2 research outputs found

    Virtual Sensors For Advanced Controllers In Rehabilitation Robotics

    Get PDF
    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU's PPG17/56 project, Basque Country Governments IT914-16 project, Spanish Ministry of Economy and Competitiveness' MINECO & FEDER inside DPI2017-82694-R project, Euskampus, FIK and Spanish Ministry of Science and Innovation PDI-020100-2009-21 project

    Diseño de un equipo de simulación biomecánica para validación de movilidad cinemática de montajes personalizados de prótesis de hombro

    Full text link
    [ES] Tras la aparición de las tecnologías de fabricación aditivas y su implementación en el sector médico, surgió la necesidad de cuantificar el Rango de Movilidad (ROM) de las prótesis inversas de hombro personalizadas antes de implantarlas en los pacientes , permitiendo seleccionar y/o diseñar prótesis a medida. Ante la falta de instrumentos específicos para este fin se decide diseñar un simulador de la articulación glenohumeral. Este trabajo repasa el diseño de dicho simulador, las principales problemáticas y las soluciones adoptadas. El simulador está formado por cuatro grandes conjuntos: Estructura Externa, Guía Circular, Sistemas de Posicionamiento y Sistemas de Medición. Mediante este simulador se pretende dar solución a este vacío de instr umentos enfocados en la cuantificación de ROM, no solo para prótesis de hombro sino también extrapolable a otras partes de la anatomía humana. Se pretende implantar este simulador en la unidad traumatológica del Hospital Universitario de San Juan de Alican te con el fin de mejorar la calidad de vida de los pacientes y la vida útil de los implantes.[EN] After the emergence of additive manufacturing technologies and their implementation in the medical sector, it became necessary to quantify the range of mobility (ROM) in the custom reverse shoulder prosthesis before implanting them in patients , this will allow selecting and designing customized prostheses. In the absence of specific instruments for this purpose is decided to design a simulator of the glenohumeral joint. This paper reviews the design of this simulator, the main problems and the solutions adopted. The simulator is composed by four groups: External Structure , Circular Guide, P ositioning Systems and Measurement Systems. We want to solve the lack of instruments focused on the quantification of ROM, not only for shoulder prostheses but also other parts of the human anatomy . We want to use this simulator in the t raumatology unit of the Hospital Universitario de San Juan de Alicante in order to improve the quality of life of patients and the useful life of the implants.Orejuela Carricondo, R. (2018). Diseño de un equipo de simulación biomecánica para validación de movilidad cinemática de montajes personalizados de prótesis de hombro. http://hdl.handle.net/10251/112922TFG
    corecore