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Abstract

This paper investigates the dynamic modeling and robust control of an underactuated

floating wind turbine for vibration suppression. The offshore wind turbine is

equipped with a tuned mass damper on the floating platform. The Lagrange's equa-

tion is employed to establish the limited degree-of-freedom dynamic model. A novel

disturbance observer-based hierarchical sliding mode control system is developed for

mitigating loads of the underactuated floating wind turbine. In the proposed control

scheme, two prescribed performance nonlinear disturbance observers are developed

to estimate and counteract unknown disturbances, where the load induced by wave

is considered as a mismatched disturbance while the load caused by wind is treated

as a matched disturbance. The hierarchical sliding mode controller regulates the

states of such an underactuated nonlinear system. In particular, the first-order sliding

mode differentiator is used to avoid the tedious analytic computation in the sliding

mode control design. The stability of the whole closed-loop system is rigorously ana-

lyzed, and some sufficient conditions are derived to guarantee the convergence of

the states for the considered system. Numerical simulations deployed on both the

design model and the National Renewable Energy Laboratory 5-MW wind turbine

model are provided, which demonstrate great effectiveness and strong robustness of

the proposed control scheme.
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1 | INTRODUCTION

Wind power has drawn more and more attention in recent years,1-3 with an increasing number of offshore wind turbines installed. This is because

offshore wind resources are of higher quality than the onshore case.4,5 According to types of foundations, offshore wind turbines can be roughly

categorized as fixed-bottom ones and floating ones. The fixed-bottom turbines are often placed in water with depth up to 60m. The floating wind

turbines are usually installed in the ocean from 60m to upwards of 900m or beyond. Moreover, the floating structures are more economical in

deep water regions and much less dependent on the seabed conditions than the fixed-bottom ones. However, the floating wind turbines are

susceptible to the adverse effect of the loads induced by wind and wave, which would lead to the considerable vibration fatigue damages on the
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wind turbine structures. Therefore, vibration suppression of floating wind turbines becomes a significant topical area of research in order to

reduce their maintenance costs and increase their life cycle.

During the past decade, many efforts have been made to suppress the vibrations of wind turbine by reducing tilt motions of the tower top or

the floating platform. The representative methodologies mainly include passive, semi-active, and active structural control. Passive structural

control systems do not require the power supply with constant parameters, such as tuned mass damper (TMD).6 An advantage of TMD-based

control is that it does not disturb the power generation while its disadvantage is that it needs extra mass. This disadvantage can be minimized if

an existing turbine component can serve as the mass component, such as the reservoir in a hydrostatic wind turbine.7 By comparison with passive

structural control systems, semi-active structural control systems have time-varying parameters that can be tuned during operation, such as semi-

active TMD8 and magnetorheological dampers.9 Unlike passive control systems, active structural control designs use an actuator to produce a

control force on the mass and structure; its advantage is that a greater impact on the platform pitch or the tower bend angle can be achieved.10

This paper focuses on active control. Active structural control designs with TMDs installed in the nacelle were considered for vibration suppres-

sion of the floating offshore wind turbines,11 where the H∞ multivariable loop-shaping method was used to design an active structural controller.

To simplify the control architecture, a generalized H∞ approach was proposed for aTMD on the platform.12 TheTMD-based floating wind turbine

was regarded as a simplified linear model with small angle approximations in other studies.11,12 However, the floating wind turbine is an

underactuated nonlinear coupled system with both mismatched and matched disturbances. Therefore, it is useful to develop an advanced control-

ler to handle the nonlinearity effectively.

Sliding mode control is a popular robust nonlinear control technique due to its strong robustness against parameter variations and external

disturbances.13 Over the past two decades, sliding mode control has been successfully applied to many practical underactuated physical systems,

such as inverted-pendulum systems,14 planar vehicles,15 mobile robots,16 underwater vehicles,17 and hypersonic vehicles.18 Different from the

existing sliding mode control structures,14-18 Wang et al.19 proposed a hierarchical sliding mode control scheme, which can be accommodated to

most second-order underactuated systems. With the aid of the proposed hierarchical sliding mode control,19 an adaptive controller was devel-

oped to stabilize four states of the spherical robot.20 However, the above papers do not consider adverse effects of mismatched disturbances.

Although Xu et al.21 considered this issue, their sliding mode control approach was only effective for diminishing disturbance rejections. The

TMD-based floating offshore wind turbine is a more complex underactuated nonlinear coupled system with both matched and mismatched

disturbances. To the authors' knowledge, there is no results reported to design a sliding mode controller for such a system.

Motivated by the aforementioned discussions, a more complete nonlinear dynamic model is established for the TMD-based floating offshore

wind turbine system without linearization. A disturbance observer-based adaptive hierarchical sliding mode control algorithm is proposed to regu-

late both actuated and unactuated degrees of freedom for this nonlinear coupled system with nondiminishing disturbances. Two disturbance

observers are independently designed to estimate both matched and mismatched disturbances respectively, where the estimated accuracy of

each disturbance observer can be adjusted by only one parameter. The established model is divided into two subsystems; several sliding variables

are constructed to develop a hierarchical sliding mode controller for such a system. To reduce the computing burden, the first-order sliding mode

differentiator is used to estimate the derivative of the designed disturbance observer. Finally, strong robustness and excellent control perfor-

mance of the proposed control algorithm are shown by the simulation tests.

2 | SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this section, we briefly introduce the floating wind turbine with the TMD configuration and establish an underactuated nonlinear coupled

dynamic model.

2.1 | A TMD-based National Renewable Energy Laboratory 5-MW floating wind turbine

We start with a description of the structure of a TMD-based floating wind turbine as depicted in Figure 1, which is primarily composed of a

rotor–nacelle assembly (RNA), a tower, an ITI Energy platform, a mooring system, and a TMD. The nacelle houses a few mechanical and electrical

components such as the drivetrain, generator, and converters. The tower is mounted on the ITI Energy barge platform. The rigid barge platform is

moored by eight catenary lines to alleviate drifting. The TMD is placed on the barge platform. As shown in Figure 1, the platform has six motion

degree-of-freedoms (DOFs), which includes three translational DOFs (i.e., surge, sway, and heave) and three rotational DOFs (i.e., roll, pitch, and

yaw), where X, Y, and Zrepresent the set of orthogonal axes with their origin denoted by O. The X-axis designates the nominal downwind direc-

tion, the XY-plane represents the mean sea level, and the Z-axis points upward opposite to gravity along the centerline of the unbending tower

when the platform is undisplaced. In this study, the National Renewable Energy Laboratory (NREL) 5-MW baseline wind turbine22,23 is used for

the analysis and control design. The physical parameters of the NREL 5MW baseline wind turbine and the ITI barge platform are listed in

Table 1.24
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2.2 | Dynamic modeling of aTMD-based floating wind turbine

Note that the fore–aft direction has the largest loading from winds and waves. It is obvious that the highest fatigue damage on the tower is from

this direction. Three most-relevant DOFs originated from the tower first bend mode, the platform pitch motion, and theTMD motion. For model-

ing purposes, the tower is regarded as an inverted pendulum with the structural damping and stiffness, which are modeled as a rotary damper and

rotary spring at the base of the rigid body. The effect imposed on the barge platform from the mooring lines and the hydrodynamics is considered

as a linear spring and a linear damper. Therefore, the kinetic and potential energies of the TMD-based floating offshore wind turbine can be

expressed as

Top =
1
2
Itp _θ

2
t +

1
2
Ibp _θ

2
p +

1
2
ma _x

2
a , ð1Þ

Vop =
1
2
ktpðθt−θpÞ2 + 1

2
ðChs +CmlÞθ2p +mtgLtcosθt−mpgLpcosθp

+
1
2
kaðhcsinθt−xaÞ2−magxasinθp,

ð2Þ

F IGURE 1 Schematic of a floating offshore
wind turbine with a tuned mass damper (TMD)
configuration in the platform

TABLE 1 Parameters of the National Renewable Energy Laboratory 5-WM
wind baseline turbine and the ITI barge platform

Description Value

Rating power 5MW

Rotor orientation Upwind

Baseline control Variable speed, collective pitch

Rotor diameter 126m

Hub height 90m

Cut-in, rated, cut-out wind speed 3m/s, 11.4 m/s, 25 m/s

Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm

Platform size (L×W×H) 40×40×10m

Rotor mass 110 000 kg

Nacelle Mass 240 000 kg

Tower Mass 347 460 kg

Platform Mass 5 452 000 kg

Anchor Depth 150m
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where Top is the total kinetic energy, Vop is the total potential energy, θt is the bend angle of the pendulum tower from the Z-axis, θp is the pitch

angle of the platform, xa is the longitudinal displacement of the TMD, Itp represents the inertia moment of the tower & RNA, Ibp is the platform

pitch inertia, ma is the mass of the TMD, ktp is the equivalent pitch restoring coefficient of the tower and RNA, Chs is the hydrostatic pitch restor-

ing coefficient, Cml denotes the linearized pitch restoring coefficient from mooring lines, mt is the total mass of the tower and RNA, g is the gravi-

tational acceleration, Lt is the distance from the mass center of the tower and RNA to the reference point O, mp is the mass of the platform, Lp is

the distance from the mass center of the platform to the reference point O, ka denotes the stiffness of the TMD, and hc is the distance from the

mass center of the TMD to the reference point O. The nonconservative forces acting on the tower first bend mode, the platform pitch motion,

and theTMD displacement can be described by

fLp = −Arad
€θp−ðBrad +BvisÞ _θp + dtpð _θt− _θpÞ+Mw , ð3Þ

fLt = −dtpð _θt− _θpÞ+ FaLhh−cahcðhc _θt− _xaÞ−hcFactive, ð4Þ

fLa = caðhc _θt− _xaÞ+ Factive, ð5Þ

where Arad is the added pitch inertia associated with hydrodynamic radiation, Brad is the pitch damping coefficient with respect to hydrodynamic

radiation, Bvis is the linearized pitch damping coefficient with regard to hydrodynamic viscous drag, dtp represents the equivalent pitch damping

coefficient of the tower & RNA, Mw denotes the total wave-excitation pitch moment from diffraction applied at the reference point O, Fa is the

aerodynamic rotor thrust acting on the hub, and Lhh is the height of the hub, ca is the damping coefficient of the TMD, and Factive is the force

delivered by the active control system. According to the Lagrange's equation approach, we have

d
dt

∂Lop
∂ _θp

 !
−
∂Lop
∂θp

= fLp , ð6Þ

d
dt

∂Lop
∂ _θt

� �
−
∂Lop
∂θt

= fLt , ð7Þ

d
dt

∂Lop
∂ _xa

� �
−
∂Lop
∂xa

= fLa , ð8Þ

where Lop=Top−Vop. By virtue of (1)–(8), the overall vibration dynamic model of theTMD-based floating offshore wind turbine can be expressed as

ðArad + IbpÞ€θp =−ðChs +Cml + ktpÞθp−ðBrad +Bvis + dtpÞ _θp + dtp _θt
+ ktpθt +magxacosθp−Lpgmpsinθp +Mw ,

ð9Þ

Itp€θt = dtp _θp−ðdtp + cah2c Þ _θt + cahc _xa + ktpθp−ktpθt

−kah
2
c cosθtsinθt + kahcxacosθt + Ltgmtsinθt

−Factivehc + FaLhh,

ð10Þ

ma€xa = −ca _xa + cahc _θt−kaxa +magsinθp + kahcsinθt + Factive: ð11Þ

For control purposes, we define state variables as x1 = θp, x2 = _θp, x3=θt, x4 = _θt, x5 = xa, x6 = _xa, and rewrite the whole system (9)–(11) as

_x1 = x2,

_x2 = −ap1x1−ap2x2 + ap3x3 + ap4x4 + ap5x5 cos x1−ap6 sin x1 + dw ,
ð12Þ

_x3 = x4,

_x4 = at1x1 + at2x2−at3x3−at4x4−at5 cos x3 sin x3 + at6x6 + at7 sin x3
+ at8x5 cos x3−bt1u+ dz,

ð13Þ

_x5 = x6,

_x6 = am1 sin x1 + am2 sin x3−am3x5 + am4x4−am5x6 + bm1u,
ð14Þ
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where

ap1 =
Chs +Cml + ktp

Arad + Ibp
, ap2 =

Brad +Bvis + dtp
Arad + Ibp

, ap3 =
ktp

Arad + Ibp
, ap4 =

dtp
Arad + Ibp

,

ap5 =
mag

Arad + Ibp
, ap6 =

Lpgmp

Arad + Ibp
, at1 = at3 =

ktp
Itp

, at2 =
dtp
Itp

, at4 =
dtp + cah

2
c

Itp
,

at5 =
kah

2
c

Itp
, at6 =

cahc
Itp

, at7 =
Ltgmt

Itp
, at8 =

kahc
Itp

, bt1 =
hc
Itp

, am1 = g, am2 =
kahc
ma

,

am3 =
ka
ma

, am4 =
cahc
ma

, am5 =
ca
ma

, bm1 =
1
ma

, u= Factive, dw =
Mw

Arad + Ibp
, dz =

LhhFa
Itp

:

Note that x5 and x6 are the displacement and velocity of theTMD. TheTMD is placed on the platform; its displacement and velocity are necessary

to be restricted in scope due to the limited space of the platform (as shown in Table 1). Note that dw and dz are the external excitations from the

effects of wave and wind. Assume that dw and dz are the bounded disturbances, which are required to satisfy the conditions |dw| ≤Dw and |dz| ≤Dz,

where Dw and Dz are positive constants. u is the control input. The control objective is to design a single controller u to guarantee the convergence

of x1, x2, x3, and x4 for the underactuated floating offshore wind turbine in the presence of both mismatched and matched disturbances.

Lemma 1. 25: The first-order sliding mode differentiator is given by

_ζ0 = η0 = −ϵ0jζ0−hðtÞj12signðζ0−hðtÞÞ+ ζ1,
_ζ1 = −ϵ1signðζ1−η0Þ,

ð15Þ

where ζ0, ζ1, and η0 are the states of the system (15), ϵ0 and ϵ1 are the design parameters of such a sliding mode differentiator, and h(t) is a known

function. Then, η0 can approach the differential term _hðtÞ with arbitrary accuracy if the initial deviations ζ0−h(t0) and η0− _hðt0Þ are bounded.

Lemma 2. 26: Consider the continuous and differentiable bounded function ϖ(t), 8t 2 [t0, t1], if ϖ(t) satisfies |ϖ(t)| ≤D, then _ϖðtÞ is bounded,

where D is a positive constant.

3 | MAIN RESULTS

From (12)–(14), it is clear to see that the floating offshore wind turbine with theTMD configuration is a complex underactuated nonlinear coupled

system with both matched and mismatched disturbances. The conventional sliding mode control cannot be directly applied in such a system due

to the existence of underactuated strong coupled features and mismatched disturbances. In this section, we will present both the controller

design and the stability analysis.

3.1 | Disturbance observer-based hierarchical sliding mode control design

Note that the nondiminishing disturbances cause big difficulty in the design of the sliding mode control system, especially for the presence of mis-

matched disturbances. To deal with both matched and mismatched disturbances, two prescribed performance observers are separately developed

to estimate their values for disturbance rejections. According to the assumptions |dw| ≤Dw and dz ≤Dz, it is obtained from Lemma 2 that both _dw

and _dz are bounded. It is reasonable to assume that _dw ≤Dw and _dz ≤Dz, where Dw >0 and Dz >0. Define

ϑp = ½−ap1, ap3, ap4, ap5,−ap6�T ,
fp = ½x1, x3, x4, x5 cos x1, sin x1�T ,
φp = ½φp1, φp3, φp4, φp5, φp6�T :

Then, it is indicated from (12) that

_x2 = −ap2x2 +ϑ
T
p fp + dw: ð16Þ
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Using (16), we construct the disturbance observer d̂w to estimate the mismatched diturbance dw in the following form:

d̂w = εp + βpx2 +φ
T
pϑp, ð17Þ

_εp = −βpεp + βpap2x2−β2px2, ð18Þ

_φp = −βpφp−βp fp, ð19Þ

where βp > 0.

Lemma 3. By applying the disturbance observer (17)–(19), the estimation error ~dw = dw− d̂w satisfies

lim
t!∞

~dw =Δ1, ð20Þ

where Δ1 can converge to an arbitrarily small constant.

Proof. Choose the following Lyapunov-like function candidate

Vw =
1
2
~d
2

w: ð21Þ

The time derivative of Vw can be calculated as

_Vw = ~dwð _dw− _̂
dwÞ≤ − ~dw

_̂
dw +Dwj~dwj: ð22Þ

Substituting (16)–(19) into (22), we have

_Vw ≤ − ~dw
_̂dw +Dwj~dwj

= −βp
~dwðdw−εp−βpx2−φT

pϑpÞ+Dwj~dwj
= −βp~dwðdw− d̂wÞ+Dwj~dwj
= −βp

~d
2
w +Dwj~dwj:

ð23Þ

Applying Young's inequality,27 based on (23) we have

_Vw ≤ −βp~d
2

w +Dwj~dj

= −
βp
2
~d
2
w + −

βp
2
~d
2
w +Dwj~dwj

� �

≤ −
βp
2
~d
2

w +
D

2
w

2βp
:

ð24Þ

From (24), we have

~d
2
w ≤ ½dwð0Þ− d̂wð0Þ�2e−βpt +

D
2
w

β2p
: ð25Þ

According to (25), we derive

lim
t!∞

j~dwj≤ Dw

βp
: ð26Þ

Therefore, the estimation error ~dw can converge to any arbitrarily small constant by appropriately selecting one adjustable parameter. In other

words, we can choose a large βp to ensure the excellent estimation performance.
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Similarly, a disturbance observer with prescribed performance is designed to estimate the matched disturbance dz for disturbance rejections.

Define

ϑz = ½at1, at2,−at3,−at5, at6, at7, at8�T ,
fz = ½x1, x2, x3, cos x3 sin x3, x6, sin x3, x5 cos x3�T ,
φz = ½φz1, φz2, φz3, φz5, φz6, φz7, φz8�T :

Then, we rewrite (13) as

_x4 = −at4x4 +ϑ
T
z fz−bt1u+ dz: ð27Þ

In this case, the disturbance observer can be given by

d̂z = εz + βzx4 +φ
T
z ϑz, ð28Þ

_εz = −βzεz + βzat4x4 + βzbt1u−β2z x4, ð29Þ

_φz = −βzφz−βz fz, ð30Þ

where βz > 0.

Lemma 4. The disturbance observer (28)–(30) is designed to guarantee that the estimation error ~dz = dz− d̂z satisfies

lim
t!∞

~dz =Δ2, ð31Þ

where Δ2 can converge to an arbitrarily small constant.

Proof. Consider the following Lyapunov-like function candidate

Vz =
1
2
~d
2
z : ð32Þ

With the similar derivation process as the proof of Lemma 3, the time derivative of Vz can be computed from (27)–(30), which can be

expressed as

_Vw ≤ −
βz
2
~d
2

z +
D
2
z

2βz
: ð33Þ

By virtue of (33), we have

~d
2

z ≤ ½dzð0Þ− d̂zð0Þ�2e−βz t +
D
2
z

β2z
, ð34Þ

which implies

lim
t!∞

j~dzj≤ Dz

βz
: ð35Þ

Therefore, we can select a large βz such that the estimation error ~dz converges to any arbitrarily small constant.

As a matter of fact, if both the mismatched and matched disturbances like most reported literatures28,29 satisfy the conditions lim
t!∞

_dw =0 and

lim
t!∞

_dz =0, it is indicated from (26) and (35) that the disturbance observers d̂w and d̂z can track the disturbances dw and dz of the considered system

asymptotically, respectively. It means lim
t!∞

~dw =0 and lim
t!∞

~dz = 0.
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According to the property of the considered system (12) and (13), we split the overall system into two subsystems, where one is (x1, x2, x3,

x4)-subsystem given by (12)–(13) and the other is (x3, x4)-subsystem described by (13). It is important for us to construct proper sliding variables

to regulate the states of two subsystems for vibration suppression. We define the errors

e1 = x1, ð36Þ

e2 = x2, ð37Þ

e3 = −ap1x1−ap2x2 + ap3x3 + ap4x4 + ap5x5 cos x1−ap6 sin x1 + d̂w , ð38Þ

e4 = x3, , ð39Þ

e5 = x4: ð40Þ

The sliding variable of the (x1, x2, x3, x4)-subsystem is selected as

s1 = c1e1 + c2e2 + e3, ð41Þ

where c1 and c2 are positive constants. The time derivative of s1 is given by

_s1 = c1 _e1 + c2 _e2 + _e3
= c1 _x1 + c2 _x2−ap1x2−ap2 _x2 + ap3x4 + ap4 _x4 + ap5ðx6 cos x1−x5 x2 sin x1Þ
−ap6x2 cos x1 +

_̂
dw:

ð42Þ

Substituting (12) and (13) into (42) yields

_s1 = ðc1−ap1Þx2 + ðc2−ap2Þð−ap1x1−ap2x2 + ap3x3 + ap4x4 + ap5x5 cos x1−ap6 sin x1

+ dwÞ+ ap3x4 + ap5x6 cos x1−ap5x5x2 sin x1−ap6x2 cos x1 +
_̂
dw + ap4ðat1x1 + at2x2

−at3x3−at4x4−at5 cos x3 sin x3 + at6x6 + at7 sin x3 + at8x5 cos x3−bt1u+ dzÞ:
ð43Þ

Then, we have

_s1 = ℓ1x1 + ℓ2x2 + ℓ3x3 + ℓ4x4 + ℓ5x5 + ℓ6x6−ðc2−ap2Þap6 sin x1 + ðc2−ap2Þdw +
_̂
dw

−ap4at5 cos x3 sin x3 + ap4at7 sin x3−ap4bt1u+ ap4dz,
ð44Þ

where

ℓ1 = ap4at1−ðc2−ap2Þap1,
ℓ2 = c1−ap1−ðc2−ap2Þap2−ap5x5 sin x1−ap6 cos x1 + ap4at2,

ℓ3 = ðc2−ap2Þap3−ap4at3,

ℓ4 = ðc2−ap2Þap4 + ap3−ap4at4,

ℓ5 = ðc2−ap2Þap5 cos x1 + ap4at8 cos x3
ℓ6 = ap5 cos x1 + ap4at6:

Let _s=0. The equivalent controller of the (x1, x2, x3, x4)-subsystem can be written as

u1eq =
1

ap4bt1
½ℓ1x1 + ℓ2x2 + ℓ3x3 + ℓ4x4 + ℓ5x5 + ℓ6x6−ðc2−ap2Þap6 sin x1 + ðc2−ap2Þdw

+ _̂dw−ap4at5 cos x3 sin x3 + ap4at7 sin x3 + ap4dz�,
ð45Þ

Note that the controller (45) cannot be used in practice. It is necessary for us to replace the disturbances dw and dz with their estimations d̂w

and d̂z, respectively. Thus, we obtain
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u1eq =
1

ap4bt1
½ℓ1x1 + ℓ2x2 + ℓ3x3 + ℓ4x4 + ℓ5x5 + ℓ6x6−ðc2−ap2Þap6sinx1 + ðc2−ap2Þd̂w

+
_̂
dw−ap4at5cosx3sinx3 + ap4at7sinx3 + ap4d̂z�:

ð46Þ

To avoid the tedious analytic computation of the disturbance observer _̂dw , the first-order sliding mode differentiator is introduced to estimate
_̂
dw . Applying Lemma 1, the first-order sliding mode differentiator can be given by

_ζ0 = η0 = −ϵ0jζ0− d̂wj
1
2signðζ0− d̂wÞ+ ζ1,

_ζ1 = −ϵ1signðζ1−η0Þ,
ð47Þ

where ζ0, ζ1, and η0 are the states of the system (47) and ϵ0 and ϵ1 are positive constants. By virtue of Lemma 1 and (47), we obtain

_̂
dw = η0 +Δ3, ð48Þ

where Δ3 is an estimation error of the first-order sliding mode differentiator. It implies from Lemma 1 that jΔ3j≤Δ3 with Δ3 > 0. Replacing
_̂dw with

η0, the equivalent controller of the (x1, x2, x3, x4)-subsystem can be expressed as

u1eq =
1

ap4bt1
½ℓ1x1 + ℓ2x2 + ℓ3x3 + ℓ4x4 + ℓ5x5 + ℓ6x6−ðc2−ap2Þap6 sin x1 + ðc2−ap2Þd̂w

+ η0−ap4at5 cos x3 sin x3 + ap4at7 sin x3 + ap4d̂z�:
ð49Þ

The sliding variable of the (x3, x4)-subsystem can be chosen as

s2 = c3e4 + e5, ð50Þ

where c3 is positive constant. The time derivative of s2 can be computed as

_s2 = c3 _e4 + _e5
= c3x4 + _x4:

ð51Þ

Substituting (13) into the above expression, one gets

_s2 = c3x4 + at1x1 + at2x2−at3x3−at4x4−at5 cos x3 sin x3 + at6x6 + at7 sin x3
+ at8x5 cos x3−bt1u+ dz:

ð52Þ

Let _s2 = 0. The equivalent controller of the (x3, x4)-subsystem is described as

u2eq =
1
bt1

ðc3x4 + at1x1 + at2x2−at3x3−at4x4−at5 cos x3 sin x3 + at6x6 + at7 sin x3

+ at8x5 cos x3 + d̂zÞ:
ð53Þ

Note that only one control input can be used to control four state variables. This means that we need to use one control input to ensure two

sliding surfaces can be reached (i.e., s1 = 0 and s2 = 0). The conventional sliding mode control method cannot be used for this underactuded

nonlinear coupled system. To achieve this goal, a second-layer sliding variable is developed as

s= α1s1 + α2s2, ð54Þ

where α1 and α2 are the sliding mode parameters, which satisfy α1 > 0 and α2 > 0. According to the variable structure theory, the switching control

part is required to be designed to ensure the states can reach and thereafter stay on the sliding surface. Thus, the complete controller must

include some portion of the switching control part, which can be expressed as

u= u1eq + u2eq + usw , ð55Þ
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where usw is the switching term of the sliding mode controller, which can be given by

usw = −
α2

α1ap4 + α2
u1eq−

α1ap4
α1ap4 + α2

u2eq +
ϱsignðsÞ

ðα1ap4 + α2Þbt1 +
λs

ðα1ap4 + α2Þbt1 , ð56Þ

where ϱ and λ are positive design parameters, which will be given later. Substituting (56) into (55) gives

u=
α1ap4

α1ap4 + α2
u1eq +

α2
α1ap4 + α2

u2eq +
ϱsignðsÞ

ðα1ap4 + α2Þbt1 +
λs

ðα1ap4 + α2Þbt1 : ð57Þ

To reduce the chattering, in practice, some smoothing functions such as s
jsj+ σ and tanhðsÞ are introduced to replace the discontinuous sign

function in the sliding mode controller (57), where σ is a small positive constant.

3.2 | Stability analysis

The following theorem presents the design procedure and analysis of the proposed disturbance observer-based hierarchical sliding mode control-

ler for the TMD-based floating offshore wind turbine (9)–(11) in the consideration of both mismatched and matched disturbances with the

nonlinear disturbance observers and the sliding mode control technique.

Theorem 1. Consider the TMD-based floating offshore wind turbine system (9)–(11) with both mismatched and matched disturbances. Under

the nonlinear disturbance observers given by (17)–(19) and (28)–(30), if the sliding variables are defined in (41), (50), and (54), then the dis-

turbance observer-based hierarchical sliding mode controller (57) guarantees the convergence of x1, x2, x3, and x4, where both x1 and x2

converge to an arbitrarily small value.

Proof. Consider the Lyapunov function candidate

V =
1
2
s2: ð58Þ

With (54), the time derivative of V can be computed as

_V = sðα1 _s1 + α2 _s2Þ: ð59Þ

Substituting (44) and (52) into (59), we have

_V = α1s _s1 + α2s _s2

= α1s½ℓ1x1 + ℓ2x2 + ℓ3x3 + ℓ4x4 + ℓ5x5 + ℓ6x6−ðc2−ap2Þap6 sin x1 + ðc2−ap2Þdw + _̂dw
−ap4at5 cos x3 sin x3 + ap4at7 sin x3−ap4bt1u+ ap4dz�+ α2sðc3x4 + at1x1 + at2x2−at3x3
−at4x4−at5 cos x3 sin x3 + at6x6 + at7 sin x3 + at8x5 cos x3−bt1u+ dzÞ:

ð60Þ

Rearranging (60), we derive

_V = α1s½ℓ1x1 + ℓ2x2 + ℓ3x3 + ℓ4x4 + ℓ5x5 + ℓ6x6−ðc2−ap2Þap6 sin x1 + ðc2−ap2Þdw + _̂dw
−ap4at5 cos x3 sin x3 + ap4at7 sin x3 + ap4dz�+ α2sðc3x4 + at1x1 + at2x2−at3x3−at4x4
−at5 cos x3 sin x3 + at6x6 + at7 sin x3 + at8x5 cos x3 + dzÞ−sðα1ap4bt1 + α2bt1Þu:

ð61Þ

Inserting (48), (49), (53), and (57) into (61), we have

_V = α1sðc2−ap2Þðdw− d̂wÞ+ α1sð _̂dw−η0Þ+ ðα1sap4 + α2sÞðdz− d̂zÞ−ϱjsj−λs2

= α1sðc2−ap2Þ~dw + α1sΔ3 + ðα1ap4 + α2Þs~dz−ϱjsj−λs2

= s½α1ðc2−ap2Þ~dw + α1Δ3 + ðα1ap4 + α2Þ~dz�−ϱjsj−λs2:

ð62Þ
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Let ψ = α1ðc2−ap2Þ~dw + α1Δ3 + ðα1ap4 + α2Þ~dz . Next, it is essential for us to prove the boundedness of ψ . Note that jΔ3j≤Δ3 from (48). From

Lemmas 3 and 4, it implies from the limit definition that both ~dw and ~dz are bounded. Hence, it is reasonable to assume |ψ | ≤D.

_V ≤ −ðϱ−DÞjsj−λs2

= −ρjsj−λs2,
ð63Þ

where ρ = ϱ − D > 0. Integrating both sides of (63), we have

ðt
0

_Vdτ ≤
ðt
0

−ρjsj−λs2dτ, ð64Þ

which indicates

VðtÞ =
1
2
s2

≤Vð0Þ− Ð∞
0

ðρjsj+ λs2Þdτ

≤Vð0Þ<∞:

ð65Þ

From (65), we have s 2 L∞. By virtue of (63), we obtain

_V = s _s

≤ −ρjsj−λs2 <∞:
ð66Þ

It is concluded from (66) that _s2 L∞ . According to Barbalat's lemma, we have lim
t!∞

s =0. From (50), we get s2 = c3x3 + x4. Note that x3 and x4

represent the angular displacement and velocity of the tower, respectively. Thus, we have s22 L∞. The time derivative of s2 is _s2 = c3x4 + _x4 ,

where _x4 is the angular acceleration of the tower. Hence, this indicates that _s2 2 L∞ . By virtue of (54), we obtain s12 L∞ and _s1 2 L∞ due to s2 L∞

and _s2 L∞: It is noted that the stability of the system does not depend on the parameters α1 and α2. It is reasonable to define two different sliding

variables as follows:

sg = α1gs1 + α2s2, sh = α1hs1 + α2s2, ð67Þ

where α1g and α1h are positive constants with α1g 6¼ α1h. Without loss of generality, we assume that
Ð∞
0 s

2
h dτ<

Ð∞
0 s

2
g dτ<∞. By using (65), we have

0<
ð∞
0

ðs2g −s2hÞdτ =
ð∞
0

ðα21g−α21hÞs21 + 2ðα1g−α1hÞα2s1s2dτ<∞: ð68Þ

Then, it implies from (67) that

ð∞
0

ðs2g −s2hÞdτ =
ð∞
0

−ðα1g−α1hÞ2s21dτ +
ð∞
0

2ðα1g−α1hÞs1sgdτ > 0: ð69Þ

Applying (65), we have

ð∞
0

ðρjsgj+ λs2g Þdτ ≤ Vð0Þ<∞: ð70Þ

It follows from (70) that ρ
Ð∞
0 jsgjdτ<∞, which indicates sg2 L1. From (69), we obtain
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Ð∞
0

ðα1g−α1hÞ2s21dτ

<
Ð∞
0

2ðα1g−α1hÞs1sgdτ

≤2jα1g−α1hj � jjs1jj∞ � jjsgjj1 <∞:

ð71Þ

Thus,

ð∞
0

s21dτ<∞: ð72Þ

Similarly, we have

ð∞
0

s22dτ<∞: ð73Þ

From the above analysis, we have s1 2 L2 \ L∞, _s1 2 L∞, s22 L2\ L∞, and _s2 2 L∞. It follows from Barbalat's Lemma that

lim
t!∞

s1 = 0, lim
t!∞

s2 = 0: ð74Þ

Note that s2 = c3e4 + e5 = c3x3 + x4. As a result of x4 = _x3 in (13), it implies that we have lim
t!∞

x3 = 0. According to (12), (38), and (41), the original

system can be expressed as

_E1 =AE1 + E2, ð75Þ

where

E1 = ½e1,e2�T , A=
0 1

−c1 −c2

� �
, E2 = ½0,s1 + ~dw�T :

Let Q = QT > 0, then it implies from A is Hurwitz that the Lyapunov equation ATP + PA = −Q has a unique solution P = PT > 0. Choose the

Lyapunov function candidate

V1 = E
T
1PE1: ð76Þ

The time derivative of V1 can be given by

_V1 = _E
T
1PE1 + E

T
1P

_E1

= ET1ðATP+PAÞE1 + 2ET1PE2
= −ET1QE1 + 2E

T
1PE2

≤ −λminðQÞjjE1jj2 + 2λmaxðPÞjjE2jj jjE1jj,

ð77Þ

where λmin and λmax represent minimum and maximum eigenvalues, respectively. By virtue of (77), we have

_V1 ≤ −
1
2
λminðQÞjjE1jj2− 1

2
λminðQÞ jjE1jj− 2λmaxðPÞ

λminðQÞ jjE2jj
� �2

+
2λ2maxðPÞ
λminðQÞ jjE2jj

2: ð78Þ

It follows from V1 = E
T
1PE1 ≤ λmaxðPÞjjE1jj2 that

_V1 ≤ −κV1 + δ, ð79Þ
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where

κ =
λminðQÞ
2λmaxðPÞ ,

δ =
2λ2maxðPÞ
λminðQÞ jjE2jj

2:

Then, we have

V1 ≤V1ð0Þe−κt +
δð1−e−κtÞ

κ
: ð80Þ

Note that δ can converge to an arbitrarily small value from (20) and (74). It implies from (80) that e1 and e2 can converge to an arbitrarily small

value by appropriately choosing the design parameters. In other words, it indicates that both x1 and x2 will converge to an arbitrarily small value.

This proof is completed.

4 | SIMULATION STUDY

In this section, the proposed dynamic model is verified by using NREL 5-MW wind turbine model, and the developed disturbance observer-based

hierarchical sliding mode controller is tested on both the design model and the NREL 5-MW wind turbine model within FAST code.

4.1 | NREL computer-aided engineering tools

The NREL FAST code is used to simulate the loads and the dynamic responses of the NREL wind turbine models. The NREL FAST code introduces

the aerodynamics, structural (elastic) dynamics, hydrodynamics, control, and servo dynamics, which is primarily composed of InflowWind,

HydroDyn, AeroDyn, ElastoDyn, ServoDyn, MoorDyn, and SubDyn modules. InflowWind is used to compute wind velocities with the help of the

time series of wind speed vectors. ElastoDyn represents a structural-dynamic model that outputs displacements, velocities, accelerations, and

reaction loads to AeroDyn and ServoDyn. ServoDyn involves control and actuator models. For structural control purposes, two independent

single degree-of-freedom TMD systems are incorporated into the FAST code (i.e., FASTv8).23 In this paper, the performance of the designed

controller will be evaluated by using FAST (version 8).

4.2 | Model validation

To verify the proposed dynamic model for the floating offshore wind turbine, we let the design model (9)–(11) and the NREL 5-MW wind turbine

model in FAST oscillate freely from an initial platform pitch angle of 5π/180 rad, and other initial conditions are all set to be 0. For the design

F IGURE 2 The response comparison between
the design model given by (9)–(11) and the
National Renewable Energy Laboratory 5-MW
wind turbine model within the FAST code
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model, bothMw and Fa are set to be 0. Similarly, we disable the effects of both wind and wave for the NREL 5-MW wind turbine model. As shown

in Figure 2, the simulation results of the platform pitch angles, the tower bending angles, and theTMD displacements in both models demonstrate

a good match between them.

4.3 | Simulation results with the design model

In this section, the disturbance observer-based hierarchical sliding mode control architecture is implemented on the design model (12)–(14) in the

presence of both the matched and mismatched disturbances. In the simulations, the initial conditions are given by [x1(0), x2(0), x3(0), x4(0), x5(0),

x6(0)] = [0.5π/180, 0, 0.8π/180, 0, 0, 0]. The mismatched disturbance is described by dw =0:0015sin ð0:8πtÞ, and the matched disturbance is given

by dz =0:0012sin ð0:6πtÞ . The design parameters of the controller is chosen as c1 = 36, c2 = 12, c3 = 40, α1 = 1, α2 = 80000, λ= 2, βp=1800,

βz=1200, ϵ0 = 0.04, ϵ1 = 0.03. The mismatched disturbance estimation results and estimated errors are plotted in Figure 3, and the matched distur-

bance estimation results and estimated errors are depicted in Figure 4. It implies from both Figures 3 and 4 that the excellent estimation accuracy

F IGURE 3 The estimation of the mismatched
disturbances and the estimated errors

F IGURE 4 The estimation of the matched
disturbances and the estimated errors

14 ZHANG ET AL.



F IGURE 5 Platform pitch angle and velocity
of the wind turbine

F IGURE 6 Tower bend angle and velocity of
the wind turbine

F IGURE 7 The estimations of
_̂
dw with and

without the measurement noise under the sliding
mode differentiator
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is achieved with the proposed disturbance observer structures. The pitch angle displacement and velocity of the platform are provided in

Figure 5, and the bend angle displacement and velocity of the tower are plotted in Figure 6. Figures 5 and 6 demonstrates that good control per-

formances are achieved with the designed controller.

To evaluate the performance of the first-order sliding mode differentiator (47), the simulations are conducted with and without measurement

noises, where the function randn is introduced to produce the measurement noises. The estimation results are plotted in Figure 7, and the

estimated errors are shown in Figure 8. It indicates from Figure 8 that the estimated accuracy is degraded due to the adverse effect of the

measurement noises.

In addition, multifrequency disturbances are also introduced in the simulations to further illustrate the advantage of the designed disturbance

observers, where the mismatched disturbance and the matched disturbance are respectively described by

dw = 0:0002sin ð0:25πtÞ+0:0004sin ð0:32πtÞ+0:0006sin ð0:15πtÞ,
dz = 0:0003sin ð0:16πtÞ+0:0002sin ð0:10πtÞ+0:0004sin ð0:24πtÞ:

F IGURE 8 The estimated errors of
_̂
dw with

and without the measurement noise under the
sliding mode differentiator

F IGURE 9 The estimation of the
multifrequency mismatched disturbances and the
estimated errors
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The initial conditions are given by εp(0) = 2.4 × 10−5 and εz(0) = −2.8 × 10−5. The multifrequency disturbance estimation results are depicted in

Figures 9 and 10. It implies from the disturbance estimation errors in Figures 9 and 10 that the developed disturbance observers can still maintain

excellent estimation accuracy even if both the multifrequency disturbances and the initial errors are considered.

4.4 | Simulation results with the NREL 5-MW wind turbine model

To verify the active control performance, the proposed disturbance observer-based hierarchical sliding mode control algorithm is tested by

the NREL 5-MW wind turbine model based on the FAST code, where the optimal parameters of the TMD are given by ma = 400 000 kg,

ka = 103 019N/m, and ca = 60 393N/(m/s).12 The wind conditions in all the cases are generated based on the IEC Kaimal spectral model

with normal turbulence model in TurbSim. The wave conditions in all the cases are generated by the HydroDyn module based on the

JONSWAP spectrum. The peak-spectral period of the incident waves in all the cases is set to 10 s with the significant wave height being

5.5 m. In the first case, the mean hub-height longitudinal wind speed is 18m/s (above-rated), and the turbulence intensity is Category A. The

F IGURE 10 The estimation of the
multifrequency matched disturbances and the
estimated errors

F IGURE 11 Time responses of the platform
pitch angle with the mean hub-height longitudinal
wind speed of 18m/s. TMD, tuned mass damper
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time responses of the wind turbine with the proposed controller are shown in Figures 11 and 12 (for comparison purposes, both no TMD

and passive control cases are considered), which shows that the proposed active controller has achieved significant improvement on the

vibration suppression of the wind turbine compared with the passive control even if there exist model uncertainties and various disturbances

such as winds and waves. To evaluate the energy consumption, it can be computed that the consumed average active TMD power accounts

for 10% of the rated wind turbine power. A sensible design is that passive control works most of the time while the active control (basically

adding an active force on top of the passive control) is activated only if the vibration is over certain limit. This can largely help reduce power

consumption. To further validate the advantage of the proposed controller, the mean hub-height longitudinal wind speed of 24m/s

(above-rated) is chosen to conduct the simulation, and the turbulence intensity is Category B. As shown in Figures 13 and 14, the time

responses of both the platform pitch angle and the tower bend angle are provided to demonstrate the vibration suppression performance. In

this case, the average active energy consumption accounts for 12% of the rated wind turbine power. The simulation results without TMD

and with passive control are plotted in Figures 13 and 14, which indicate that the great effectiveness and strong robustness of the proposed

controller are achieved.

F IGURE 12 Time responses of the tower
bend angle with the mean hub-height longitudinal
wind speed of 18m/s. TMD, tuned mass damper

F IGURE 13 Time responses of the platform
pitch angle with the mean hub-height longitudinal
wind speed of 24m/s
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5 | CONCLUSION

In this paper, a nonlinear dynamic model for aTMD-based NREL 5-MW floating offshore wind turbine was derived. A disturbance observer-based

hierarchical sliding mode control algorithm was proposed to stabilize such an underactuated nonlinear coupled system with both matched and

mismatched disturbances. Two prescribed performance disturbance observers were independently constructed to estimate the matched and

mismatched disturbances, and each estimation error can be adjusted by only one design parameter. With the disturbance observers, a hierarchical

sliding mode controller was designed to suppress the vibration of the floating offshore wind turbine. Some sufficient conditions were derived to

ensure the stability of the closed-loop system. The simulation results verified the accuracy of the developed design model and demonstrated the

strong robustness and great effectiveness of the proposed control algorithm.
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