2,142 research outputs found

    Modified filtered-x hierarchical lms algorithm with sequential partial updates for active noise control

    Get PDF
    In the field of active noise control (ANC), a popular method is the modified filtered-x LMS algorithm. However, it has two drawbacks: Its computational complexity higher than that of the conventional FxLMS, and its convergence rate that could still be improved. Therefore, we propose an adaptive strategy which aims at speeding up the convergence rate of an ANC system dealing with periodic disturbances. This algorithm consists in combining the organization of the filter weights in a hierarchy of subfilters of shorter length and their sequential partial updates (PU). Our contribution is threefold: (1) we provide the theoretical basis of the existence of a frequency-depend-ent parameter, called gain in step-size. (2) The theoretical upper bound of the step-size is compared with the limit obtained from simulations. (3) Additional experiments show that this strategy results in a fast algorithm with a computational complexity close to that of the conventional FxLMS

    Active disturbance cancellation in nonlinear dynamical systems using neural networks

    Get PDF
    A proposal for the use of a time delay CMAC neural network for disturbance cancellation in nonlinear dynamical systems is presented. Appropriate modifications to the CMAC training algorithm are derived which allow convergent adaptation for a variety of secondary signal paths. Analytical bounds on the maximum learning gain are presented which guarantee convergence of the algorithm and provide insight into the necessary reduction in learning gain as a function of the system parameters. Effectiveness of the algorithm is evaluated through mathematical analysis, simulation studies, and experimental application of the technique on an acoustic duct laboratory model

    Active control of fluid-borne noise

    Get PDF

    Development of novel hybrid method and geometrical configuration-based active noise control system for circular cylinder and slat noise prediction and reduction applications

    Get PDF
    This thesis presents a study about the application of a geometrical configuration-based feedforward adaptive active noise control (ANC) system in the low-frequency range of flow-induced (aeroacoustics) noise cancellation and the investigation on the effects of different geometrical configurations on the cancellation performance in the presence of the residual noise signal magnitude (in decibel) or the average amount of cancellation (in decibel). The first motivation is that according to the literature review, the passive flow control is limited in the practical consideration and the active flow control performs better than the passive flow control, especially for the low-frequency range. Consider the principle of the active flow control is the same as the ANC technique, therefore, it is feasible to apply the ANC technique in cancelling the low-frequency range of the far-field (aeroacoustics) noise, which provides instructions on the future practical experiments. The second motivation is that we want to explore the effects of different geometrical configurations on the cancellation performance and it provides instructions on the implementation in future practical experiments. To predict the far-field (aeroacoustics) noise, the computational fluid dynamics (CFD) and the Ffowcs Williams and Hawkings (FW-H) equations are used separately for unsteady flow calculation and far-field (aeroacoustics) noise prediction. The proposed ANC system is used for the low-frequency range of the far-field (aeroacoustics) noise cancellation. Soft computing techniques and evolutionary-computing-based techniques are employed as the parameter adjustment mechanism to deal with nonlinearities existed in microphones and loudspeakers. The case study about the landing gear noise cancellation in the two-dimensional computational domain is completed. Simulation results validate the accuracy of the obtained acoustic spectrum with reasonable error because of the mesh resolution and computer capacity. It is observed that the two-dimensional approach can only predict discrete values of sound pressure level (SPL) associated with the fundamental frequency (Strouhal number) and its harmonics. Cancellation results demonstrate the cancellation capability of the proposed ANC system for the low-frequency range of far-field (aeroacoustics) noise and reflect that within the reasonable physical distance range, the cancellation performance will be better when the detector is placed closer to the secondary source in comparison with the primary source. This conclusion is the main innovative contribution of this thesis and it provides useful instructions on future practical experiments, but detailed physical distance values must be dependent on individual cases

    Active Control of Pressure Pulsation in a Switched Inertance Hydraulic System

    Get PDF
    The nature of digital hydraulic systems may cause pressure pulsation problems. For example, switched inertance hydraulic systems (SIHS), which are applied to adjust or control flow and pressure by a means that does not rely on dissipation of power, have noise problems due to the pulsed nature of the flow. An effective method to reduce the pulsation is important to improve system performance and increase efficiency. Although passive systems to reduce the noise have been shown to be effective in many situations, their attenuation frequency range is limited and they may be bulky. Furthermore, attenuation devices based on expansion chambers, accumulators or hoses are likely to be unsuitable for SIHS as they add compliance to the system and would impair the dynamic response. This thesis is concerned with issues relating to the development of an active noise canceller for attenuating the pressure pulsation which is caused primarily by pulsed flow from high-speed valves in SIHS. Active control methods are widely and successfully applied in the area of structureborne noise (SBN) and air-borne noise (ABN) cancellation. The idea is using the intentional superposition of waves to create a destructive interference pattern such that a reduction of the unwanted noise occurs. However, applications for fluid-borne noise (FBN) attenuation based on the ‘Active noise control (ANC) principle’ are rare due to the restriction of the hardware and experimental apparatus in previous researches. In this thesis, an adaptive controller has been developed for active control of pressure pulsation in hydraulic system. The principle of the adaptive LMS filter and details of the controller design are described and the implementation was carried out through simulation. The designed controller was applied on a vibration test rig initially prior to the hydraulic testing in order to investigate its advantages and limitations in practice. Extensive testing on a switched inertance hydraulic rig proved that the controller, which used a piezoelectric valve with fast response and good bandwidth, is effective and that it has several advantages over previous methods, being effective for low frequency cancellation, with a quick response, and is robust and versatile. A novel method for the accurate measurement of unsteady flowrate in a pipe was proposed. This was applied and validated on a pipe, and was shown to give good results. This method solves the difficulty for measuring the unsteady flowrate currently by using easy-measured signals, such as pressures. It can be used widely for predicting the unsteady flowrate along the pipe.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Control of noise - systems for compact HVAC units

    Get PDF

    Application of adaptive equalisation to microwave digital radio

    Get PDF
    • …
    corecore