8,841 research outputs found

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Applications of Adaptive Filtering

    Get PDF

    Performance evaluation of interference cancellation techniques using adaptive antennas

    Get PDF
    Two array-based algorithms, which jointly exploit or compensate for the spatial and temporal characteristics of the propagation channel, are proposed for intercell interference suppression in UMTS scenarios. The first one is the array extension of the Viterbi algorithm and is referred to as Vector Viterbi algorithm (VVA). The second algorithm, known as filtered training sequence multisensor receiver (FTS-MR), belongs to a class of algorithms in which a narrowband beamformer is placed prior to the MLSE detector. In order to assess performance of the proposed schemes, a set of link-level computer simulations adopting FRAMES' proposal for UMTS air-interface as well as realistic channel models for third generation communication systems is provided, Simulation results reveal gains, in terms of C/I, of 7-10 dB for the VVA with respect to the conventional VA and even higher for the FTS-MR.Peer ReviewedPostprint (published version

    Use-cases on evolution

    Get PDF
    This report presents a set of use cases for evolution and reactivity for data in the Web and Semantic Web. This set is organized around three different case study scenarios, each of them is related to one of the three different areas of application within Rewerse. Namely, the scenarios are: “The Rewerse Information System and Portal”, closely related to the work of A3 – Personalised Information Systems; “Organizing Travels”, that may be related to the work of A1 – Events, Time, and Locations; “Updates and evolution in bioinformatics data sources” related to the work of A2 – Towards a Bioinformatics Web
    • …
    corecore