3 research outputs found

    Active Contour Model driven by Globally Signed Region Pressure Force

    No full text
    One of the most popular and widely used global active contour models (ACM) is the region-based ACM, which relies on the assumption of homogeneous intensity in the regions of interest. As a result, most often than not, when images violate this assumption the performance of this method is limited. Thus, handling images that contain foreground objects characterized by multiple intensity classes present a challenge. In this paper, we propose a novel active contour model based on a new Signed Pressure Force (SPF) function which we term Globally Signed Region Pressure Force (GSRPF). It is designed to incorporate, in a global fashion, the skewness of the intensity distribution of the region of interest (ROI). It can accurately modulate the signs of the pressure force inside and outside the contour, it can handle images with multiple intensity classes in the foreground, it is robust to additive noise, and offers high efficiency and rapid convergence. The proposed GSRPF is robust to contour initialization and has the ability to stop the curve evolution close to even ill-defined (weak) edges. Our model provides a parameter-free environment to allow minimum user intervention, and offers both local and global segmentation properties. Experimental results on several synthetic and real images demonstrate the high accuracy of the segmentation results in comparison to other methods adopted from the literature

    A SOM-based Chan–Vese model for unsupervised image segmentation

    Get PDF
    Active Contour Models (ACMs) constitute an efficient energy-based image segmentation framework. They usually deal with the segmentation problem as an optimization problem, formulated in terms of a suitable functional, constructed in such a way that its minimum is achieved in correspondence with a contour that is a close approximation of the actual object boundary. However, for existing ACMs, handling images that contain objects characterized by many different intensities still represents a challenge. In this paper, we propose a novel ACM that combines—in a global and unsupervised way—the advantages of the Self-Organizing Map (SOM) within the level set framework of a state-of-the-art unsupervised global ACM, the Chan–Vese (C–V) model. We term our proposed model SOM-based Chan– Vese (SOMCV) active contourmodel. It works by explicitly integrating the global information coming from the weights (prototypes) of the neurons in a trained SOM to help choosing whether to shrink or expand the current contour during the optimization process, which is performed in an iterative way. The proposed model can handle images that contain objects characterized by complex intensity distributions, and is at the same time robust to the additive noise. Experimental results show the high accuracy of the segmentation results obtained by the SOMCV model on several synthetic and real images, when compared to the Chan–Vese model and other image segmentation models
    corecore