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Abstract

The classification of data streams is an interesting but also a challenging prob-

lem. A data stream may grow infinitely making it impractical for storage prior

to processing and classification. Due to its dynamic nature, the underlying dis-

tribution of the data stream may change over time resulting in the so-called

concept drift or the possible emergence and fading of classes, known as concept

evolution. In addition, acquiring labels of data samples in a stream is admittedly

expensive if not infeasible at all. In this paper, we propose a novel stream-based

active learning algorithm (SAL) which is capable of coping with both concept

drift and concept evolution by adapting the classification model to the dynamic

changes in the stream. SAL is the first AL algorithm in the literature to ex-

plicitly take account of these concepts. Moreover, using SAL, only labels of

samples that are expected to reduce the expected future error are queried. This

process is done while tackling the problem of sampling bias so that samples that

induce the change (i.e., drifting samples or samples coming from new classes)

are queried. To efficiently implement SAL, the paper proposes the applica-

tion of non-parametric Bayesian models allowing to cope with the lack of prior

knowledge about the data stream. In particular, Dirichlet mixture models and

the stick breaking process are adopted and adapted to meet the requirements
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of online learning. The empirical results obtained on real-world benchmarks

demonstrate the superiority of SAL in terms of classification performance over

the state-of-the-art methods using average and average class accuracy.

Keywords: Data Streams, Active Learning, Concept Drift, Concept

Evolution, Bayesian Online Learning.

1. Introduction

Classification has been the focus of a large body of research due to its key rele-

vance to numerous real-world applications. A classifier is trained by learning a

mapping function between input and pre-defined classes. In an offline setting,

the training of a classifier assumes that the training data is available prior to5

the training phase. Once the training is exhausted, the classifier is deployed

and, cannot be trained any further even if performs poorly. This can happen

if the training data used does not exhibit the true characteristics of the un-

derlying distribution. Moreover, for many applications, data arrives over time

as a stream and therefore the offline assumptions cannot hold. Data streams10

classification presents many challenges because of the continuous and evolving

nature of streams, in addition to the problem of labelling such large data. Data

streams are assumed to be unbounded in size, which makes it infeasible to store

all the data to train the proposed model. Hence, online learning algorithms is

more appropriate [1, 2, 3, 4, 5].15

Data streams may evolve over time so that the mapping between the input space

and the output space (classes) changes, leading to concept drift [6, 7, 8]. Thus,

to deal with data streams classification, the classifier must self-adapt online over

time [9, 1, 10, 11].

The evolving nature of data streams poses another challenge which is rarely20

addressed in the literature and known as concept evolution. This occurs when

new classes emerge or existing classes vanish. The classifier must be able to

identify the new classes and incorporate them into the decision model [12, 13,

14, 15]. Emergence of new classes has been studied in the context of novelty
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detection, where the task is to identify the non-conforming instances. This is25

seen as one-class classification, in which a very large number of data samples

describing normal condition is available while the data samples describing the

abnormalities are rare [16, 17]. In contrast, Concept evolution involves the

emergence of different normal and abnormal classes.

Given the large volume and high velocity of data streams, it is impractical to30

acquire the label of each instance. Active learning (AL) is a promising way

to efficiently building up training sets with minimal supervision. AL queries

particular instances to train the classifier using as few labelled data instances

as possible. AL for data streams is more challenging because both concept drift

and concept evolution can occur at any time and anywhere in the feature space.35

Another challenge associated with AL, in general, is the sampling bias [18] where

the sampled training set does not reflect on the underlying data distribution.

Basically, AL seeks to query samples that, if labelled, significantly improve the

learning. AL becomes increasingly confident about its sampling assessment.

That confidence could lead, however, to negligence of valuable samples that40

reflect on the true data distribution, creating a bias towards a certain set of

instances, which could become harmful.

AL stands as a very interesting opportunity to handle concept drift and concept

evolution by querying the data samples representative of this change (i.e., its

characteristics). In contrast to standard concept drift and concept evolution45

handling techniques, where only automatic detection mechanisms are applied,

in AL an access to the oracle that provides the ground truth (true labels of data)

is granted. In this paper, we propose an AL methodology, called Stream Active

Learning (SAL) that not only works under all the aforementioned challenges but

also handles concept drift and concept evolution by querying the data samples50

representative of them (i.e., their characteristics). In contrast to most of the

existing AL approaches which adopt heuristic AL criteria, SAL aims at directly

reducing the expected future error [19] in a unified and systematic way. Similar

AL approaches are proposed in [20, 19, 21], however, they work in offline setting

and do not take into account the challenges associated with data streams. SAL55
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queries the samples which incur high reduction in the expected future error,

while using both labelled and unlabelled data.

In our previous work [22], we proposed a bi-criteria stream-based AL approach

(BAL) that seeks to select data samples which are expected to reduce the future

expected error. Because closed form calculation of the expected future error60

is intractable, BAL uses approximations by combining online classification and

online clustering. The classification model estimates the conditional distribution

of the labels given the data, while the clustering model estimates the marginal

distribution of the data. BAL only considers binary classification and does not

deal with concept evolution.65

SAL adopts the same concept as in [22], but with some differences. While BAL

has used existing classification and clustering algorithms, SAL uses a unified

non-parametric Baysian model that allows multi-class classification without the

need to fix the number of classes in advance as in BAL. Furthermore, this

model uses both labelled and unlabelled data for estimating the marginal and70

conditional distributions. BAL does not take advantage of the unlabelled data

when estimating the conditional distribution.

The proposed model is a Dirichlet process mixture model [23] with a stick break-

ing prior [24] attached to each mixture component. This prior is applied over

the classes of the data in the mixture components. Dirichlet process mixture75

model is based on the most common non-parametric prior, the Dirichlet Process.

This prior allows the number of the components forming the mixture to grow,

if necessary, as more data is seen. Such a characteristic is useful in the case of

data streams as not much prior knowledge is available. The proposed model

can approximate both the conditional and marginal distributions. In contrast80

to BAL, SAL allows multi-class classification with dynamic number of classes

and hence it is capable of dealing with concept evolution. The application of

stick-breaking prior over the classes allows the potential growth of the number of

classes. We employ a particle filter method [25, 26] to perform online inference.

Note that to ensure enough flexibility of SAL, we explicitly distinguish between85

the learning engine and the selection engine. The learning engine uses a super-
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vised online learning algorithm to train a classifier on the existing labelled data,

while the selection engine uses an AL algorithm to select influential samples

from the data stream for labelling. Here, the selection engine consists of SAL

which includes the AL approach and the unified estimation model.90

As in [22, 27], SAL handles sampling bias problem caused by AL using impor-

tance weighted empirical risk [28]. Such problem is more severe in online setting

as the underlying classifier used by AL has to adapt. On the other hand, the

adaptation can depend on the queried data. Hence, if drift occurs for samples

which the model is confident about their labels, they will not be queried and95

the model will not be adapted. SAL handles concept drift by querying the data

samples representative of this drift (i.e., its characteristics). Similarly, it han-

dles concept evolution by querying the data samples coming from a new class.

To this end, we use the importance weighting principle to weight labelled data

samples that drive a change in order to increase the importance of their regions100

in the feature space. Thus, by mitigating the sampling bias problem, concept

drift and concept evolution will be efficiently handled. The importance weighting

principle has also been theoretically proven to correct sampling bias [28]. Simi-

lar technique was used in [22, 27], but they are limited to binary classification.

To the best of our knowledge, SAL is the first AL algorithm in the literature105

that is change aware and considers concept drift and concept evolution together.

To sum up, our contribution to the state-of-the-art, SAL is the first approach

satisfying the following needs together:

1. directly reducing the expected future error online while taking the data

streams challenges (infinite length, concept drift and concept evolution)110

into account.

2. mitigating the sampling bias problem which implicitly allows SAL to be

aware of concept drift and concept evolution.

The rest of this paper is organized as follows. Section 2 presents the related

work. Section 4.1 describes SAL including the formulation of the objective115

function that it is intended to be optimised as well as the proposed AL approach.
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Section 4.2 provides the details of the proposed model to estimate the objective

function described in Sect. 4.2. Section 5 discusses the experimental results for

a number of well-known real-world datasets. Finally, Sec. 6 concludes the paper

and presents the future work.120

2. Related work

Online AL from data streams in presence of drift has been investigated using

batch-based learning, where the stream is split into batches [31, 32]. Batch-

based methods often assume that the data is stationary within each batch, so

that pool-based AL strategies (PSS) can be applied. According to PSS, the125

selection of instances is made by exhaustively searching in a large collection of

unlabelled data gathered in a pool. PSS evaluates and ranks the entire collection

before selecting the best query. Authors in [33] use a sliding window approach

which discards the oldest instances instead of explicitly detecting the changes.

The method proposed in [34] works completely online by evaluating data in-130

stances on-the-fly allowing faster adaptation to change. However, instead of

explicitly handling the problem of sampling bias, it combines naive random-

ization with an uncertainty criterion [35]. By doing so, the budget is wasted

on some random queries. On the contrary, in [22, 27], Sampling bias is stud-

ied using importance weighting principle which has been theoretically proven135

to be effective [28]. However, the methods in [27, 22] are restricted to binary

classification and the data distribution effect is ignored in [27].

Online AL approaches that address the data stream challenges, such as infinite

length, concept drift and concept evolution are the least investigated among

all AL approaches. Authors in [36] handle the problem of concept evolution140

by defining a nonparametric Bayesian prior on the classes using Pitman-Yor

Processes [37]. However, they use Query-by-committee (QBC) [38] which aims

at reducing the version-space instead of directly optimizing the error rate. QBC

often fails by spending effort eliminating areas of parameter space that have no

effect on the error. It does not consider the data distribution effect and ignores145

6



the problem of sampling bias.

Authors in [39] apply a hybrid batch-incremental learning approach, where the

data is divided into fixed-size chunks and an offline classifier is trained from

each chunk. An ensemble of M classifiers is maintained to classify the un-

labelled data. To detect the novel classes, a clustering technique is used in150

order to isolate odd data instances. If the isolated samples are enough and

sufficiently close to each other (coherent), they get queried. Otherwise, the

algorithm considers them as noise. The algorithm also uses the uncertainty

sampling within the current chunk to query the label of instances for which it is

most uncertain. Similar principal was adopted in [40, 41], where authors adopt155

batch-based approach to learn from data streams while considering concept drift

and concept evolution. SAL adopts a different approach based on probabilistic

non-parametric Bayesian modelling and addresses the sampling bias problem.

SAL is also a stream-based where no need to store the data instances in differ-

ent batches. The application of non-parametric Bayesian models allows to cope160

with the lack of prior knowledge about the data stream.

3. Preliminary

In this section, we present some preliminary materials that will be needed for

developing SAL. Firstly, we introduce the offline AL approach from which our

work is inspired. This approach adopts the same view for AL as ours. That is,165

it aims at labelling data samples that minimizing the expected future error. we

also define some notations and propose a technique to handle the sampling bias

problem.

Secondly, we give a brief background on Dirichlet process (DP) which is the core

of our model. DP is used as a non-parametric prior in Dirichlet process mixture170

model (DPMM) which, in contrast to parametric model, allows the number of

components to grow, if necessary, to accommodate the data.
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3.1. Offline Active Learning Approach

Many active learning approaches seek to minimize an approximation of the

expected error (Eq. (1)) [20, 19, 21]. SAL follows the same methodology but

with more challenging setting where the data comes as a stream,

R =

∫
x

L
(
p̂(ŷ|x), p(y|x)

)
p(x)dx (1)

where (x, y) is a pair of random variables, such that x represents the data in-

stance (observation) and y is its class label. ŷ represents the predicted label of175

x, p(y|x)) and p(x) are the true conditional and marginal distributions respec-

tively. p̂(ŷ|x) is the learner’s conditional distribution used to classify the data.

The learner receives observations drawn from p(x) with latent labels y unless

they are queried by the AL algorithm. We denote the labelled observations

up to time t as XLt and their labels as YLt . The unlabelled observations up to180

time t are denoted as XUt
. We also use Xt to denote {XUt

, XLt
}, DLt

to denote

{XLt
, YLt
} and Dt to denote {Xt, YLt

}. We separate the learner algorithm or

the hypothesis class from the AL algorithm so that we can simply plug in any

learner to test the AL algorithm. Let p(ŷ|x,φ) refer to the learner’s conditional

distribution p̂(ŷ|x), where φ is the parameter vector that governs the learner’s185

distribution.

In the following, we discuss the offline AL approaches used to minimize an

approximation of Eq. (1) since a closed form solution is not available. Then,

we present our online AL approach. Authors in [20] approximate the expected

error using the empirical risk over the unlabelled data:

R̂XU
(φDL

) =
1

|XU |
∑
x∈XU

L
(
p(ŷ|x,φDL

), p(y|x)
)
. (2)

We refer to the classifier parameters after being trained on DL as φDL
. Different

types of loss functions can be adopted according to the classification problem.

Active learning seeks to optimize Eq.(2) by asking for the labels of the samples

that, once incorporated in the training set, the empirical risk drops the most.
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Ideally, the selection should depend on how many queries can be made. However,

the solution of such optimization problem is NP hard, since the number of trials

is combinatorial. Hence, most commonly used AL strategies greedily select one

example at a time [20, 27, 21].

x̃ = arg min
x∈XU

R̂XU−(x)
(φDL+(x,y)

). (3)

The empirical risk over the labelled and unlabelled samples is considered in [21]:

R̂D(φDL
) =

1

|D|
∑
x∈D

L
(
p(ŷ|x,φDL

), p(y|x)
)
. (4)

The risk incurred when training the learner is the one related to the labelled

data:

R̂DL
(φDL

) =
1

|DL|
∑
x∈DL

L
(
p(ŷ|x,φDL

), p(y|x)
)
. (5)

In active learning, a subset of unlabelled samples is selected for labelling. Let

q be a random variable distributed according to a Bernoulli distribution with

parameter a, q ∼ Ber(a). That is, an instance x is queried if q = 1. The

data instances used to train the model are sampled from a distribution induced

by the AL queries instead of the data underlying distribution. That is, the

distribution of the queried data p(x|q = 1) is different from the original one

p(x). Hence, Equation (5) is a biased estimator of (1) and the learned classifier

may be less accurate than when learned without using AL (Sampling bias).

Similar to [22, 27], we use the importance weighting technique [28] in order to

come up with an unbiased estimator. Thus, Eq. (5) can be written as follows:

R̂′DL
(φDL

) =
1

|DL|
∑
x∈DL

1

p(q = 1|x)
L
(
p(ŷ|x,φDL

), p(y|x)
)
. (6)

Hence, the unbiased estimation above can be shown as [42]:

Ex∼p(x|q=1)

[
R̂′DL

(φDL
)
]

= Ex∼p(x)
[
R̂DL

(φDL
)
]
. (7)
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3.2. Dirichlet process

DP is one of the most popular prior used in the Bayesian non-parametric model.

Its first use by the machine learning community dates back to [45, 46]. In gen-

eral, a stochastic process is a probability distribution over a space of paths190

which describe the evolution of some random values over time. DP is a fam-

ily of stochastic processes whose paths are probability distributions. It can be

seen as an infinite-dimensional generalization of Dirichlet distribution, where it

is a prior over the space of countably infinite distributions. In the literature,

DP has been constructed in different ways, the most well-known constructions195

are: infinite mixture model [46], distribution over distributions [47], Polya-urn

scheme [48] and stick-breaking [44]. For more details, the interested reader is

referred to [49].

Figure 1 shows two graphical models, DP mixture model and the finite mixture200

model with number of clusters L which becomes an infinite mixture model

when L goes to ∞. Infinite mixture model is simply a generalization of the

finite mixture model, where DP prior with infinite parameters is used instead of

Dirichlet distribution prior with fixed number of parameters. The finite mixture

model can be represented by the following equations:205

π|α0 ∼ Dirichlet(α0/L, ..., α0/L)

zi|π ∼ Discrete(π1, ..., πL)

θk|G0 ∼ G0

xi|zi,θ ∼ F (θzi) (8)

F (θzi) denotes the distribution of the observation xi given θzi, where θzi is

the parameter vector associated with component zi. Here zi indicates which

latent cluster is associated with observation xi. Indicator zi is drawn from a

discrete distribution governed by parameter π drawn from a dirichlet distribu-
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tion parametrized by α0. We can simply say that xi is distributed according

to a mixture of components drawn from prior distribution G0 and picked with

probability given by the vector of mixing proportions π. The model represented

by Eq.(8) above is a finite mixture model, where L is the fixed number of pa-

rameters (components). The infinite mixture model can be derived by letting

L→∞, then π can be represented as an infinite mixing proportion distributed

according to stick-breaking process GEM(α0) [44]. Thus, Eq.(8) can be equiv-

alently expressed according to the graphical representation as:

G|α0, G0 ∼ DP (α0, G0)

θi|G ∼ G

xi|θi ∼ F (θi) (9)

where G =
∑∞
k=1 πkδθi is drawn from DP prior, δθi is a Dirac delta function

centered at θi. Technically, DP is a distribution over distribution [47], where

DP (G0, α0), is parametrized by the base distribution G0, and the concentration

parameter α0. Since DP is distribution over distributions, a draw G from it is

a distribution. Thus, we can sample θi from G. Back to Eq.(8), by integrat-

ing over the mixing proportion π, we can write the prior for zi as conditional

probability of the following form [50]:

p(zi = c|z1, ..., zi−1) =
n−ic + α0/L

i− 1 + α0
(10)

where n−ic is the number of zi for j < i that are equal to c. By letting L goes

to infinity we get the following equations:

P (zi = c|z1, ..., zi−1)→ n−ic
i− 1 + α0

P (zi 6= zj for all j < i|z1, ..., zi−1)→ α0

i− 1 + α0
(11)

For an observation xi with zi 6= zj for all j < i, a new component gets created

with indicator zi = cnew. For more details about the process of obtaining the
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(a) DP mixture
model

(b) Finite mixture model

Figure. 1 Graphical model

prior distribution, reader is referred to [50].

4. Stream-based Active Learning Approach

In this section, we develop the active learning approach SAL along with the210

estimator model that will be used to estimate the marginal and conditional

distributions needed for SAL to work online.

4.1. Active Learning Approach

In Sec. 3.1, we assumed that the underlining conditional distribution p(y|x) is

known, but in reality it is not. Thus, we need to estimate it. Furthermore, in

online setting, comparing the effect of labelling certain data instances against

that of other data instances (as done in Eq.(3)) is not possible. Thus, storing

pools of data seen so far might be a choice. However, it will violate the online

learning assumption. We, instead, estimate the probability of unlabelled and

labelled data at time t. Consider p(y|x, Dt), p(x|XUt
) and p(x|XLt

) as esti-

mators for the true conditional distribution, the unlabelled data distribution

and the labelled data distribution at time t, where Dt represents the set of the

previously seen data instances with the labels of the queried ones. Thus, Eq. (4)

equipped with the importance weighting on the labelled data can be written as
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the sum of the following:

R̂Dt
(φt) =

∫
x

L
(
p(ŷ|x,φt), p(y|x, Dt)

)
p(x|XUt

)dx (12)

R̂′Dt
(φt) =

∫
x

L
(
p(ŷ|x,φt), p(y|x, Dt)

)
p(q = 1|x)

p(x|XLt
)dx (13)

where φt denotes the classifier parameters after being trained on DLt
. Based

on Eq. (12) and Eq. (13), we can develop an online querying strategy similar215

to the one proposed in Eq. (3). The data instance can be assessed on-the-fly

by comparing the error reduction incurred by labelling it against the highest

error reduction. To compute the highest error reduction, we can sample a pool

of unlabelled data at each time step from p(x|XUt). Then, we search for the

sample that incurs the highest error reduction. A more direct approach would220

be to use a non-convex optimizer to find the highest error reduction to be

taken as an error reference. Both approaches are nonetheless computationally

expensive as they involve estimation of integrals. Thus, we need to compute

the expectation of the error reduction since the labels are unknown. This is

however still computationally very demanding.225

We can conclude from Eq. (12), (13) that by labelling the samples that have

the largest contribution to the current error [43], there is a good chance for a

large decrease of the expected future error. This contribution can be expressed

through the following equations:

R̂Dt−1
(φt−1,xt) = L

(
p(ŷt|xt,φt−1), p(yt|xt, Dt−1)

)
p(xt|XUt−1

) (14)

R̂′Dt−1
(φt−1,xt) = L

(
p(ŷt|xt,φt−1), p(yt|xt, Dt−1)

)
p̃(xt|XLt−1) (15)

As stated in the introduction, we seek to mitigate harmful bias that is caused by

dynamic changes in the data (i.e., concept drift and concept evolution). Thus, if

xt is queried and wrongly classified, SAL integrates the weight effect of p(qt =

1|xt) into the current labelled data marginal distribution
(
p(xt|XLt−1)

)
. This is

done by repetitive update
(

1
p(qt=1|xt)

)
iterations (Sec. 4.2). Hence, p̃(xt|XLt−1

)230
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represents the labelled data marginal distribution with the weight effect of the

previously queried samples integrated.

Equation (14) encourages querying samples that have strong representativeness

among the unlabelled data and that are expected to be wrongly classified; while

Eq.(15) encourages querying those which have strong representativeness among235

the labelled data, but, still wrongly classified. Such samples are rare. However,

Eq. (15) allows the learner to be completely independent from the sampling

approach, as it integrates the sampling bias independently from the learner

algorithm. Thus, as the learner proceeds, Eq. (15) also helps to switch the

focus from only representative samples to samples which are underestimated.240

The querying probability is computed by comparing the samples with the one

that has the largest contribution to the error. A solution can be devised by

trying to optimize Eq.(14) and Eq.(15). However, to avoid time-consuming

computation and keep the AL algorithm independent of the learner, we maintain

the largest contribution to the error among the already seen data in variable At.

Hence, this latter becomes a comparison reference for computing the probability

of querying. A forgetting factor β empirically set to 0.9 is used to consider the

dynamic nature of the data:

At = max
(
(R̂Dt−1

(φt−1,xt) + R̂′Dt−1
(φt−1,xt)), βAt−1

)
(16)

p(qt = 1|xt, Dt−1,φt−1) =
1

At

(
R̂Dt−1

(φt−1,xt) + R̂′Dt−1
(φt−1,xt)

)
(17)

The number of classes evolves over time such that new classes may emerge

and old ones may vanish. Thus, p(yt|xt, Dt−1) (in Eq. (14) and Eq. (15)) must

account for all classes in the data stream. Potentially, the length of the stream is

infinite, which means that the probability of receiving infinite different classes

is not zero. Hence, the support of the distribution over the classes must be

infinite. To allow that, stick-braking distribution is imposed as a prior over the

classes. Intuitively, this prior allows to foresee a probability on the creation
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of new classes. To remove obsolete classes, we propose an online estimator of

p(yt|xt, Dt−1) equipped with a forgetting factor to handle the evolving nature

of data. The same model estimates p(xt|XLt−1
) and p(xt|XUt−1

) online. More

details about the estimators are found in the next section. Concept evolution is

implicitly handled through the loss function in Eq. (14) and Eq. (15). While the

support of the classifier’s distribution p(ŷt|xt,φt−1) is set over the already seen

classes, the estimator of p(yt|xt, Dt−1)) poses a probability on the creation of a

new class. Thus, the losses in Eq. (14) and Eq. (15) are high if the probability

of a new class is high. Hence, the probability of querying (Eq. (17)) becomes

high. We use the 0-1 loss funtion:

l(ŷt, yt) =

0 if ŷt = yt

1 otherwise

(18)

hence, the loss in Eq. (14) and Eq. (15) can be rewritten as follows:

L
(
p(ŷt|xt,φt−1), p(yt|xt, Dt−1)

)
= Eŷt∼p(ŷt|xt,φt−1)

[
Eyt∼p(yt|xt,Dt−1)[l(ŷt, yt)]

]
.

(19)

Since the support of the classifier’s distribution is over the already seen classes,

ŷt ∈ Ct−1 with Ct−1 is the set of classes discovered up until time t − 1. On

the other hand, the estimator support includes the novel class, yt ∈ Ct−1 ∪

{|Ct−1| + 1}. Thus, the loss is high if the probability of a new class
(
p(yt =

|Ct−1|+ 1|xt, Dt−1)
)

is high and the probability of querying becomes high. The245

steps of SAL are portrayed in Fig.2.

Under the constraint of limited labelling budget, a rational querying strategy

needs to be applied. To implement this constraint, in [34], two counters were

maintained: the number of labelled instances ft = |XLt | and the budget spent

so far: bt = ft
|data seen so far| =

|XLt |
|Xt| .250

As data arrives, we do not query unless the budget is less than a constant B

and querying is granted by the sampling model. However, over infinite time
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Figure. 2 General scheme of SAL

horizon this approach will not be effective. The contribution of every query to

the budget will diminish over time and a single labelling action will become less

and less sensitive. Authors in [34] propose to compute the budget over fixed

memory windows of size wnd. To avoid storing the query decisions for each

window, an estimation of ft and bt were proposed:

b̂t =
f̂t
wnd

(20)

where f̂t is an estimate of how many instances were queried within the last wnd

of incoming data.

f̂t = (1− 1/wnd)f̂t−1 + labellingt−1 (21)

where labellingt−1 = 1 if instance xt−1 is labelled, and 0 otherwise. Using the
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Figure. 3 Infinite mixture model

forgetting factor (1− (1/wnd)), the authors showed that b̂t is unbiased estimate

of bt.

In this paper, SAL adopts this notion of budget; so that it can be assessed

against the active learning algorithms proposed in [34]. Note that in our exper-255

iments, we set wnd = 100 as in [34].

4.2. Estimator Model

In this section, we develop the model that will be used to estimate the distribu-

tions in Eq. (14) and Eq. (15) needed for SAL to work online. We describe the

proposed estimator model and develop an online particle inference algorithm260

for it. While DPMM estimates the marginal distributions, the conditional dis-

tribution is estimated by an upgrade of DPMM. It accommodates labelled data

using a stick-breaking process [44] over the classes. These estimations are done

on-the-fly by performing online inference using the particle inference algorithm.

For the sake of simplification, we start with an unsupervised clustering model,265

then we add a new ingredient to accommodate labelled data to result in a semi-

supervised clustering algorithm.

4.2.1. Unsupervised clustering

Figure 3 shows the infinite mixture model where π is drawn from a stick-

breaking process GEM(α0) and G0 is a Normal-Inverse-Wishart distribution270

NIW (.|µ0,Σ0, k0, v0). Where µ0 is the prior of the clusters’ means, Σ0 con-
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trols the variance among their means, k0 scales the diffusion of the clusters

means and v0 is the degree of freedom of the Inverse-Wishart distribution.

Following [25], we introduce a state vector Ht that summarizes the data seen

up to time t. Hence, Ht = {zt,mt,nt, st} can represent all the statistics used275

by the model. Here zt assigns the component generating xt, mt is the number

of components, nt is a vector of components cardinalities and st is the sufficient

statistics for each mixture component i.e., means su and scatter matrices sc.

Given the concentration parameter α0 and the prior distribution parameters

{µ0,Σ0, k0, v0}, we aim at computing online the marginal distribution of the280

current data p(xt|Xt−1) without the need for saving all data Xt−1 ≡ x1:t−1:

p(xt|Xt−1) =
∑
z1:t

p(xt|z1:t, Xt−1)p(z1:t|Xt−1) (22)

The estimation of p(xt|XUt−1
) and p(xt|XLt−1

) in SAL can be derived from

Eq.(22) by simply replacing Xt−1 by XUt−1
or XLt−1

.

p(z1:t|Xt−1) = p(zt|z1:t−1)p(z1:t−1|Xt−1) (23)

The first term of Eq. (22) can be written as follows:

p(xt|z1:t, Xt−1) =

∫
θ

p(xt|θ, zt)p(θ|z1:t, Xt−1) (24)

If zt refers to a new component, p(θ|z1:t, Xt−1) becomes equivalent to the prior

distribution p(θ|G0). Otherwise, zt refers to an already existing component.

Then, p(θ|z1:t, Xt−1) becomes equivalent to p(θ|szt,t−1, nzt,t−1, z1:t−1), where

nzt,t−1 is the number of data samples which have been assigned to component

zt until time t − 1, szt,t−1 = {suzt,t−1, sczt,t−1} is the sufficient statistics i.e.,

mean and variance respectively.

suzt,t−1(z1:t−1) =

∑
zi=zt,i<t

xi

nzt,t−1

sczt,t−1(z1:t−1) =
∑

zi=zt,i<t

(xi − suzt,t−1)(xi − suzt,t−1)T (25)
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Equation (24) can be solved given the sufficient statistics, the past assignments

and the model hyper-parameters. More details can be found in Appendix A.

The first term of Eq. (23) can be computed in the same way as Eq.(11):

p(zt|z1:t−1) ∝

nzt,t−1 zt is an existing cluster

α0 zt is a new cluster

(26)

The second term of Eq. (23), p(z1:t−1|Xt−1), is the probability of the differ-

ent configurations. Such configurations determine the different statistics repre-285

sented by Ht−1. Thus, p(Ht−1|Xt−1) has the same probability as the posterior

p(z1:t−1|Xt−1). We track this posterior online by approximating it with a set

of (at maximum) N particles. Upon the arrival of a new data point, the par-

ticles are extended to include a new assignment zt assuming that the previous

assignments are known and fixed. Thus, the task is to update the posterior290

of the extended particles at time t, p(Ht|Xt), given that the posterior at t− 1,

p(Ht−1|Xt−1) is known. In order to prevent combinatorial explosion, we use the

re-sampling technique proposed in [26] which retains the maximum N particles.

We approximate the posterior at time t in two steps:

Updating:295

p(Ht|Xt) ∝
∫
Ht−1

p(Ht|Ht−1,xt)p(xt|Ht−1)p(Ht−1|Xt−1) (27)

Given theN particles along with their weights, p(Ht−1|Xt−1) =
∑N
i=1 w

(i)
t−1δ(Ht−1−

H
(i)
t−1), the update can be written as follow.

p(Ht|x1:t) ∝
N∑
i=1

p(Ht|H(i)
t−1,xt)p(xt|H

(i)
t−1)w

(i)
t−1 (28)

The solution of the second term of Eq. (28) can be computed in a similar way

to Eq. (24) and Eq. (26). Following the update step, the number of resulting

particles for each H
(i)
t−1 equals to the number of existing components m

(i)
t−1 +

1. The new assignment zt expresses the different configurations of the new
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particles. Therefore,

p(H
(i2)
t |H(i)

t−1,xt) = p(zt = j|H(i)
t−1,xt)

∝ p(xt|zt = j,H
(i)
t−1)p(zt = j|H(i)

t−1) (29)

We use Cantor pairing function to uniquely encode the jth assignment and the

ith particle to a single natural number:

i2 = Ω(i, j)

Ω(i, j) =
1

2
(i+ j)(i+ j + 1) + j (30)

By solving Eq. (29), we determine the weights of the new particle wi2t . Equation

(29) can be solved in a similar way to Eq. (24) and Eq. (26). The elements of

the new state vector H
(i2)
t are updated as follows:

H
(i2)
t =



z
(i2)
t = j j is an existing component

n
(i2)
j,t = λn

(i)
j,t−1 + 1

n
(i2)
k,t = λn

(i)
k,t−1 ∀k 6= j, k ≤ m(i)

t

su
(i2)
j,t =

λn
(i)
j,t−1

su
(i)
j,t−1

+xt

n
(i)
j,t

sc
(i2)
j,t = λsc

(i)
j,t−1 + n

(i)
j,t−1su

(i)
j,t−1su

(i)T
j,t−1

−n(i)j,tsu
(i)
j,tsu

(i)T
j,t + xtx

T
t

z
(i2)
t = m

(i)
t−1 + 1 j is a new component

m
(i2)
t = m

(i)
t−1 + 1

n
(i2)
j,t = 1

n
(i2)
k,t = λn

(i)
k,t−1 ∀k ≤ m(i)

t−1

su
(i2)
j,t = xt

sc
(i2)
j,t = 0

(31)
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Figure. 4 Proposed semi-supervised clustering model

where λ is a forgetting factor which allows the components to adapt with

changes. Having approximated all the terms of Eq.(28), we end up with M =∑N
i=1(m

(i)
t−1 + 1) new particles along with their weights w

(i2)
t . So, we move to

the next step which reduces the number of created particles to a fix number N .

Re-sampling:300

We follow the re-sampling technique proposed in [26] which discourages the less-

likely particles (configurations) and improves the particles that explain the data

better. It keeps the particles whose weights are greater than 1/c and re-samples

from the remaining particles. The variable c is the solution of the following

equation:
M∑
i2=1

min{cw(i2)
t , 1} = N (32)

The weights of re-sampled particles are set to 1/c and the weights of the particles

greater than 1/c are kept unchanged.

Next, we consider the labels by proposing stick-breaking prior over the classes.

4.2.2. Semi-supervised clustering

The stick-breaking component assignment is the same as the Gaussian com-305

ponent assignment. That is, every Gaussian component is associated with a

stick-breaking component where the variable zt controls the components assign-

ment (see Fig.4).

We propose to include the classes information in the state vector Ht so that it

becomes H ′t = {Ht,n
′
t}, where n′t is a matrix of the number of different classes
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assigned to each component. Hence H ′t comprises all the statistics used in the

model. Assume that at time t, we need to predict the distribution over yt given

all the data and their labels seen so far.

p(yt|xt, Dt−1) =
∑
zt

p(yt|zt, Dt−1)p(zt|Dt−1,xt). (33)

The first term of Eq. (33) can be computed in a similar way to Eq. (26), where

zt selects the stick-breaking component generating yt. Hence, the probability

of yt depends only on the data assigned to component zt. More details can be

found in Appendix B.

p(yt|zt, Dt−1) ∝

n
′
zt,yt,t yt is an existing class

α1 yt is a new class

(34)

where n′zt,yt,t refers to the number of the data samples which are assigned to

component zt and have label yt at time t. So, to compute (34), the distribution

of the labels to the data in each component must be memorized. The second

term of Eq.(33) can be written as follows:

p(zt|xt, Dt−1) =
∑
z1:t−1

p(zt|z1:t−1,xt, Dt−1)p(z1:t−1|xt, Dt−1) (35)

p(zt|z1:t−1,xt, Dt−1) ∝ p(xt|z1:t, Dt−1)p(zt|z1:t−1) (36)

p(z1:t−1|xt, Dt−1) ∝ p(xt|z1:t−1, Dt−1)p(z1:t−1|Dt−1) (37)

Equation (35) can be solved by following similar steps to (22) but with addi-

tional observation YLt−1 . Hence, p(xt|z1:t, Dt−1), p(xt|z1:t−1, Dt−1) is solved by310

following the same steps in Eq. (24) after replacing Ht−1 by H ′t−1. The sec-

ond term of Eq. (37), p(z1:t−1|Dt−1), has the same probability as the posterior

p(H1:t−1|Dt−1). Thus, Similar to Eq.(28), the solution of Eq. (33) depends only

on the elements of the state vector H ′t along with its posterior distribution. We

track this posterior online. Similar to Sec. 4.2.1, we approximate the posterior315
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at time t by a set of N weighted particles using two steps; updating and re-

sampling. The re-sampling step is the same as in Sec. 4.2.1. The updating step

follows the same way:

p(H ′t|Dt) ∝
N∑
i=1

p(H ′t|H
′(i)
t−1,xt, yt)p(xt, yt|H

′(i)
t−1)w

′(i)
t−1 (38)

p(H
′(i2)
t |H ′(i)t−1,xt, yt) = p(zt = j|H ′(i)t−1,xt, yt) ∝

p(xt, yt|zt = j,H
′(i)
t−1)p(zt = j|H ′(i)t−1) (39)

p(xt, yt|zt = j,H
′(i)
t−1) = p(xt|zt = j,H

′(i)
t−1)p(yt|zt = j,H

′(i)
t−1)) (40)

The second term of Eq.(39) is computed in Eq.(26). The first and second terms

of Eq. (40) can be solved in the same way as in Eq. (24) and Eq. (34) respectively.

The second term of Eq. (38) can be written as follows:

p(xt, yt|H ′(i)t−1) =
∑
zt

p(xt, yt|zt, H ′(i)t−1)p(zt|H ′(i)t−1) (41)

The elements of the new state vector are updated in the same way as in Eq.(31):

H
′(i2)
t =



H
(i2)
t j is an existing component

n
′(i2)
j,yt,t

= λ′n
′(i)
j,yt,t−1 + 1

n
′(i2)
k,t = λ′n

′(i)
k,t−1 ∀k 6= j, k ≤ m(i)

t

H
(i2)
t j is a new component

n
′(i2)
j,yt,t

= 1

n
′(i2)
k,t = λ′n′k,t−1 ∀k ≤ m(i)

t−1

(42)

The estimation of p(yt+1|xt+1, Dt)) in SAL is computed by Eq. (33). The esti-

mation of p(xt|XUt−1) and p(xt|XLt−1) are computed by Eq. (22). We maintain320
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three state vectors, one for the unlabelled data Hu
t−1, one for the labelled data

H l
t−1 and one for all the data samples and their labels seen up to time t − 1,

H ′t−1. Hence, three estimators represented by state vectors associated with

their weights: {(H ′t, w′t), (Hu
t , w

u
t ) and (H l

t , w
l
t)} and their hyper-parameters:

{(α0, α1,µ0,Σ0, k0, v0), (αu0 , α
u
1 ,µ

u
0 ,Σ

u
0 , k

u
0 , v

u
0 ) and (αl0, α

l
1,µ

l
0,Σ

l
0, k

l
0, v

l
0)} are325

maintained.

Having introduced the AL approach in Sec. 4.1 and developed the needed esti-

mator model in Sect 4.2, the full details of the algorithm are provided in Alg. (1).

5. Experiments330

In this section, we present the algorithms that SAL is compared against, then

we describe the datasets on which the experiments are carried out. SAL is

compared against two types of stream-based AL approaches. The first set of

approaches introduced in [34] takes into consideration the challenges of data

stream, namely the infinite length of the data and concept drift, but ignores335

concept evolution. These methods are:

- VarUn: Variable Uncertainty, stream-based AL.

- RanVarUn: Variable Randomized Uncertainty, stream-based AL.

We also consider a baseline random sampling: Rand. The aim of this comparison

is to show how SAL performs against these methods just cited (with restricted340

budget). Fortunately, these methods are integrated in the MOA data stream

software suite [51] which helps carry out the experiments without the need to

implement them.

The second set of stream-based AL approaches are developed to cope with

concept drift and concept evolution [36, 52]. However, they do not explicitly345

handle concept drift as well as the sampling bias problem. We consider the

following:
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Algorithm 1 Steps of SAL

1: Input: data stream, hyper-parameters of the estimators, forgetting factors
λ and λ′

(
Eq. (31) and Eq. (42) resp.

)
, the input of the classifier, forgetting

factor β (Eq. (16)), budget B, wnd (Eq. (20)), the maximum number of
particles N

2: initialize: the weight of the first particle of all the three estimators to 1,
the number of components for all the estimators’ state vector to 0, f̂t = 0
(Eq. (20)), A0 = 0 (Eq. (16)), t = 1

3: while (true) do
4: t← t+ 1,
5: Receive xt
6: if b̂t < B

(
Eq. (20)

)
then . enough budget

7: compute at = p(qt = 1|xt, Dt−1,φLt−1
) that refers to the probability

of querying xt
(
Eq. (17)

)
8: qt ∼ Bern(at)
9: if qt = 1 then . querying

10: yt ← query(xt)
11: Update the classifier (represented by its vector parameter φt−1)
12: Update the estimator of the labelled data distribution(

represented by its state vector’s particles along with their weights

(H
l(i)
t−1, w

l(i)
t−1)

) (
Eq. (28) and Eq. (31)

)
13: Update the estimator of the conditional distribution

(
represented

by its state vector’s particles along with their weights (H
′(i)
t−1, w

′(i)
t−1)

)(
Eq. (38) and Eq. (42)

)
14: else
15: Classify the instance xt using the classifier (base learner repre-

sented by its vector parameter φt−1)
16: Update the estimator of the unlabelled data distribution(

represented by its state vector’s particles along with their weights

(H
u,(i)
t−1 , w

u,(i)
t−1 )

) (
Eq. (28) and Eq. (31)

)
17: end if
18: end if
19: Compute f̂t+1

(
Eq. (21)

)
20: end while

- lowlik : Low-likelihood criterion specialized for quick unknown class dis-

covery [52].

- qbc: Query-by-Commitee, a stream-based version proposed by [36].350

- qbc-pyp: Stream-based joint exploration-exploitation AL proposed in [52].

These methods have shown good class discovery performance on unbalanced
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Table. 1 Benchmark Datasets properties used for comparing SAL against [34]

Datasets N d Nc S% L% E CD CE
Electricity 45312 8 2 42 58 0.98 1 0
Airlines 53938 7 2 36 64 0.94 1 0
Forest 10000 55 7 12.6 16.2 1 0 1
Digits 13184 25 10 0.1 50.05 0.62 0 1

Table. 2 Benchmark Datasets properties used for comparing SAL against [52, 36]

Datasets N d Nc S% L% E CD CE
Pageblocks 5473 10 5 0.49 89.28 0.26 0 1
Shuttle 20000 9 7 0.02 78.4 0.34 0 1
Thyroid 7200 21 3 2.47 92.47 0.28 0 1
Forest 5000 10 7 3.56 24.36 0.94 0 1
KDD 33650 41 10 0.04 51.46 0.17 1 1
Digits 13184 25 10 0.1 50.05 0.62 0 1

data including the datasets that we use in this study. Hence, by comparing

against them, we highlight the efficiency of SAL in dealing with concept evolution

in challenging setting where the class of the datasets are highly unbalanced. We355

set up the same settings described in [36]. It is worth noting that although these

methods are stream-based AL, they memorize all labelled samples and re-use

them at each iteration for updating the model. On the contrary, SAL does not

reuse past instances in a strict stream-based learning environment. That is, its

complexity does not grow with time.360

As we have shown previously, SAL is flexible and any learner (classifier) can be

plugged in. Here, we use online Naive Bayes as a learner like in [34]. For all the

experiments, the number of particles N is set to 5. Normally, as we increase

the number of particles, the estimator model gives better estimation, but the

computation becomes heavier.365

5.1. datasets

SAL is evaluated on eight real-world benchmark datasets widely used in the AL

area: Pageblocks, Shuttle, Thyroid, Covertype (Forest), KDDCup 99 network

intrusion detection (KDD), Electricity, Airlines and MNIST handwritten digits

(Digits). The first five of these datasets are downloaded from UCI repository370
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[53]. Electricity [54] and Airlines [55] are popular real-world benchmark used

in evaluating classification in the context of evolving data streams. Digits is a

well-known vision dataset1.

These datasets are presented in Tab.1 and Tab.2, where N is the number of

instances, d is the number of features/attributes, Nc is the number of classes,375

S% and L% are the proportions of smallest and largest classes respectively, E

represents the class entropy, CD and CE flag if the data experiences concept

drift and concept evolution. According to [34], Electricity data experiences more

frequent and abrupt drift than Airlines data. Both enjoy well-balanced binary

classes (high entropy). Such properties will help manifest the capability of SAL380

to efficiently cope with concept drift and sampling bias. Although Forest data

enjoys high class entropy, its classes are unbalanced through time; Hence, it

experiences concept evolution. Pageblocks, Shuttle, Thyroid and KDD show

multiple classes in naturally unbalanced proportions. Such property will help

manifest the capability of SAL to efficiently discover the unknown classes. Digits385

dataset is used in its preprocessed version [56]

In this paper, we use the full Pageblocks, Thyroid and Electricity datasets but

only portions of Shuttle, Forest, KDD and Digits datasets. When comparing

against the first type of competitors (VarUn, RanVarUn and Rand) [34], 10000

and 53938 (10%) instances are used from Forest (hight entropy) and Airlines390

datasets respectively. As for the second type of competitors (lowlik, qbc and

qbc-pyp) [52, 36], we follow the setting in [36] where 20000, 33650 and 5000

instances are used from Shuttle, KDD and Forest respectively. For both types

of competitors, 13184 instances are used from Digits data. These settings are

observed to ensure a fair comparison of SAL against the competitors.395

All datasets were collected and saved in flat files. To simulate streams from

these files, SAL reads through the data in the same order it was collected. It

processes the samples sequentially before they are discarded. If SAL decides

to query a certain sample, this latter is sent along with its label to the online

1http://yann.lecun.com/exdb/mnist/
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Table. 3 Learning rate parameters

Datasets Pageblocks Shuttle Thyroid Forest KDD Electricity Airlines Digits
λ 0.6 0.7 0.8 0.6 0.7 0.7 0.7 0.8
λ′ 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.7

Table. 4 SAL hyper-parameters setting

Hyper-parameters α0 α
u
0 α

l
0 µ0 µ

u
0 µ

l
0 v0 v

u
0 v

l
0 k0 k

u
0 k

l
0

Values 1 0 d+ 2 0.01

classifier in order to update itself. Note that it is assumed that the ground truth400

is available immediately after a query is made.

5.2. Classification performance

In this section, we evaluate SAL against the methods presented in [34] on all

datasets (see Tab. 1) that have well-balanced classes (E is high, except for

Digits). Such datasets will help manifest the classification performance of SAL

compared to the others. Following the competitors setting, the evaluation of

SAL is based on a prequential methodology. The classification performance

of SAL is measured according to the average accuracy which is the ratio of

correctly classified testing samples:

AA =

∑
i∈T 1(ŷi,yi)

|T |
(43)

1(ŷi,yi) =

1 if ŷi = yi

0 otherwise

(44)

where the elements of T are the indices of all testing samples, |T | is the total

number of testing samples. All results are averaged over 30 runs in order to

capture the real performance of SAL.405

5.2.1. Settings

The hyper-parameters of the estimator model are fixed apriori (see Tab. 3). In

order to allow vague prior, we set α0, αu0 and αl0 to 1. The means u0, uu0 and

ul0 are set to 0. The covariance matrices Σ0, Σu0 and Σl0 are roughly set to be
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(a) Electricity (b) Forest

(c) Airlines (d) Digits

Figure. 5 Classification performance

as large as the dispersion of the data. The degree of freedom of the Wishart410

distributions v0, vu0 , vl0 must be greater than d. We set them to d + 2. The

hyper-parameters k0, ku0 and kl0 are empirically set to 0.01. Because at this

stage, we are interested only in the classification error, the hyper-parameter α1

which controls the prior over the classes is set to a low value. It can be seen

from Eq. (34) that when α1 is low, the model tends to put low probability415

on the emergence of new classes. We empirically set it to 0.01. The effect of

the forgetting factors λ and λ′ in Eq.(31) and Eq.(42) on SAL’s performance is

studied and the parameters are set to the values that give the best performance

(see Table 4). Note that we also consider the best results of the competitors.
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5.2.2. Performance Analysis420

Following similar setting in [34], we carry out the experiments on the four

datasets shown in Tab. 1 using different budget values. Figure 5 shows the

classification accuracy of both SAL and the competitors for different values of

budget B.

Using budget less than 0.05, SAL outperforms all competitors on the four425

datasets: Electricity, Forest, Airlines and Digits datasets. Such superiority

with low budget is a very strong point for SAL as it aligns with the goal of AL

which is high accuracy with low budget. SAL shows the best performance on

Electricity data for all budgets except for 0.1 and for budget less than 0.02. On

Airlines and Forest datasets, SAL has the best performance when using budget430

less than 0.3. SAL also gives the best results on Digits dataset using budget

less than 0.05 or more than 0.3.

As stated earlier, Airlines and Electricity datasets suffer from concept drift. The

concept drift occurring for Airlines datasets is less frequent and softer than that

of Electricity dataset [34]. Having frequent aggressive drift makes sampling bias435

more likely to occur. Indeed, AL’s confident sampling assessment is more likely

to miss drifting valuable samples. Thus, the contrary behaviour between SAL’s

accuracies for Electricity and Airlines datasets as budget exceeds 0.2 could be

explained by SAL’ capability of coping with concept drift and sampling bias.

As querying budget of Electricity data exceeds 0.2, the accuracy of competitors440

converges to a certain value while SAL’s accuracy increases linearly. That is, the

competitors do not exploit the budget properly. Since drift of Airlines dataset

is less tricky, competitors are able to handle it when higher budget is granted.

However, for low budget SAL enjoys the best performance.

Figure 6 shows SAL behaviour along the stream of Electricity dataset with445

two different budgets 0.4 and 0.2. Figure 6a and Fig6b present the prequential

labelling (querying) rate for budget=0.4 and 0.2 respectively. Figure.6c presents

the prequential drift (change) rate. To smooth the curve, a fading factor of 0.999

is used. The drift is detected using the drift detection method (DDM) proposed
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(a) Querying rate for budget=0.4

(b) Querying rate for budget=0.2

(c) Drift rate

Figure. 6 Active learning behaviour along the stream for Electricity
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by [57]. We can notice the correspondence between the drift and querying rate.450

SAL tends to query less intensively when drift rate is low. However, it is not

only the drift that drives SAL querying behaviour and it is not guaranteed that

DDM detects all occurring drifts. To understand better the behaviour of SAL,

we plot the querying rate on Electricity data for budget=0.2 corresponding to

the inflection point of SAL’s accuracy Fig.6b. The experiments show that the455

querying rate is less sensitive to the drift rate compared to that for budget=0.4.

That supports the explanation (see previous paragraph) for the extremely high

performance of SAL on Electricy when budget exceeds 0.2.

Note that the reasons why SAL outperforms the competitors are not only be-

cause of its ability to explicitly handle sampling bias problem. SAL’s superiority460

is rooted in the fact that it tries to directly reduce the expected future error

instead of employing heuristic AL criteria as the competitors do. Forest and

Digits datasets do not involve concept drift, however, SAL provides a good clas-

sification performance compared to the competitors.

To sum up, we highlight two main differences between SAL and the competi-465

tors AL approaches. Firstly, SAL explicitly deal efficiently with the problem of

sampling bias. On the other hand, RanVarUn combines naive randomization

with uncertainty criterion to deal with drift. By doing so, the budget is wasted

on some random queries. VarUnc does not handle sampling bias problem. Sec-

ondly, SAL takes the importance of data marginal distribution into account;470

while the competitors do not.

5.3. Class discovery performance

In this section, we evaluate SAL against the methods in [52, 36] on datasets that

show multiple classes in naturally unbalanced proportions (see Tab. 2). Such

datasets will help manifest the class discovery performance of SAL. Following

the competitors setting, the class discovery performance of SAL is measured

using the average class accuracy [56] which is given as:

AAj =

∑
i∈Tj

1(ŷi,j)

|Tj |
(45)
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where the elements of Tj are the indices of all testing samples coming from class

j.

ACA =

∑
j∈C AAj

|C|
(46)

where the elements of C are the classes. It is worth mentioning that the fi-

nal class accuracy is fairly penalized when there are misclassifications in small

classes. All results are averaged over 15 runs with two-fold cross-validation.475

5.3.1. Settings

SAL takes the data density into account when querying. It might then consider

the data representing small classes as outliers or noise and therefore never queries

them. To avoid such a scenario and to improve the class discovery performance

of SAL, we increase the importance of the small classes by integrating online480

their effect in the loss function L(.). In other words, we weight the loss according

to the size of the classes seen at time t. Thus, the loss in Eq.(18) is formulated

as follows:

l(ŷt, yt) =

0 if ŷt = yt

1
s(yt)

otherwise

(47)

where s(yt) represents the importance of the class. It is proportional to the

number of samples from a class yt. To consider the dynamic nature of the data,

we use a forgetting factor instead of counting all the samples seen so far:

nb = fr ∗ nb+ 1yt (48)

where fr is the forgetting factor empirically set to 0.99, nb is a vector whose

elements are the size of discovered classes, 1yt is a vector whose elements are
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zeros except for the element indexed by yt which is equal to 1.

s(yt) ∝

nbyt ∀yt ∈ Ct−1

1 yt is a new class

(49)

where Ct−1 is the set of discovered classes at time t− 1.

All the parameters of the estimator model excluding α1 are set to the same485

values as in the previous section (see Tab. 3). Because α1 controls the prior

over the classes, it has impact on the class discovery performance. The model

tends to put high probability on the emergence of new classes when α1 is high

(See Eq.(34)). We studied its effect on each dataset. So, it is set to 0.5 for

Pageblocks, Shuttle, Thyroid and KDD and 0.4 for Forest and Digits. We can490

see that the value of α1 for Forest and Digits datasets is less than the others.

Such a difference can be interpreted as a result of the less unbalance classes in

the Forset and Digits datasets compared to Pageblocks, Shuttle, Thyroid and

KDD datasets.

5.3.2. Performance Analysis495

In these experiments, we follow the same setting as in the competitors [52, 36],

where the maximum number of queries is set to 150 instances (SAL takes the

budget ratio as input).

The results of the experiments are shown in Tab.5, Tab.6 and Fig. 7. Table

5 presents the number of classes discovered by the different methods. Table 6500

presents the average class accuracy ACA achieved using the different methods.

Figures 7 comprises four sub-figures; each one shows the discrepancy between

ACA of each method and the highest ACA among the other methods. The

discrepancy is negative when the method does not have the highest ACA among

all methods.505

The results show that SAL provides a comparable class discovery performance

compared to the competitors. SAL was able to discover all the classes for Page-

blocks, Thyroid and Forest datasets. For the Shuttle, KDD and Digits data,
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Table. 5 Number of classes discovered by different methods

No Datasets Nc lowlik qbc qbc− pyp SAL
1 Pageblocks 5 4.72 3.42 5 5
2 Shuttle 7 3.72 3.28 5 5.75
3 Thyroid 3 2.92 2.68 3 3
4 Forest 7 7 7 7 7
5 KDD 10 9.76 3.32 8.71 8
6 Digits 10 8.84 8.84 7.76 8.5

Table. 6 Average class accuracy achieved using different methods

No Datasets lowlik qbc qbc− pyp SAL
1 Pageblocks 63.23 45.79 71.72 65.65
2 Shuttle 45.46 38.87 55.49 59.42
3 Thyroid 54.62 50.07 58.45 59.8
4 Forest 57.13 58.68 58.45 58.71
5 KDD 51.21 19.42 47.35 45.14
6 Digits 48.94 58.04 50.27 55.42

Overall 53.93 45.14 56.95 57.36

around 5.75 oout of 7, 8 out of 10 and 8.5 out of 10 classes are discovered re-

spectively (see Tab.5). SAL’s average class accuracy is the best on the Shuttle,510

Forest and Thyroid datasets which may be explained by the fact that the pro-

portion of the smallest classes are higher than the others (except for Shuttle

which has relatively high entropy). That might be a result of SAL consider-

ation of the data density which has shown good classification performance in

the previous section. As for Digits, SAL has the second best results among515

the competitors. SAL has the third best result on KDD. This result may be

explained by the fact that the data is severally unbalanced (percentage of the

rarest class is around 0.04% and entropy is 0.17). On the other hand, SAL

essentially selects the data instances that should reduce the error regardless of

their classes percentage. SAL takes the density of the data samples into ac-520

count, thus, instances from very rare classes might be deemed as outliers even

if they are well isolated in the feature space. Nevertheless, SAL has the best

results on three datasets (Shuttle, Thyroid and Forest); while each competitor

gives the best result on one dataset (see Fig. 7).

35



(a) SAL (b) qbc-pyp

(c) qbc (d) lowlik

Figure. 7 Comparison of the class discovery performance

To sum up, the reason why SAL’s class discovery performance is not the best525

on all datasets can be related to the fact that SAL avoids outliers. This avoid-

ance along with the sampling bias mechanism have led to strong classification

performance. Nevertheless, the class discovery performance is comparable to

to that of strong competitors which some of them are specialized for detecting

the outliers as novel classes. It can be clearly seen from Tab. 6 and Fig. 7530

that SAL results are more consistent across different datasets compared to the

competitors. Indeed, SAL has the best results on the majority of datasets and

comparable results on the rest whilst each competitor performs well on a specific

dataset. SAL can be reliably used for novelty detection tasks for datasets which

are moderately unbalanced. Such datasets can be seen in applications where535

there are many normal and abnormal classes rather than one big normal class
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and many rare abnormal classes like the case of KDD.

6. Conclusion and future work

We proposed an active learning algorithm for data streams capable of dealing

with data streams challenges: infinite length, concept drift and concept evolu-540

tion. SAL labels samples that reduce the future expected error in a completely

online setting. It also tackles the sampling bias problem of active learning. Ex-

perimental results on real-world data showed the limitation of the proposed ap-

proach regarding class discovery when applying to highly unbalanced datasets.

However, the main goal of the proposed algorithm is to perform classification545

with unknown number of classes. Furthermore, its class discovery performance

is comparable to the state-of-the-art and even better when the classes are not

severely unbalanced. In future work, we will investigate the problem of class

discovery from severely unbalanced datasets. We will also develop stronger

mechanisms for novelty detection for noisy data streams.550
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Appendix A. Compute Equ. (24):

• If zt refers to a new component:

p(xt|zt, Xt−1) =

∫
θ

p(xt|θ)p(θ|G0) = tv1(xt|µ1,Σ1) (A.1)

where t refer to student’s t-distribution which we end up with as a result

of using a conjugate prior (i.e., the Normal Inverse Wishart prior) over

the normal distribution parameter θ.

µ1 = µ0 (A.2)

Σ1 =
Σ0(k0 + 1)

k0(v0 − d+ 1)
(A.3)

v1 = v0 − d+ 1 (A.4)

where d is the dimension of the data.

• If zt refers to an already seen component:

p(xt|z1:t, Xt−1) =

∫
θ

p(xt|θ)p(θ|szt,t−1(z1:t−1), nzt,t−1)

= tv2(xt|µ2,Σ2) (A.5)

µ2 =
k0

k0 + nzt,t−1
µ0 +

nzt,t−1
k0 + nzt,t−1

suzt,t−1 (A.6)

Σ2 =
1

(k0 + nzt,t−1)(v0 + nzt,t−1 − d+ 1)(
Σ0 + sczt,t−1 +

k0nzt,t−1
k0 + nzt,t−1

(suzt,t−1 − µ0)

(suzt,t−1 − µ0)T
)
(k0 + nzt,t−1 + 1) (A.7)

v2 = v0 + nzt,t−1 − d+ 1 (A.8)
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Appendix B. Compute the first term of Eq. (33):

Given zt, yt is independent of the observations x1:t−1. Hence,

p(yt|zt, Dt−1) = p(yt|zt, yt−1) (B.1)

As zt selects the stick breaking component generating yt, the distribution of yt

depends only on the label of the data assigned to components zt. By marginal-

izing the selected stick breaking component the same way as in Eq.(11), we end

up with the following equations:

p(yt|zt, Dt−1) =


nzt,yt,t

α1+n′zt,t
−1 ∝ n

′
zt,yt,t yt is an existing class

α1

α1+n′zt,t
−1 ∝ α1 yt is a new class

(B.2)
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