)
for trajectory segmentation, our approach is able to achieve
nearly real-time human activity recognition. We applied spatial
transformation and Gaussian noise for trajectory augmentation
in order to overcome the problem of unbalanced classes.
Finally, we built two neural networks, an LSTM network
and a TCN, and compared their performance. Our proposed
approach is able to deliver a very high classification accuracy
of indoor activities in nearly real-time, which is essential to
make feasible real-time monitoring applications.

The remainder of this paper is organized as follows. Section
II presents the related work for human activity recognition
from three aspects: sensors, machine learning, trajectory-based
HAR. Section III illustrates the detailed methodologies in-
cluding data processing, point clustering, multi-user tracking,
trajectory segmentation and augmentation, and our proposed
LSTM and TCN networks. In Section IV, we implement our
method in an indoor scenario. We evaluate our proposed
approach and present the results in Section V. Finally, we draw
conclusions in Section VI.

II. RELATED WORK

HAR has been widely researched by using a diversity of
sensing devices and methods. In this section, we will review
some related work with respect to types of sensors, machine
learning algorithms, and trajectory-based HAR.

A. Sensors

A variety of sensors have been applied in HAR, such as
cameras, RFIDs, Wi-Fi, etc. Two kinds of techniques emerged
from these types of sensors: Device-bound and Device-free
techniques. Device-bound techniques require users to carry
wearable sensors, such as electrocardiogram sensors, ac-
celerometers, Bluetooth or Wi-Fi receivers. As many wearable
sensors are attached on human body, they have great advan-
tages in acquiring physiological characteristics [17] including
body temperature, heart rate, and blood pressure, which are
helpful for healthcare monitoring. Device-free techniques do
not require users to wear any sensor. The sensing of activities
is performed remotely by using, for example, cameras, Radars,
LIDARs, etc. Device-free techniques have been attracting
more and more attention as they are more convenient and
require no effort or attachments from users. However, each
sensor has its own advantages and limitations. Cameras are
widely deployed for HAR because videos and images are
visual forms that can easily be perceived by our eyes. However,
most cameras suffer from insufficient illumination and have
a narrow visual range that makes them unsuitable for larger
areas. It is also privacy intrusive because people’s faces may be
exposed. RFID tags [18] and Bluetooth beacons [19] usually
require a large deployment and maintenance because they are
very short-range. They may need users to carry a RFID reader
or a Bluetooth receiver to read the tags or beacons embedded
in specific parts of the physical environment. Radars can
provide micro-Doppler signatures generated from human ac-
tivities [13]. Radars do not generate privacy concerns because
personal identifiable features cannot be obtained with Radar
detection, and they can penetrate walls, cloth, trees, etc. Wi-Fi
devices can measure the CSI or the Received Signal Strength
Indicator (RSSI) to perform activity recognition. They have
similar merits as Radar devices. However, both Wi-Fi and
Radar devices may present a weak anti-interference capability
and suffer from multi-path effects. GPS and LIDAR have been
used in human activity recognition through the analysis of
patterns of location sequences of humans. As GPS is hardly
received indoors, it is usually used outdoors within large and
open spaces. LIDAR is a surveying method that measures the
distance to a target by illuminating the target with pulsed
laser light and measuring the reflected pulses. It has been
widely applied for object localization, tracking, and mapping.
Currently, few researchers have applied LIDAR to HAR due
to its expensive cost.

B. Machine learning algorithms

Machine learning has been widely applied in human activity
recognition to classify different activities. DTW is one of the
most used algorithms in human activity recognition [20], [21].
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It measures the similarity between two temporal sequences to
find the optimum distance between time series [22]. As almost
all data captured by sensors in HAR are time series, DTW has
innate advantages in processing them. HMM is also favored
in HAR [23], [24]. It is a Markov chain with both hidden and
observable stochastic processes. In human activity recognition,
observable components are the sensor signals while hidden
elements are users’ activities [25]. Other algorithms, such
as SVM [26], kNN (k-nearest neighbour) [27], and Random
Forest [28] also have been applied in HAR. Since deep
learning has achieved very high performance in many fields,
it is also increasingly applied into HAR. The authors in
[29] built a Convolutional Neural Network (CNN) to classify
RGB-D dataset in order to recognize human actions. Tang et
al. [30] proposed a Coherence Constrained Graph LSTM to
recognize group activity by modeling the relevant motions of
individuals while suppressing the irrelevant motions. Guo et
al. [31] proposed a feature fusion method, multiview Cauchy
estimator feature embedding, to fuse the data of Kinect and
inertial sensors for human action recognition. Lea et al. [32]
used TCNs to build an Encoder-Decoder model for human
action segmentation and recognition upon videos. Luo et al.
[1] used a CNN to classify Radar frequency spectrograms for
an indoor HAR comprising of fifteen different activities. Some
of the above algorithms have also been used in trajectory-based
human activity recognition as presented in Section II-C.

C. Trajectory-based HAR

Most trajectory-based human activity detection are achieved
by using cameras. In [33], the authors built a DTW model
to cluster similar trajectories in a video surveillance system
for suspicious behavior detection. In [34], the authors pro-
posed an LSTM model to perform trajectory and activity
prediction from videos. In [35], the authors proposed to
detect abnormal behaviours through trajectory analysis and
anomaly modeling based upon a camera sensor network. In
[36], the authors proposed a hierarchical Dirichlet process
hidden Markov model (HDP-HMM) to model the transitions
of different motions in video sequences. However, besides
the shortcomings of small visual scope and privacy intrusion,
trajectories extracted from a video are heavily dependent on
the azimuth and inclination of the camera, and the coordinates
of trajectories are hardly integrated into a global coordinate
system [4]. GPS as the most popular outdoor localization
technique also has been used for trajectory-based activity
recognition. In [37], the authors built a hierarchical Dirichlet
process HMM upon GPS trajectories to detect anomalies
of human motion in dynamic traffic control. In [38], the
authors proposed an automatic activity detection method using
PoIs’ (Points of Interest) spatial temporal attractiveness to
identify activity-locations as well as durations from raw GPS
trajectories. In [39], the authors proposed a cost sensitive
approach for activity recognition from GPS-logs by measuring
the importance of each activity from spatial and temporal
perspectives. In [40], the authors modelled human mobility
behavior using GPS trajectories to predict the purpose of a
user’s visit at a certain location. However, GPS requires users

Fig. 1. Workflow of LIDAR-based human activity recognition

to carry a GPS receiver and it is very difficult to receive GPS
signals indoors. Currently, there is little research in trajectory-
based human activity recognition using LIDAR. In [41], the
authors used a 2D laser to investigate interactions between
persons and detect anomalies in three different environments:
open layout laboratory, corridor, and an outdoor courtyard.
Ma et al. [42] built a seq2seq model to model location-driven
sequences of a user in order to recognize human activity in
a kitchen. They also used a 2D LIDAR. However, they did
not differentiate human targets and obstacles, and the system
recognized activities of only one person, which is fine for
single people occupancy, but not for a family home. In our
research, we further classified human and non-human targets
and performed continuous tracking to obtain trajectories of
multiple people.

III. METHODOLOGY

The main steps of LIDAR-based human activity recognition
are demonstrated in Fig. 1. Firstly, we used a 2D LIDAR to
collect a set of points, which are reflected by walls, tables,
humans, etc. This set of points was grouped into different
clusters that represent different objects in a scene. We further
performed human recognition upon these point clusters by
using a Random Forest to classify geometric features extracted
from each cluster. We used the Kalman Filter to perform
continuous tracking of multiple people. Trajectories obtained
from the tracking were further segmented and tagged with
our predefined activity labels. Trajectory augmentation was
implemented to enrich the samples and overcome the problem
of unbalanced classes. Finally, we built an LSTM network and
a TCN to perform trajectory classification. After training, both
two networks are able to perform human activity recognition
online. The details of each step are described in the following
subsections.

A. Point clustering

The raw data of a LIDAR is a sequence of polar coordinates
and each coordinate is noted as (r, θ) where r is the distance to
LIDAR and θ is the angle. For facilitating subsequent process-
ing, we transformed these coordinates from a polar coordinate
system to a plane coordinate system. Then the data at each
timestep can be described as a sequence S =

{
p1, p2, ..., pn

}
,

where n is the total number of points.
In order to differentiate objects, it is necessary to perform

clustering to group the points in S into different clusters. We
applied an algorithm called density-based spatial clustering
algorithm (DBSCAN) to perform the clustering. DBSCAN is
based on a threshold for a number of neighbors, minPts,
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within a radius ε. A point with the neighbor count greater
than or equal to minPts within ε, is identified as a core point.
A border point has the number of neighbors that is less than
minPts but it belongs to the ε-neighborhood of other points.
If a point is neither a core nor a border point, then it is called
a noise point. In order to understand how DBSCAN works,
three terms are defined:

Direct density reachable: a point A is directly density reach-
able from another point B if A is in the ε-the neighborhood
of B and B is a core point.
Density reachable: a point A is density reachable from B
if there are a set of core points leading from B to A.
Density connected: two points A and B are density con-
nected if there is a core point C, such that both A and B
are density reachable from C.

The DBSCAN can be abstracted into the following steps:

1) Find all neighbor points within ε of every point, and each
point with more than minPts neighbors within ε are
marked as a core point.

2) For each core point if it is not already assigned to
a cluster, create a new cluster. Find recursively all its
density connected points and assign them to the same
cluster as the core point.

3) Iterate through the remaining unvisited points in the
dataset. Those points that do not belong to any cluster
are marked as noise.

Compared to other clustering algorithms, DBSCAN does
not need to specify the number of clusters, it is able to discover
arbitrarily shaped clusters, and it is robust to noise [43].

B. Human recognition

The clusters obtained after point clustering represent many
different objects. It is necessary to recognize which cluster
represents human in order to track its trajectory. Clusters
that represent humans have different geometric characteristics
from clusters of non-human targets. Geometric feature can be
defined in terms of linearity, circularity, angularity, etc. As
Angus et al. did in [44], we extracted 15 geometric features
(shown in Fig. 2) from each cluster. Based on these features,
we implemented a Random Forest (RF) to classify human
and non-human targets. RF is a tree-based ensemble classifier
which is a meta estimator that fits several decision trees on
various subcategories of data. This algorithm is used for both
regression and classification. In general, the number of trees
determines the robustness of the forest. We collected positive
samples (human) from a clear and open space and negative
samples (non-human) from various indoor spaces without
people. The total number of samples was 12000 consisting of
6000 positive samples and 6000 negative samples. One benefit
of random forest is that it can measure the confidence level
in the classification by aggregating the classification output of
each individual tree. Thus, rather than just using the predicted
labels, we considered the confidence level generated from the
RF classifier to eliminate the noise and increase reliability.

Fig. 2. Human recognition

C. Multiple people tracking

In order to obtain the trajectories of human clusters, it is
necessary to perform continuous target tracking. Kalman filter
is one of the most popular tracking algorithms due to its
efficiency and accuracy [45]. It is an optimal recursive data
processing, which uses a series of measurements observed over
time to produce an estimate of the desired variables and finds
the optimal state with the smallest possible variance error. It
contains two steps: prediction and correction. In the prediction
step, the state is predicted with the dynamic model, while in
the correction step, the state is corrected with the observation
model.

The process and measurement equations for the Kalman
filter are given as follows:

xk = Axk−1 +Buk + wk−1

zk = Hxk + vk
(1)

where k is the discrete time, xk is the state vector, zk is the
observation vector, A and H are the transition matrix and the
observation matrix respectively. Bk is the control-input model
which is applied to the control vector uk. wk−1 and vk are
Gaussian random variables with zero mean, so their probability
distributions are p(w) ∼ N(0, Q), p(v) ∼ N(0, R) where the
covariance matrix Q and R are referred to as transition noise
covariance matrix and observation noise covariance matrix.

The prediction stage for the Kalman filter is as follows:

x̂−k = Ax̂k−1 +Buk

P−k = APk−1A
T +Q

(2)

a priori estimate of state x̂−k and covariance error P−k is
obtained for the next time step k

The correction stage for the Kalman filter is as follows:

Kk = P−k H
T (HP−k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )
Pk = (1−KkH)P−k

(3)

Kk is the Kalman gain which is computed by above equations.
After that a posterior state estimate x−k and a posterior error
estimate Pk is computed by the measurement zk. The predic-
tion and correction equations are calculated recursively with
the previous posterior estimates to predict new prior estimates.

In a tracking system, the state vector is X =
[x, y, vx, vy, ax, ay]

T , where (x, y), (vx, vy) and (ax, ay) rep-
resent position, velocity and acceleration, respectively. The
observation vector is Z = (x′, y′).
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Fig. 3. Trajectory segmentation

D. Trajectory segmentation and augmentation

A trajectory can be the result of the location displacement
when one or a sequence of activities is performed. For differ-
entiating activities, we split a trajectory into segments that each
segment represents one activity. Several ways have been used
to perform trajectory segmentation, such as distance-based
segmentation, time-based segmentation, and number of points-
based segmentation. They split a trajectory into segments with
the same distance, time, and number of points, respectively.
In our research, we implemented the number of points-based
segmentation. We used a sliding window with the length of
d to perform segmentation at the interval of v. For instance,
Fig. 3 shows a sliding window with the length of 6 (location
points) and the sliding interval of 3 (location points).

In our daily life, the frequency and duration of different
activities are different. For example, the activity of ‘having a
meal’ are mainly performed 3 times a day but the activity like
‘washing hands’ can be performed many times, while the time
consumed by ‘having a meal’ is much longer than ‘washing
hands’. This leads the problem of data sparsity that some
activities have many samples but others have few. To overcome
this problem, we applied trajectory augmentation by using
spatial transformation. In machine learning, data augmentation
is used to create more training samples through different ways
of processing or a combination of multiple processing upon the
original samples. Data augmentation can increase the number
of samples and boost the performance of deep learning. In
this paper, we applied spatial transformation upon the raw
trajectories to perform trajectory augmentation because the
trajectories are spatial data. The methods are described as
follows:

1) Translation: all points are translated to new positions by
adding offsets Tx and Ty to x and y, respectively.

[x
′
y

′
1] = [x y 1] ·

 1 0 0
0 1 0
Tx Ty 1

 (4)

2) Rotation: all points in the 2D plane are rotated around
the origin through the counterclockwise angle θ.

[x
′
y

′
1] = [x y 1] ·

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (5)

Fig. 4. Trajectory augmentation

3) Scale: all points are scaled by applying the scale factors
Sx and Sy to the x and y coordinates,respectively.

[x
′
y

′
1] = [x y 1] ·

Sx 0 0
0 Sv 0
0 0 1

 (6)

In addition to spatial transformation, we also added Gaus-
sian noise to the raw trajectories. The process of trajectory
augmentation is shown in Fig. 4. It is worthy to note that it is
required to control the range of spatial transformation to avoid
changing the semantic information of trajectories.

E. Trajectory classification

1) Long short-term memory (LSTM): LSTM is a variant
of RNNs that have been successfully applied in sequential
learning. In RNNs, the gradient increase rapidly or decays
exponentially over time. For overcoming this ‘exploding and
vanishing gradient’ problem, LSTM uses a few gates to control
the passing of the information along the sequence and thus can
learn long-range dependencies. A typical LSTM unit contains
an input gate it, a forget gate ft, a cell ct, an output gate ot and
an output response ht. The input gate controls the extent to
which a new value flows into the cell, the forget gate controls
the extent to which a value remains in the cell and the output
gate controls the extent to which the value in the cell is used to
compute the output activation of the LSTM unit. The recursive
computation of an LSTM unit is

it = δ(Wxixxt
+Whiht−1 +Wcict−1 + bi),

ft = δ(Wxfxxt
+Whfht−1 +Wcfct−1 + bf ),

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc),

ot = δ(Wxoxxt
+Whoht−1 +Wcoct−1 + bo),

ht = δ � tanh(ct)

(7)

where � denotes element-wise product, δ(x) is the sigmoid
function defined as δ(x) = 1/(1 + e−x), Wαβ is the weight
matrix between α and β (e.g., Wxi is the weight matrix from
the input xt to the input gates it), and bβ denotes the bias
term of β with β ∈ i, f, c, o.

As shown in Fig. 5, we built an LSTM network that consists
of two LSTM layers and one fully-connected layer. Segmented
trajectories were input into the network. As each point in a
trajectory has two values (x, y), the input shape of the LSTM
network is (t, 2) where t is the length of a trajectory. Both two
LSTM layers have 120 units and the fully-connected layer has
200 hidden units. The size of the output layer is determined
by the number of activities that we are going to recognize.
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Fig. 5. The structure of our proposed LSTM network

2) Temporal Convolutional Network (TCN): TCN is a class
of time-series neural network models that capture long-range
patterns using a hierarchy of temporal convolutional filters
[32]. TCNs integrate dilated casual convolutions and the resid-
ual block structure to expand the receptive field and increase
the depth. In dilated casual convolutions, an output at time t
is convolved only with the elements from time t and earlier in
the previous layer by using dilated convolution to enable an
exponentially large receptive field [46]. For a 1-D sequence
input x ∈ Rn and a filter f : 0, f : {0, · · · , k − 1} → R, the
dilated convolution operation F on element s of the sequence
is defined as [46]

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (8)

where d is the dilation factor, k is the filter size, and s − d ·
i accounts for the direction of the past. With dilated casual
convolutions, the receptive field of the TCN can be increased
by using larger filter sizes k and increasing the dilation factor
d. Fig. 6(a) presents a dilated causal convolution with dilation
factors d = 1, 2, 4 and filter size k = 2.

A TCN consists of several residual blocks. Each residual
block contains a series of transformations τ . As shown in
6(b), a residual block consists of two sets of layers including a
dilated casual convolution layer, a weight normalization layer,
a ReLU activation layer, and a dropout layer. The output
of each residual block is the sum of the output of these
transformations and the input x:

o = Activation(x+ τ(x)) (9)

This is also called skip connection. Residual blocks avoid the
vanishing gradient problem by carrying gradient throughout
the extent of a very deep network.

In this work, we built a TCN that consists of three residual
blocks (‘Block 1’, ‘Block 2’, and ‘Block 3’) as shown in Fig.
6(c). After hyperparameter tuning, the kernel sizes for these

Fig. 6. The architecture of our proposed TCN

three blocks were set as 5, the dilation rates of them were 1,
2, and 4 respectively. ‘Block 1’ has 75 filters, ‘Block 2’ has
150 filters, and ‘Block 3’ has 300 filters.

In training process, both the LSTM network and the TCN
network were trained to minimize an objective function in
terms of the parameters of the network. For activity recogni-
tion, let C be the number of activities, the following cross-
entropy loss function is often used:

Ey(y
′
) = −

N∑
i=1

yi · log(y
′

i) (10)

where E is the loss function evaluated over N samples, yi is
the original label of the ith sample and y

′

i is the class score
maps of the sample i calculated using a softmax activation
function:

yj = exp(xj)/(

C∑
c=1

exp(xc)) (11)

where y is the softmax score and x is the output layer
containing unnormalized class scores.

In training process, we applied dropout to perform regu-
larization that prevents overfitting. The term ‘dropout’ refers
to dropping out a part of the units in a neural network.
By avoiding training all nodes on all training data, dropout
decreases overfitting. We initialized dropout with the rate of
0.1 for the LSTM network and 0.25 for the TCN. In the
LSTM network, batch normalization was applied after each
LSTM layer. Batch normalization normalizes the output of
a previous activation layer by subtracting the batch mean
and dividing by the batch standard deviation. Except for
preventing overfitting, batch normalization also can accelerate
the training. The optimizer used for both networks is Adam
whose learning rate was initialized as 0.0003.

IV. EXPERIMENTAL SETUP

In this section, we present the LIDAR and our experiments.
The LIDAR we used is an UST-10LX as shown in Fig. 7(a).
Its error in localization accuracy is within 40mm. It has a
maximum detection distance of 30m and scan angle of 270◦.
Its angular resolution is 0.25◦. More information about UST-
10LX can be found in [47]. We made the experiments in a
kitchen scenario located in an university campus. Activities in
the kitchen are directly related to dietary health. Kitchen scene
context-based activity recognition can be a useful method



7

Fig. 7. (a) UST-10LX LIDAR, (b) Kitchen scenario

Fig. 8. LIDAR data processing

for diet controlling and dietary treatment, also helpful for
developing a smart kitchen as a part of a smart home. Fig. 7(b)
presents the bird‘s-eye view of the 3D model of the kitchen.

In our experiments, the LIDAR was placed at one meter
high and close to the up-left corner of the kitchen. We used a
sampling frequency of 10 Hz (10 scans per second) to collect
data and further processed the collected data using the methods
described in Section III as shown in Fig. 8. The raw Lidar
data (Fig. 8(a)) consists of the points reflected from obstacles,
walls, and humans. After clustering using DBSCAN, the points
were clustered into different groups that are shown with
different colors in Fig. 8(b). We performed human recognition
by classifying 15 geometric features extracted from these
clusters using Random Forest with 25 trees. Finally, we built
a Kalman filter for each human target in order to obtain their
trajectories.

We monitored the kitchen using the UST-10LX for a whole
day and plotted a density map of human trajectories to present
the spatial distribution of their daily activities. As shown in

Fig. 9. Density map of human trajectory in the kitchen

Fig. 10. Process of trajectory collection

Fig. 9, human trajectories are mainly concentrated around the
sink, the oven, the chair, and the door in the kitchen. These
four areas can be seen as four stay areas that people usually
stop for some amount of time. For example, people usually
stay around the sink to wash their cooking utensils, stay by
the oven for cooking, and sit on the chair for eating. Based on
this, we predefined 15 activities including: ‘get in’, ‘get out’,
‘from sink to door’, ‘from chair to sink’, ‘from oven to chair’,
‘from sink to chair’, ‘washing’, ‘from door to sink’, ‘cooking’,
‘from oven to door’, ‘sitting’, ‘from oven to sink’, ‘from chair
to oven’, ‘from door to oven’, ‘from sink to oven’.

The trajectories of these activities (except ‘get in’ and ‘get
out’) begin or end at the stay areas. Based on this, we defined
a tracker for each person in the detection range. The properties
of a tracker include ‘id’, ‘current stay’, ‘last stay’, ‘stay time’,
and ‘current trajectory’ as shown in Fig. 10. The trajectory
collection process for each person is:

1) Initialize a tracker for each person in the detection area
and set the tracker’s ‘current stay’ and ‘last stay’ as none.

2) Update the tracker at each scanning frame of the LIDAR
and judge whether the current location of the tracker is
within a stay area. If it is within a certain stay area, then
set its ‘current stay’ as the name of the stay area, and
initialize its ’current trajectory’ as a point list to store the
trajectory of the tracker.

3) When the tracker reaches a new stay area, then set its
’last stay’ as the value of ’current stay’ and its ’current
stay’ as the name of this new stay area. Save its ’current
trajectory’ as a trajectory labelled ‘from ‘last stay’ to
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Fig. 11. Trajectory samples of human activity

‘current stay”, then clear its ‘current trajectory’ to empty
for storing the next trajectory of the tracker.

4) If the tracker does not get to a new stay area but stays
in the same stay area for some amount of time and the
stay time is beyond the threshold (80 frames used in our
work), then save its ‘current trajectory’ and label it with
‘cooking’ if the stay area is ‘OvenPoly’, ‘sitting’ if the
stay area is ‘ChairPoly’, and ‘washing’ if the stay area is
‘SinkPoly’ as shown in Fig. 10. After this, set its ‘current
trajectory’ as empty to store the next trajectory of the
tracker.

5) Repeat step 3 and step 4 until the tracker leaves the
detection range of the LIDAR.

The trajectories of ‘get in’ and ‘get out’ do not begin or
end at any stay area. Therefore, we collected their trajectories
manually. We started to record the trajectory of participants
before they got in, and stopped to record after they got in,
then saved the trajectories and labelled them as ‘get in’. For
‘get out’, the collection process was similar.

Trajectories that begin or end at the stay areas were recorded
and labelled automatically. The geometric relationship be-
tween trajectories and the stay areas assures that those tra-
jectories were correctly labelled. For ‘get in’ and ‘get out’,
they were recorded manually. Some of them may have been
mislabelled but they could be filtered out by judging their
directions, as the directions of ‘get in’ and ‘get out’ are
opposite to each other. Besides, the collected trajectory can
be visually checked.

We collected trajectories of these activities and segmented
them using a sliding window with a length of 25 (location
points) and the interval of 10 (location points), so each
trajectory has 25 points. As the sampling frequency is 10 Hz,
the length of the sliding windows also can be measured by
time, in our case it is 2.5s. We choose this length because
a longer trajectory may contain more than one activity and
will lead to more latency, and a shorter trajectory does not
have enough information related to a human activity. In the
experiments, the number of people in the kitchen was varying
and the maximum number of people was 4. The total time for
monitoring was about 40 hours. In Fig. 11, we demonstrate
one trajectory sample in our dataset for each activity with
different colors. As it can be seen, the points of the trajectories
of ‘washing’, ‘cooking’, and ‘sitting’ tend to cluster together
because people do not move much when they perform these
activities.

As shown in Fig. 12, the quantity of each type of activity

Fig. 12. Sample amount before and after trajectory augmentation

before augmentation is: 357 ‘from sink to door’, 367 ‘from
chair to sink’, 279 ‘from sink to chair’, 1000 ‘washing’, 1000
‘sitting’, 350 ‘from door to oven’, 353 ‘from oven to chair’,
372 ‘from oven to door’, 1000 ‘cooking’, 267 ‘from door to
sink’, 270 ‘from chair to oven’, 536 ‘from sink to oven’, 656
‘from oven to sink’, 300 ‘get in’, and 300 ‘get out’. Some
activities (cooking, washing, sitting, etc.) have many samples
while others (from sink to chair, from chair to oven, etc.) do
not. We implemented trajectory augmentation to overcome this
problem of unbalanced classes. After trajectory augmentation,
we obtained 15000 samples in total and the number of samples
per activity was 1000.

V. EVALUATION AND RESULTS

In this section, we evaluated our proposed neural networks
in three ways including evaluation on the test dataset, compar-
ison with the baseline, and comparison with the related work.

A. Evaluation on the test dataset

We split the trajectory samples into two groups, 80% of the
samples were used for training, and 20% for testing. During
the training, we performed a hold-out validation [48], 15% of
the sample data was randomly excluded from training. The
testing dataset was not exposed to our networks in training.
The achieved overall accuracies by the LSTM network and
the TCN in testing were 99.39% and 99.49% respectively.
The TCN performed slightly better than the LSTM. More
importantly, the convergence speed of the TCN is significantly
faster than the LSTM. As shown in Fig. 13, the lines of
validation loss and accuracy of the TCN are smoother than
those of the LSTM network. This is probably because TCN has
a backpropagation path different from the temporal direction
of the sequence that is beneficial to avoid the problem of
exploding/vanishing gradients [46].

As shown in the normalized confusion matrix of Fig. 14,
most of the activities are correctly classified with 100%
or 99%. For ‘from chair to sink’, 1% samples have been
misclassified into ‘from chair to oven’ and 1% samples have
been misclassified into ‘sitting’. It is because some trajectory
samples from these classes begin from the chair in the kitchen
and have some overlaps. The same situation also happened
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Fig. 13. Validation loss and accuracy of the proposed LSTM and TCN

Fig. 14. Normalized confusion matrix of the TCN in testing

between ‘from door to oven’ and ‘from door to sink’. 1%
samples of ‘from door to oven’ have been misclassified into
‘from door to sink’. Also, 1% samples of ‘from sink to door’
have been misclassified into ‘from sink to chair’.

For validating the effect of trajectory augmentation, we
compared the networks that trained on the samples after aug-
mentation and those trained on the raw samples. As shown in
Table I, after applying our proposed trajectory augmentation,
the performance of the LSTM network has been increased
about 1.7% in OA, Recall, and F1; and the performance of
the TCN has been increased about 1.5% in all three metrics.

TABLE I
THE EFFECT OF TRAJECTORY AUGMENTATION

OA Recall F1
TCN with trajectory augmentation 99.49% 99.53% 99.51%
TCN without trajectory augmentation 97.96% 97.93% 97.96%
LSTM with trajectory augmentation 99.39% 99.41% 99.39%
LSTM without trajectory augmentation 97.68% 97.79% 97.65%

B. Comparison with the baseline

As mentioned in Section II, both HMM and DTW have
been frequently applied to trajectory-based activity recogni-
tion in the related work. SVM is a widely used method in
classification problems. We used these three algorithms as the
baseline to make a comparison with our networks.

The SVM implemented in our work is an RBF (Radial Basis
Function) SVM. It has two hyperparameters (C, gamma).
Cross-validation was used to tune the hyperparameters. Given
a hyperparameter space C : [1, 30], gamma : [0.1, 1.0E − 5],
a pair of parameters was selected from the hyperparameter
space by the cross-validation in each training and validation
iteration. The optimal parameters selected for SVM in this
work were C : 4.8, gamma : 10E − 4.5.

The hyperparameter of an HMM is the number of hidden
components. We searched for the number of hidden compo-
nents from 0 to 20. It was found that 5 is the optimal number
of hidden components.

DTW usually works with kNN to perform classification.
The implementation in our work combined kNN and DTW
by replacing the Euclidean distance measurement with the
DTW distance measurement. The hyperparameter of kNN
was the number of neighbours k and that of DTW was the
max warping window. After tuning with cross-validation, the
optimal hyperparameters were k : 1, max warping window:
18.

As shown in Table II, both the LSTM network and the
TCN are superior to these three algorithms in all three metrics,
The TCN achieved the best results: 99.49% in OA, 99.53% in
Recall, and 99.51% in F1.

TABLE II
COMPARISON OF THE CLASSIFICATION MODELS

OA Recall F1
TCN 99.49% 99.53% 99.51%
LSTM 99.39% 99.41% 99.39%
SVM 95.88% 95.76% 96.69%
HMM 85% 86.7% 85.5%
DTW 90.9% 91.56% 91.71%

C. Comparison with the related work
In [42], the authors also used a 2D LIDAR to perform

human activity recognition. They developed a seq2seq model
to perform the classification of 17 activities and achieved
88% overall accuracy. We cannot perform a completely direct
comparison between the work in [42] and ours. The layout
of the kitchen and the LIDAR used in [42] are different from
ours. The structure of the seq2seq model implemented in [42]
is unclear as the way of trajectory collection and the number
of their trajectory samples. However, we still can argue that
our approach is able to perform multiple people tracking and
it achieved very good accuracy in nearly real-time human
activity recognition. The work in [42] did not consider the
interference from non-human objects and it can only be used
to recognize the activities of a single person. A trajectory can
be generated by several activities. In [42], it is not clear how
the authors decided the number of activities that the seq2seq
model output. It is more suitable to represent each activity
by using a small trajectory segment, which also can improve
real-time capability in activity recognition.

D. Analysis
From above evaluations, it can be seen that deep learning

has great performance in trajectory-based activity classifica-
tions in the comparison with traditional algorithms. Trajectory
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augmentation is an effective way to improve the classifica-
tion accuracy when the number of trajectories is small and
imbalanced. The TCN performed better than the LSTM in
trajectory classification. Because the length of the trajectory
samples is only 25 (point), the capability of TCNs in learning
long-range temporal patterns was not fully released. The high
accuracy achieved in our work infers that indoor trajectory-
based human activity recognition is applicable. Of course, it
also has relationship with the layout of indoor scenarios. For
a more complex indoor layout, the performance of activity
recognition probably will decline.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed to perform human activity
recognition by using a 2D LIDAR. We used the DBSCAN
to cluster the LIDAR points and perform human and non-
human classification based upon 15 geometric features of
the clusters. We further applied the Kalman filter to perform
multiple people tracking and obtain their trajectories. We used
a sliding window to perform trajectory segmentation. For
overcoming the problem of unbalanced classes, we proposed
trajectory augmentation by using spatial transformation and
adding Gaussian noise. Finally, we built two networks (an
LSTM and a TCN) to perform HAR upon the trajectory
samples. Our proposed TCN achieved a very good result of
99.49% overall accuracy, which is slightly superior to the
LSTM and much higher than the results achieved by SVM,
HMM, and DTW. We compared our work to state-of-the-art
approach for human activity recognition using LIDAR. Our
proposed networks outperform the state-of-the-art approach.

With the coming age of Internet of things, various electronic
sensors are being connected wirelessly. One future research
direction is on fusing the data acquired from different sensors
in order to achieve more efficient and accurate human activity
recognition [49]. In modern life, people switch between dif-
ferent scenarios such as homes, offices, shops, etc. Therefore,
sensor fusion including wearables sensors (accelerometers,
GPS receivers, gyroscopic sensors, etc.) and ambient sensors
(RFID, WiFi, camera, etc.) in those scenarios is necessary
to achieve ubiquitous HAR. Another research direction is on
exploring unsupervised and semi-supervised learning with a
smaller amount of training data in order to make HAR more
applicable in real scenarios. Finally, it is important to protect
users’ privacy while performing HAR. Current HAR systems
need to upload sensor data to servers or clouds, the sensor
data could be illegally used resulting in intrusion of users’
privacy. One solution would be to deploy HAR system on
clients without uploading the sensor data and another one
would be performing sensor data encryption before uploading
without compromising performance.

In our future work, we will attempt to overcome the problem
of unobstructed Line of Sight (LOS). For object detection
and tracking, it is necessary to ensure there is no obstruction
between the LIDAR and targets. With a single LIDAR, the
moving targets are easily blocked by obstacles or other moving
targets that obstruct their LOS. For example, in our research,
a person can block the LOS of another person frequently, this

leads to a broken and uncontinuous trajectory. For overcom-
ing this problem, we will use multiple LIDARs to perform
human detection and tracking from a multi-perspective. A
trajectory-based human activity recognition relies on trajectory
pattern analysis. However, some micro-activity such as eating,
drinking, calling, etc., cannot be recognized by only human
trajectory. While wearable sensors or Radars are able to
recognize them. So we will attempt to combine LIDARs with
wearable sensors or Radars to perform both micro-activity and
macro-activity recognition simultaneously.
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