19,712 research outputs found

    Active Learning for Classifying Data Streams with Unknown Number of Classes.

    Get PDF
    The classification of data streams is an interesting but also a challenging problem. A data stream may grow infinitely making it impractical for storage prior to processing and classification. Due to its dynamic nature, the underlying distribution of the data stream may change over time resulting in the so-called concept drift or the possible emergence and fading of classes, known as concept evolution. In addition, acquiring labels of data samples in a stream is admittedly expensive if not infeasible at all. In this paper, we propose a novel stream-based active learning algorithm (SAL) which is capable of coping with both concept drift and concept evolution by adapting the classification model to the dynamic changes in the stream. SAL is the first AL algorithm in the literature to explicitly take account of these concepts. Moreover, using SAL, only labels of samples that are expected to reduce the expected future error are queried. This process is done while tackling the problem of sampling bias so that samples that induce the change (i.e., drifting samples or samples coming from new classes) are queried. To efficiently implement SAL, the paper proposes the application of non parametric Bayesian models allowing to cope with the lack of prior knowledge about the data stream. In particular, Dirichlet mixture models and the stick breaking process are adopted and adapted to meet the requirements of online learning. The empirical results obtained on real-world benchmarks demonstrate the superiority of SAL in terms of classification performance over the state-of-the-art methods using average and average class accuracy

    Unsupervised routine discovery in egocentric photo-streams

    Full text link
    The routine of a person is defined by the occurrence of activities throughout different days, and can directly affect the person's health. In this work, we address the recognition of routine related days. To do so, we rely on egocentric images, which are recorded by a wearable camera and allow to monitor the life of the user from a first-person view perspective. We propose an unsupervised model that identifies routine related days, following an outlier detection approach. We test the proposed framework over a total of 72 days in the form of photo-streams covering around 2 weeks of the life of 5 different camera wearers. Our model achieves an average of 76% Accuracy and 68% Weighted F-Score for all the users. Thus, we show that our framework is able to recognise routine related days and opens the door to the understanding of the behaviour of people

    CORe50: a New Dataset and Benchmark for Continuous Object Recognition

    Full text link
    Continuous/Lifelong learning of high-dimensional data streams is a challenging research problem. In fact, fully retraining models each time new data become available is infeasible, due to computational and storage issues, while na\"ive incremental strategies have been shown to suffer from catastrophic forgetting. In the context of real-world object recognition applications (e.g., robotic vision), where continuous learning is crucial, very few datasets and benchmarks are available to evaluate and compare emerging techniques. In this work we propose a new dataset and benchmark CORe50, specifically designed for continuous object recognition, and introduce baseline approaches for different continuous learning scenarios
    • …
    corecore