1,282 research outputs found

    Robust structural control of an underactuated floating wind turbine

    Get PDF
    This paper investigates the dynamic modeling and robust control of an underactuated floating wind turbine for vibration suppression. The offshore wind turbine is equipped with a tuned mass damper on the floating platform. The Lagrange's equation is employed to establish the limited degree‐of‐freedom dynamic model. A novel disturbance observer‐based hierarchical sliding mode control system is developed for mitigating loads of the underactuated floating wind turbine. In the proposed control scheme, two prescribed performance nonlinear disturbance observers are developed to estimate and counteract unknown disturbances, where the load induced by wave is considered as a mismatched disturbance while the load caused by wind is treated as a matched disturbance. The hierarchical sliding mode controller regulates the states of such an underactuated nonlinear system. In particular, the first‐order sliding mode differentiator is used to avoid the tedious analytic computation in the sliding mode control design. The stability of the whole closed‐loop system is rigorously analyzed, and some sufficient conditions are derived to guarantee the convergence of the states for the considered system. Numerical simulations deployed on both the design model and the National Renewable Energy Laboratory 5‐MW wind turbine model are provided, which demonstrate great effectiveness and strong robustness of the proposed control scheme

    Fault-tolerant load reduction control for large offshore wind turbines

    Get PDF
    Offshore wind turbines suffer from asymmetrical loading (blades, tower etc.), leading to enhanced structural fatigue. As well as asymmetrical loading different types of faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance and enhanced fatigue. Individual pitch control (IPC) provides an important method to achieve mitigation of rotor asymmetric loads, but this may be accompanied by a resulting enhancement of pitch movement leading to increased possibility of pitch system faults, which negative effects on IPC performance.This thesis focuses on combining the fault tolerant control (FTC) techniques with load reduction strategies by a more intelligent pitch control system (i.e. collective pitch control and IPC) for offshore wind turbines in a system level to reduce the operation & maintenance costs and improve the system reliability. The scenario of load mitigation is analogous to the FTC problem because the action of rotor/tower bending can be considered as a fault effect. The essential concept is to attempt to account for all the "fault effects" in the rotor and tower systems which can weaken the effect of bending moment reduction through the use of IPC.Motivated by the above, this thesis focuses on four aspects to fill the gap of the combination between FTC and IPC schemes. Firstly, a preview control system using model predictive control with future wind speed is proposed, which could be a possible alternative to using LiDAR technology when using preview control for load reduction. Secondly, a multivariable IPC controller for both blade and tower load mitigation considering the inherent couplings is investigated. Thirdly, appropriate control-based fault monitoring strategies including fault detection and fault estimation FE-based FTC scheme are proposed for several different pitch actuator/sensor faults. Furthermore, the combined analysis of an FE-based FTC strategy with the IPC system at a system level is provided and the robustness of the proposed strategy is verified

    Maximum power extraction from wind turbines using a fault-tolerant fractional-order nonsingular terminal sliding mode controller

    Get PDF
    This work presents a nonlinear control approach to maximise the power extraction of wind energy conversion systems (WECSs) operating below their rated wind speeds. Due to nonlinearities associated with the dynamics of WECSs, the stochastic nature of wind, and the inevitable presence of faults in practice, developing reliable fault-tolerant control strategies to guarantee maximum power production of WECSs has always been considered important. A fault-tolerant fractional-order nonsingular terminal sliding mode control (FNTSMC) strategy to maximize the captured power of wind turbines (WT) subjected to actuator faults is developed. A nonsingular terminal sliding surface is proposed to ensure fast finite-time convergence, whereas the incorporation of fractional calculus in the controller enhances the convergence speed of system states and simultaneously suppresses chattering, resulting in extracted power maximisation by precisely tracking the optimum rotor speed. Closed-loop stability is analysed and validated through the Lyapunov stability criterion. Comparative numerical simulation analysis is carried out on a two-mass WT, and superior power production performance of the proposed method over other methods is demonstrated, both in fault-free and faulty situations

    Development of a robust nonlinear pitch angle controller for a redesigned 5MW wind turbine blade tip

    Get PDF
    Power in wind turbines are traditionally controlled by varying the pitch angle at high wind speeds in region 3 of the wind turbine operation. The pitch angles controllers are normally driven by electrical or hydraulic actuators. The motivation of this research is to design and implement a pitch angle control strategy at the outer section of the blade via a separated pitch control at blade tip (SePCaT). A pneumatic actuator is implemented to drive the pitch angle control mechanism by incorporating pneumatic actuated muscles (PAM) due to its high power/mass ratio, high specific work, and good contraction ratio while maintaining low weight at the tip of the blade. A sliding mode controller (SMC) is modeled and implemented on a redesigned 5MW wind turbine numerically. The hypothesis is that the SePCaT control strategy is effective and satisfactory pitch angle trajectory tracking is achievable. The method is adopted, the system is modeled, and the response was observed by subjecting the model dynamics to desired pitch angle trajectories. Initially comparative controller response with respect to desired trajectory revealed satisfactory pitch angle tracking but further investigation revealed chattering characteristics which was minimized by incorporating a saturation function. SePCaT offers an effective pitch angle control strategy which is smaller, lighter, reliable and efficient

    Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

    Get PDF
    Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic

    Wind turbine asymmetrical load reduction with pitch sensor fault compensation

    Get PDF
    Offshore wind turbines suffer from asymmetrical loading (blades, tower, etc), leading to enhanced structural fatigue. As well as asymmetrical loading different faults (pitch system faults etc.) can occur simultaneously, causing degradation of load mitigation performance. Individual pitch control (IPC) can achieve rotor asymmetric loads mitigation, but this is accompanied by an enhancement of pitch movements leading to the increased possibility of pitch system faults, which exerts negative effects on the IPC performance. The combined effects of asymmetrical blade and tower bending together with pitch sensor faults are considered as a “co‐design” problem to minimize performance deterioration and enhance wind turbine sustainability. The essential concept is to attempt to account for all the “fault effects” in the rotor and tower systems, which can weaken the load reduction performance through IPC. Pitch sensor faults are compensated by the proposed fault‐tolerant control (FTC) strategy to attenuate the fault effects acting in the control system. The work thus constitutes a combination of IPC‐based load mitigation and FTC acting at the pitch system level. A linear quadratic regulator (LQR)‐based IPC strategy for simultaneous blade and tower loading mitigation is proposed in which the robust fault estimation is achieved using an unknown input observer (UIO), considering four different pitch sensor faults. The analysis of the combined UIO‐based FTC scheme with the LQR‐based IPC is shown to verify the robustness and effectiveness of these two systems acting together and separately

    Accelerated Controller Tuning for Wind Turbines Under Multiple Hazards

    Get PDF
    During their lifecycle, wind turbines can be subjected to multiple hazard loads, such as high-intensity wind, earthquake, wave, and mechanical unbalance. Excessive vibrations, due to these loads, can have detrimental effects on energy production, structural lifecycle, and the initial cost of wind turbines. Vibration control by various means, such as passive, active, and semi-active control systems provide crucial solutions to these issues. We developed a novel control theory that enables semi-active controller tuning under the complex structural behavior and inherent system nonlinearity. The proposed theory enables the evaluation of semi-active controllers’ performance of multi-degrees-of-freedom systems, without the need for time-consuming simulations. A wide range of controllers can be tested in a fraction of a second, and their parameters can be tuned to achieve system-level performance for different optimization objectives

    Actuator fault tolerant offshore wind turbine load mitigation control

    Get PDF
    Offshore wind turbine (OWT) rotors have large diameters with flexible blade structures which are subject to asymmetrical loads caused by blade flapping and turbulent or unsteady wind flow. Rotor imbalance inevitably leads to enhanced fatigue of blade rotor hub and tower structures. Hence, to enhance the life of the OWT and maintain good power conversion the unbalanced loading requires a reliable mitigation strategy, typically using a combination of Individual Pitch Control (IPC) and Collective Pitch Control (CPC). Increased pitch motion resulting from IPC activity can increase the possibility of pitch actuator faults and the resulting load imbalance results in loss of power and enhanced fatigue. This has accelerated the emergence of new research areas combining IPC with the fault tolerant control (FTC)-based fault compensation, a so-called FTC and IPC “co-design” system. A related research challenge is the clear need to enhance the robustness of the FTC IPC “co-design” to some dynamic uncertainty and unwanted disturbance. In this work a Bayesian optimization-based pitch controller using Proportional–Integral (PI) control is proposed to improve pitch control robustness. This is achieved using a systematic search for optimal controller coefficients by evaluating a Gaussian process model between the designed objective function and the coefficients. The pitch actuator faults are estimated and compensated using a robust unknown input observer (UIO)-based FTC scheme. The robustness and effectiveness of this “co-design” scheme are verified using Monte Carlo simulations applied to the 5MW NREL FAST WT benchmark system. The results show clearly (a) the effectiveness of the load mitigation control for a wide range of wind loading conditions, (b) the effect of actuator faults on the load mitigation performance and (c) the recovery to normal load mitigation, subject to FTC action
    • 

    corecore