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Abstract 

The human respiratory airway consists of the upper (nasal cavity, pharynx) and the lower (trachea, bronchi) 

respiratory tracts. Accurate segmentation of these two airway tracts can lead to (i) a better diagnosis and 

interpretation of airway-specific diseases; (ii) improvement in the localization of abnormal metabolic or 

pathological sites found within and/or surrounding the respiratory regions; and (iii) be of great benefit in 

modeling and perform simulations on targeted airway structures for surgery planning, drug delivery and 

fluid-dynamics research. Due to the complexity and the significant variability displayed in the anatomical 

structure of the upper respiratory airway along with additional challenges such as distinguishing and 

separating the nasal cavity from non-respiratory air-filled regions such as the paranasal sinuses, it is 

difficult for existing algorithms to accurately segment the upper airway without manual intervention. 

Subsequently, there is significant scope in the formulation of a normalized model of the upper airway 

based on a statistical averages taken from a population distribution.  

The lower respiratory tract consisting of the trachea and bronchial airway, while possessing a less complex 

structure when compared to the nasal cavity, has also proven to be difficult to segment when the medical 

images are taken via PET-CT due to the contrast issue resulting from a lowered radiation dosage. In order 

to efficiently and accurately segment both structures within the respiratory airway, knowledge of the 

anatomy through the form of shape priors are essential. Furthermore, the ability to model the anatomical 

variations within the airway, and to formulate statistical averages and variations of the anatomy is desired.  

This thesis presents an implicit non-parametric framework for constructing a statistical shape model (SSM) 

of the upper and lower respiratory tract, capable of distinct shape generation and be adapted for 

segmentation. An SSM of the nasal cavity was successfully constructed using 50 nasal CT scans. The 

performance of the SSM was evaluated for compactness, specificity and generality. An averaged distance 

error of 1.36 mm and 1.47 mm was measured for specificity and generality assessment, where the 

specificity measurement was calculated based on the average of 50,000 randomly generated nasal shapes.  

The constructed SSM was further combined with a modified locally constrained random walk algorithm 

to segment the nasal cavity. The proposed algorithm was able to automatically segment the complex nasal 

anatomy through the introduction of a robust multi-atlas initialization for seeds derivation and 

demonstrated its capability at separating the nasal airway from other connected airway regions using 

shape priors produced from the SSM. The proposed method was evaluated on 30 CT images and 
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outperformed comparative state-of-the-art and conventional algorithms. Its superior performance was 

demonstrated with a dice similarity coefficient of 90.1±2.2 and an average distance error of 0.34±0.07 

mm. The clinical significance of the algorithm was demonstrated through directly comparing the 

computational fluid dynamics (CFD) outcomes of turbulent flow on nasal models produced from our 

algorithm against models produced from ground truth segmentation. The outcome of the CFD revealed 

minimal differences in airflow, and indicated the potential possibility of our algorithm as a faster, more 

efficient alternative to manually segmenting the nasal cavity for the creation of CFD models.   

For the lower airway, a separate algorithm was proposed to automatically segment the trachea and 

bronchi, and was designed to tolerate the image characteristics inherent in low-contrast CT images. The 

proposed algorithm was able to accurately and robustly segment the airway through the introduction of: 

(i) a robust multi-atlas initialization which incorporated shape priori knowledge for seeds derivation; and 

(ii) a modified knowledge-based random walk segmentation that utilizes the derived seeds and 

manipulates the weights of the edge paths in a locally constrained search space. The proposed algorithm 

was evaluated on 20 clinical low-contrast CT from PET-CT patient studies and demonstrated better 

performance (87.1±2.8 DSC and distance error of 0.37±0.08 mm) in segmentation results against 

comparative state-of-the-art algorithms.  
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Chapter 1. Introduction 

1.1 Overview 

The human respiratory system is a major biological system which provides the body the functionality to 

respirate (i.e. the exchange of oxygen and carbon dioxide between an organism and the environment). 

Within this system, the respiratory airway which consists of the upper (nasal cavity, pharynx) and lower 

respiratory tract (trachea, bronchi) is a vital passage for the transportation of oxygen into the lungs, 

maintains olfactory function allowing the body the ability to smell, regulates the overall temperature of 

the body, and acts as a primary filtering mechanism for foreign particulate matter [1]. The location and 

structure of the upper airway tract further provides a means for targeted drug delivery to the brain with 

potential to treat diseases such as Alzheimer’s and Meningitis [2]. Due to the complexity of the respiratory 

system, disorders and infections within the airway are common (i.e. viral and fungal infection, cilia 

dysfunction, septal deviations, tracheal stenosis, etc.), and can often be the cause to other health related 

problems such as sleep apnea and cardiovascular risks [3-5].  

In order to achieve a better understanding on the physiology and pathology of the respiratory airway, 

accurate modelling of the anatomical structure is essential. The term modelling, used in this thesis, is an 

activity defined as the mapping of the anatomical structures and components within a pre-determined 

section of the human body. The activity seeks to capture and represent knowledge of the anatomical 

structure of interest. This knowledge can then be used for a variety of purposes such as image 

segmentation and visualization, but more importantly, the captured knowledge can further be used for 

the formulation of physical and computerized models.  

Accurate representations of the respiratory airway that are capable of capturing anatomical significance 

are vital for a wide range of research where such models have been used to describe the effects of airflow 

patterns on different pathologies including sleep apnea [5-7], atrophic rhinitis [8], sinus disease [9, 10], 

septal deviation [11, 12], and hypertrophic turbinates [13] etc. Airway models have also been used to 

describe the impact of airflow following nasal turbinate reduction [14, 15], septoplasty [14], implants [8], 

and sinus surgery [16, 17]. A number of studies have also investigated airflow in the same patient before 

and after having performed surgery [17, 18], and further studies have tried to address the effects of inter-

individual variability in the nasal and airway anatomy [19-22]. Another area which required accurate 

models of the respiratory airway is nasal drug delivery, where studies have been focused on analyzing the 
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deposition of nanoparticles under the effects of airflow, and with potential to target brain specific diseases 

or for targeting diseases in the respiratory tracts that were difficult to treat [19, 23-25]. For additional 

details, the following surveys and reviews summarized over 60 studies involving the usage of airway 

models [26-28].  

Although a significant amount of research have been conducted, our understanding on the physiology 

and pathology of the respiratory airway can still be improved. As concluded in prior studies on the 

respiratory anatomy, the amount of variations in the structure of the upper airway differs significantly 

across a population [29, 30], and hence concerns have been raised regarding the use of airway models 

derived from single patient profiles as a valid means for conducting generalized research [21]. As shown 

in a population-based numerical simulation study, the differences in nasal structure could impact greatly 

on the outcomes of each flow distribution [22]. Hence, recent studies have begun to take note of the 

variability of the airway structure and have started to conduct quantitative research using large amounts 

of single patient models [21, 31, 32]. In addition, population-based studies have also began to focus on 

the creation of standardized or idealized models of the upper airway, as evident in the works of [33, 34] 

where a standardized model of the Adult Malaysian female based on 24 samples and an idealized model 

of the infant airway based on 10 samples have been explored.  

Overall, research on the respiratory anatomy is still ongoing, with a wide range of potential areas to 

further study and to improve, especially with the recent interest in regards to drug delivery. The need for 

accurate models of the respiratory anatomy is stronger than ever, particularly for normalized or 

standardized models based on a large population sample. Subsequently, due to the complexity of the 

respiratory airway, the process for model creation via image segmentation is difficult and time consuming 

[27], causing quantitative research that requires large amounts of airway models to be troublesome to 

perform. Hence, there is significant scope in improving segmentation accuracy and efficiency for airway 

structures and as well as establishing a framework for normalized model creation.  

Image segmentation is the process of partitioning an image into smaller segments, often grouped 

together by color or texture [35]. In medical images, these segments would correspond to different tissue 

classes or organs, essentially dividing the human body into separate anatomical components. It is the first 

step towards modelling the anatomy. The work of this thesis is focused on the modelling and 

segmentation of the respiratory airway. 
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1.2 Research Context and Motivation 

There is a significant amount of scope for improving existing methods of airway segmentation in order to 

allow for more accurate and efficient ways of patient-specific model generation. Furthermore, the ability 

to construct normalized as well as statistically quantified models of the respiratory airway based on a large 

population sample is also highly desired.    

Statistical shape models (SSM) are a well-established method for computing accurate 3D representations 

of a targeted anatomy. Based on a set of training data, the variability of the class of training data is 

modelled by means of a normal distribution, and SSM can then formulate statistical averages and 

variations, as well as reconstruct patient specific anatomical representations through combining the 

statistical priors with the observed data. SSMs have been employed in many applications due to its wide 

range of capabilities such as in object recognition [36], image manipulation [37], surgery planning [38] as 

well as segmentation [39]. The existence of a statistical shape model (SSM) of the respiratory airway 

allows for the ability to generate statistically valid yet distinct structures of the modelled anatomy with 

precise control over the degree of variation, and the modelled variations can further adapted as shape 

priors to segment new images for the creation of additional patient-specific models. 

Although a standardized model of the nasal cavity of an adult Malaysian female [33] has been created, a 

framework for modelling the statistical variations of the components within the respiratory anatomy have 

not yet been developed. This thesis focuses on SSM’s ability at modelling the anatomical variations 

amongst a population distribution for shape generation and segmentation. In order to apply SSM on the 

respiratory airway, a successful method of shape model construction needs to be explored and 

established. 

1.3 Aims and Contributions 

The aims of this thesis are to establish a reliable framework for the creation of: 

- A statistically quantified models of the upper respiratory airway. 

- To map the variations in the anatomical structure across a population distribution. 

- Improve the accuracy and efficiency of airway model generation via image segmentation through 

the incorporation of statistical prior knowledge.  

- To optimize the methods of segmentation for 3D printing.  
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In particular, this thesis focuses on addressing the following issues that were encountered throughout this 

research project: 

 Modelling the complex variations observed in the respiratory anatomy across a population 

distribution. 

 Overcoming the lack of boundary between connected airway structures for segmentation. 

 Establishing a reliable initialization method for automated airway segmentation. 

 Resolving leakage issues encountered in low-contrast medical images. 

 Segmenting thin airway structures with ambiguous intensity values due to the blurriness of the 

medical image. 

These issues reflect the challenging aspects of airway segmentation which causes conventional methods 

to fail. This thesis will demonstrate in later chapters the limitations of current segmentation algorithms at 

tackling these mentioned problems. This thesis makes the following technical contributions aimed at 

addressing these issues:  

 An automated segmentation framework was established for both upper and lower airway 

segmentation. 

 The ability to identify and separate the nasal cavity from other connected airway structures. 

 Improving and modifying existing algorithms and optimizing them for airway segmentation. 

 Robust localization of region of interest (ROI) in low-contrast medical images. 

 Combining graph-based algorithms with SSM and adapting it for airway segmentation 

 Deriving an efficient initialization method for seeds derivation based on atlas registration. 

 Proposing a novel energy localization constraint optimized for airway voxels.   

Additional contributions were made as part of this research: 

 A framework was derived for the construction of a 3D statistical shape model for the nasal and 

tracheal airway. 

 A normalized model along with 50,000 other randomized models of the nasal cavity were 

generated with suitability for numerical simulations. 

 A framework for customized 3D nasal printing was established for both patient-specific and 

population-specific nasal models. 
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1.4 Thesis Organization 

This thesis is organized as follows. Chapter One provides the general overview of the thesis as well as 

states the motivations, research aims, and contributions. Chapter Two and Three presents related work 

in medical image segmentation and respiratory airway modelling. In Chapter Two, prerequisites in 

anatomy and medical imaging modalities are provided.  The segmentation literature is notably presented 

under Chapter Three, which briefly covers the majority of segmentation algorithms which take advantage 

of anatomical knowledge. Main advantages and drawbacks of presented algorithms are reported to better 

highlight some of the efforts made in this thesis to improve some existing algorithms. Subsequently, the 

methodology of SSM is thoroughly detailed in Chapter Four. It further describes how shape priors are built 

from training data, and its use is then depicted in Chapter Five, where methods of airway segmentation 

incorporating shape prior knowledge have been tested and presented on both the nasal cavity and the 

trachea-bronchi structure. Evaluation of shape model construction is depicted in Chapter Four. Evaluation 

of airway segmentation algorithms are presented in Chapter Five. Chapter Six focuses on the clinical 

applications of the segmentation algorithms, especially in the field of nasal computational fluid dynamics. 

Chapter Seven discusses the strength and limitations of the work presented in this thesis. Finally, 

appendices are provided to give additional details.      
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Chapter 2. The Respiratory Airway 

2.1 Introduction 

In this chapter, detailed description of the respiratory anatomy is presented along with the imaging 

modalities used to capture the information onto digital image. Section 2.2 focuses on the anatomical 

details of the respiratory system. Section 2.3 reports the common acquisition modalities to image the 

respiratory system including the current known weakness of these modalities. Section 3.4 provides 

detailed summary of existing literature on the segmentation and modelling of different structures within 

the respiratory tract.   

2.2 Anatomy 

The respiratory airway within the human body is comprised of the upper and lower respiratory tract, with 

the upper tract consisting primarily of the nasal cavity, paranasal sinuses, pharynx, and the larynx. The 

lower tract is composed of the trachea, bronchi, and lungs. The upper respiratory tract is mainly 

responsible for providing the transportation of air (atmospheric gases) to the lower tract while at the 

same time acting as a filtration mechanism to prevent foreign substances from entering the body. The 

lower respiratory tract divides the air that has been breathed into the body, and directs them to the lungs 

for respiration. The oxygen in the air is taken into the blood stream for cellular respiration while other 

gases along with the waste CO2 is exhaled back out.  

This thesis is targeted towards the statistical shape modelling and segmentation of the main respiratory 

airway consisting of the nasal cavity, pharynx, trachea, and bronchi which forms a direct passage leading 

from the entrance of the nostrils to the lungs, and particularly focuses attention on the nasal cavity as 

well as the trachea and bronchi airway passage due to these components being the primary targeted 

structures for segmentation. Section 3.2.1 goes into further details on the anatomy of the nasal cavity, as 

well as briefly outlines the motivations and challenges involved in nasal cavity segmentation. Section 3.2.2 

provides the same set of descriptions for the trachea and bronchi airway.   

2.2.1 Nasal Cavity 

The nasal cavity belongs to the upper respiratory tract and is a major passage for the transportation of 

oxygen into the lung, providing olfactory function and acting as a primary filtering mechanism for foreign 

particulate matter. The nasal cavity is located below the base of the brain and above the oral cavity. The 
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structure of the nasal cavity begins from the nostrils and ends at the pharynx (airway passage leading 

towards the throat), and is composed of the left and right nasal fossa passage divided in the center by the 

nasal septum. The two nasal passages terminate at a common chamber that leads to the pharynx. The 

lateral walls of the nasal cavity are formed of the maxilla. Surrounding the nasal cavity are four pairs of 

pocket-filled airspaces called the paranasal sinuses (each pair possessing their own name) which are 

connected to the nasal cavity through small orifices called ostia. An overall break-down of the upper 

respiratory tract in sagittal view is shown in figure 2.2.1.1 below. 

 

Figure 2.2.1.1. Cross-sectional view of the upper airway 

The nasal cavity is about 12 𝑐𝑚 long; the volume of each nasal fossa is 12 𝑚𝑙 and has a surface area of 

around 150 𝑐𝑚2 [23]. The left and right passages of the nasal cavity both consist of three different regions, 

namely the vestibule, the olfactory region and the respiratory region. The nasal vestibule lies at the 

entrance of the nasal passage with an area of about 0.6 𝑐𝑚2. The respiratory region comes next and 

contains three nasal turbinates; the superior, the middle and the inferior turbinate. These turbinates 

project from the lateral wall of each half of the nasal cavity. The olfactory region is situated at the roof of 

the cavity and covers about 10% of the total surface area. 

2.2.2 Trachea and Bronchi Tree 

The trachea is a tube-like passage linking the cricoid cartilage of the larynx to the bronchi, forming part of 

the conducting system which transports air from the external environment to the lungs. The cervical part 

of the trachea lies generally in the median position, although this varies slightly depending on the position 
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of the head. The thoracic part of the trachea crosses the aortic arch, thus its positioning is moved slightly 

to the right at this level. The trachea bifurcates to form the two bronchi at the level of the 4th-6th 

intercostal space. The trachea contains numerous rings of hyaline cartilage which are C-shaped, being 

dorsally incomplete, connected to each other by elastic connective tissue. The ends of the incomplete 

rings are joined by the smooth trachealis muscle. The structural conformation of the trachea prevents 

collapse due to traction forces, whilst allowing it to adjust in length and diameter, as the neck moves and 

the diaphragm contracts. The trachea's walls are made up of a number of layers including the inner 

mucosa, fibrocartilaginous middle layer, and adventitia (in the neck) or serosa (in the thorax). 

 

Figure 2.2.2.1. Diagram of the upper and lower respiratory tract.  

The bronchi begins from where the trachea bifurcates into the left and right lung, approximately halfway 

between the thoracic inlet and the diaphragm. It divides into two principle bronchi, tubes which conduct 

air into the lungs, and they divide into two lobar bronchi for the left lung, and into four lobar bronchi for 

the right lung. These further divide into smaller bronchi and bronchioles within the lung tissue. The 

structure of the larger bronchi is identical to that of the trachea. On the smaller bronchi the C-shaped 

cartilage rings are gradually replaced by irregular plaques of cartilage. Bronchioles have no cartilage at all. 

The bronchioles are less than 1mm in diameter, and undergo further divisions, the last of which is 

characterized by the loss of goblet cells.  
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2.3 Imaging Modalities 

Medical imaging is the technique and process of creating visual representations of the interior of the 

human body for clinical analysis and intervention. The commonly used modalities include computed 

tomography (CT), magnetic resonance imaging (MRI), ultrasound etc. However, for the imaging of the 

respiratory airway, the primary modality used is CT. Hence, the following section will briefly go over the 

some of the characteristics of CT, as well as its strength and limitations with regards to modelling and 

segmenting the airway.   

2.3.1 Computed Tomography 

Computed Tomography (CT) is a medical imaging procedure which utilizes computer processed X-Rays to 

produce tomographic images or “slices” of the human body [40]. The process typically projects x-rays at 

different angles along an arc of a circle and reconstructing them into a single 3D image. That is, ionising 

radiation is emitted from one point on a circle to a digital detector on the opposite side of the circle. Both 

ends of the device rotates around the body, picking up a number of angles of the same image while at the 

same time moving uniformly from one end of the human body to the other. This allows the height of the 

image to be constructed from very thin image slices stacked upon one another. The motion along and 

around the patient’s body can be seen in the figure below. 

 

Figure 2.3.1.1. Diagram showing how 3D CT images are taken. 

While CT imaging is essentially a more advanced method of X-Ray imaging, the major advantage in CT is 

that it creates a three dimensional reconstruction of the imaged body. CT imaging is often used to make 

assessments of a body part’s structure, diagnosis of diseases, injury and particularly cancer. It is also used 
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as aid for surgery planning and radiotherapy. CT imaging is one of the few imaging techniques which 

provide humans the ability to view their internal organs.  

2.3.2 Positron emission tomography 

Positron emission tomography (PET) is a functional imaging procedure that produces a three-dimensional 

image of functional processes in the body. PET maps the changes in body metabolism through detecting 

the gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is injected into the 

blood stream prior to scanning. 3D images of the tracer concentration within the body are then 

constructed by computer analysis to formulate the final PET images. Due to the nature of PET being a 

functional imaging procedure, it does not include details of the anatomy as it only depicts the spatial 

distribution of metabolic activities within the body. In order to better localize and provide easier 

understanding of the information depicted in PET, anatomical information gained from CT is often overlaid 

on top of PET. Hence, PET-CT have become one of the standard methods for obtaining detailed anatomical 

and metabolic activity within the human body.  

2.3.3 Image resolution and contrast 

Positron emission tomography (PET) combined with computed tomography (CT) is a standard routine 

imaging modality for the diagnosis and interpretation of malignant diseases within the respiratory tract. 

Accurate airway segmentation is critical for the localization of sites of abnormal metabolism detected with 

PET-CT. Such localization is pivotal to accurate disease staging prior to consideration of surgery and for 

radiation therapy planning. However, the CT performed in PET-CT has a lower radiation dose when 

compared to conventional chest CT. This results in images with a relatively lower soft tissue contrast which 

makes the separation of the airway tree from adjacent structures challenging.  

Compared to conventional or high resolution chest CT, low-contrast CT images from PET-CT experiences 

more anatomy related artefacts as well as less anatomical details. Figure 2.3.3.1 exemplifies the difference 

between low-contrast CT with high-resolution CT. In this example, we can see that when compared against 

low-contrast CT, high-resolution CT exhibits clearer boundary distinctions between airway and non-airway 

voxels. For the modelling and segmentation of the trachea and bronchi, the data are derived from 20 PET-

CT studies.  
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Figure 2.3.3.1. Comparison of airway structure between a low-contrast CT (left) 0.97x0.97x3 mm pixel resolution 
(512x512) and a high-resolution CT (right) with 0.6 x 0.6 x 0.6 mm pixel resolution (512x512). The inserts are1.5x 
zoomed images. The high-resolution CT has greater anatomical details of the airways (marked by arrows).  

2.4 Related Work on Airway Segmentation 

Image segmentation is defined as the process of partitioning an image into different segments [35]. The 

goal of segmentation is to simplify or change the representation of an image into something that is more 

meaningful and easier to analyze. In medical imaging, these segments often correspond to different tissue 

classes, organs or biologically relevant structures. It is one of the first steps leading to medical image 

analysis, interpretation, and extraction of medical data. The following section contains related literature 

on the segmentation of the upper (nasal cavity) and lower (trachea and bronchi) airway.  

2.4.1 Nasal Cavity 

Due to the complexity of the nasal cavity structure as well as the lack of boundary distinction between it 

and other airway components such as the paranasal sinuses, individual modelling and segmentation was 

rarely performed. Existing models of the nasal cavity were all manually extracted from a single patient CT 

scans [24, 41, 42]. The current known methods [43-50] are capable of producing adequate segmentations 

of the upper respiratory tract consisting of the nasal cavity, paranasal sinuses and the pharynx using 

relatively simple algorithms such as thresholding [45-48], region growing [43, 44], level-sets [49], and a 

level-sets distribution model [50]. However, the majority of these methods still require manual 

delineation [43-46] and/or requires the imaging modality to be taken from cone-beam CT (CBCT) [46-49] 

which provides higher contrast and reduces the amount of motion artifacts. More importantly, these 
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methods are restricted by their inability to differentiate and/or separate the nasal cavity from other 

airway regions components within the upper respiratory tract, thus limiting its application in nasal drug 

delivery [25], nasal computational fluid dynamics [51], and for the diagnosis and treatment planning of 

nasal diseases [27]. 

2.4.2 Trachea and bronchi airway 

The majority of the recent segmentation approaches tends to focus on extracting the airway tree structure 

as deep as possible, and relies on the anatomical details present on of the high-resolution CT image. As 

shown in the EXACT09 airway segmentation challenge, where more than 15 methods were evaluated, due 

to the quality of the CT images which can adequately separate the voxels belonging to the airway, simple 

region-based algorithms such as the conventional region growing algorithm was capable of accurately 

segmenting the trachea structure as well as the main bronchi branches within the airway tree. Region 

growing relies on checking for similar intensity values between neighboring voxels in order to “grow” until 

there are no more similar voxels connected to the initial seeds. The majority of the proposed methods 

from [52] made use of region growing as their primary algorithm for initial segmentation and then 

combined it with additional algorithms for further refinement into the airway tree. For example, Irving et 

al [53] made use of morphological filtering to extract smaller branches within the airway tree after their 

region growing segmentation. Feuerstein et al [54] applied a sharpening filter to enhance the branch 

edges in order to extend their region growing method to smaller parts of the airway tree. Pechin et al [55] 

incorporated a combination of a trained appearance model along with vessel and airway orientation 

information to improve the performance region growing segmentation approach by accurately 

differentiating between airway and non-airway voxels. Lee and Reeves [56] initiated their region growing 

method through a tree segmentation framework which applied a locally-defined volume of interest 

boundary at each intersection of the airway in order to prevent leakages. While these algorithms 

performed well on high-resolution CT, their reliance on region growing meant that they were subject to 

lower performance when applied to low-contrast CT. Evidently, when tested on low-contrast CT images, 

region growing tend to suffer considerably from under- or over-segmentation errors [57].    

Other segmentation algorithms designed for high-resolution CT, that are not reliant on region growing 

algorithms, such as the study from Tan et al [58], made use of fast marching methods for initial 

segmentation, followed by using surface diffusion algorithm as a feedback loop to continuously derive 

new seed points to further segment the region into the airway branches. Rikxoort et al [59] proposed a 

multi-thresholding framework using wave-front propagation to continuously segment new areas of the 
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trachea airway. Geng et al [60] segmented the lung airway through a combination of iterative thresholding 

and pulmonary regions extraction. Shang et al [61] introduced a novel region competition-based active 

contour model algorithm which made use of a vascular vector field to evolve the active contour along its 

center line for more accurate segmentation. In another study, Xu et al [62] made use of fuzzy connectivity 

for their initial airway approximation, and afterwards, a spatially constrained Markov random walk was 

applied on the tissue wall surrounding the airway for boundary refinement extend their segmentation 

into the deeper regions of the airway tree; the constraint was derived from airway wall estimation using 

FWHM [63] and least square ellipse fitting. Although some of these works presented advanced algorithms 

that leveraged prior knowledge in terms of prior knowledge from segmented datasets, as with previous 

region-based algorithms, they were also designed for high-resolution CT and hence were not optimized 

to tolerate the image characteristics inherent in low-contrast CT.  

Attempts at low-contrast CT for airway segmentation have also been introduced; two previous works has 

been identified. Tschirren et al. [64] made use of fuzzy connectivity as their primary algorithm for 

segmentation where they assigned a fuzzy membership to each voxel based on the intensity similarity 

between the input image and two landmarks belonging either to the trachea or the airway wall. Their 

method allowed the two regions to compete against each other in order to classify airway voxels, and 

thereby adding tolerance to fuzzy voxels near the structure boundaries. Wang et al. [57] made use of 

anatomical knowledge to predict and derive seeds for their modified region growing method in a slice-by-

slice approach. Although these algorithms presented feasibilities in low-contrast airway segmentation, 

they only made use of the information found within individual CT and did not take advantage of prior 

knowledge, which can provide more benefits especially for low-contrast CT images where e.g., leakages 

is a known issue [57, 64]. 
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Chapter 3. Prior Knowledge in Medical Image Segmentation 

3.1 Introduction 

This chapter aims at presenting the literature in the domain of medical image analysis with emphasis on 

image segmentation. Medical image analysis involves the extraction of meaningful information from 

medical images. For a more detailed description of medical images, please refer to Chapter Two. Among 

the many techniques which can be employed for medical image analysis, image segmentation is the most 

commonly used, and often only as the first step leading to image analysis and interpretation. In computer 

vision, image segmentation involves the process of partitioning an image into different segments. The 

goal is to simplify or change the representation of an image into something that is more meaningful. In 

case of medical images, these segments often correspond to different tissue classes, organs or biologically 

relevant structures [35].  

Due to the vast amount of segmentation algorithms that are available within the medical image analysis 

literature, this thesis will only cover the details of algorithms that are directly relevant. The criteria 

selection is based on algorithms which make use of prior knowledge to improve upon the segmentation. 

Prior knowledge is defined in this thesis as spatial and/or anatomical information of the targeted region 

of interest derived from additional data sources. Algorithms which take advantage of spatial and/or 

anatomical information can be roughly categorized as knowledge-based approaches for medical image 

analysis.  

Chapter Three focuses on the review of current available segmentation algorithms which make use of 

prior knowledge. Section 3.2 briefly covers algorithms using weak or no prior knowledge as to provide 

better background information on image segmentation. Section 3.3 introduces image registration with 

the primary focus on its usage with medical image segmentation. Section 3.4 presents algorithms based 

on deformable models and its incorporation with statistical concepts. Section 3.5 addresses a separate 

category of algorithms which utilizes atlases for their prior knowledge segmentation. Section 3.6 covers a 

list of region-based state-of-the-art segmentation algorithms and their capability at incorporating shape 

prior knowledge.           
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3.2 Weak Prior Knowledge Approaches 

Algorithms that fall under this category use little or no prior knowledge for image segmentation. These 

algorithms are often regarded as low-level techniques and are commonly used as a preprocessing step for 

more complex approaches due to the simplicity in their parameterization. The two types of algorithms 

presented in section 3.2 are thresholding and region growing. 

3.2.1 Thresholding 

Thresholding is one of the most basic algorithms which can be used to segment an image. When given 

any scalar (greyscale intensity eg., CT pixel value) or multi-dimensional (color value eg., RGB or LAB) image, 

the thresholding algorithm separates the pixels in the image into either foreground or background based 

on comparing the pixel value against the user specified parameter (threshold). If the pixel value is above 

the specified threshold then it is assigned as a part of the foreground, if it is below the threshold then it 

becomes a part of the background.  

Thresholding algorithms can be categorized into either global or local approaches [65]. Global approaches 

tend to be more simplistic where the same threshold value is used for the entire image, while local 

approaches varies the threshold based on additional information such as using spatial knowledge. Global 

approaches such as Otsu Thresholding [66] and Isodata Thresholding [67] focuses their algorithm on 

automatically deriving the most optimal threshold value based on additional analysis such as based on 

the histogram of the image. A histogram is a graphical representation of the intensity distribution in an 

image. However, these algorithms are still relatively simple and cannot be used to segment specific areas 

within an image.  

To overcome some of the shortcomings of global approaches, local thresholding algorithms were designed 

to be able to flexible when segmenting an image, and can vary its threshold value depending on the 

location within the image. Examples of local thresholding algorithms can be read from the works of 

Niblack [68], Mardia and Hainsworth [69], and Oh and Lindquist [70]. More advanced thresholding 

approaches are unsupervised and tend to rely on some basic prior knowledge, such as the number of 

classes, and are often the result of analysis on the histogram of the image. [71] contains additional details 

on the formulation of these approaches.      

Generally, for images presenting little noise and strong contrast between structures to segment, where 

clear boundaries can be distinguished between the foreground and background, thresholding algorithms 
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can be a simple yet effective approach. However, thresholding algorithms tend to exhibit very poor 

performances when in the presence of moderate noise and/or artefacts, which are often encountered in 

medical images. Overall, within the medical image processing literature, thresholding tend to be used as 

part of a preprocessing step for more advanced algorithms. 

3.2.2 Region Growing 

Region growing is another relatively simple image segmentation approach that has been widely used since 

its creation. The region growing algorithms segment an image via classifying pixels of with similar 

characteristics into the same region. This is achieved through an iterative process where given an initial 

starting pixel, the algorithm searches its pixel neighbors to look for pixels of similar characteristic (such as 

intensity value) and add them to the foreground region. The algorithm continues to expand or “grow” 

until it can no longer locate additional pixels of similar characteristics.  

Region growing approaches typically begins from selecting foreground voxels labeled as seeds. By 

exploring the neighbors of these seeds, new potential voxels are added to the foreground region. The 

seeds required to start the algorithm can be either manually given by an operator or automatically derived 

using other algorithms such as thresholding based on known intensity values. A number of variations of 

region growing segmentation method exist in literature such as adaptive region growing [72], seeded 

region growing [73], unseeded region growing [74]. For more information on region growing, the following 

survey is recommended for reading [75]. 

3.3 Registration 

Image registration is a frequently used technique in medical image processing. The goal is to identify the 

spatial relationship between two or more images. Although image registration is not a segmentation 

algorithm by itself, it can be used for segmentation, however it is more often used together or as a 

preprocessing step for other image segmentation algorithms. The aim of this section is not to provide a 

comprehensive review but to present the necessary information on the concept of registration and its 

usage in medical image segmentation. Section 3.3.1 introduces the transformation parameters used for 

registration. Section 3.3.2 presents the similarity metrics used for medical images. The following 

publications may be of interest for those wishing to obtain a more comprehensive knowledge on 

registration [76-78].  
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Registration can be generalized as the process of establishing spatial correspondences between two or 

more images. More specifically, it is the process of finding the transformation that maps one image to 

another. During registration, one image, which is called the moving image, is deformed or shifted to fit 

the other image, the fixed image. Registration attempts to solve the problem of finding a coordinate 

transformation which can allow the moving image to be spatially aligned to the fixed image. The quality 

of the alignment is dependent on the similarities between the two images as well as the appropriateness 

of the chosen similarity metric.  

The steps involved during registration rely on the following components: registration features; transform 

and associated regularization; similarity metric; optimization and interpolation. Figure 3.3.1 gives an 

overview of the registration process. In an iterative manner, the similarity between the reference and 

target features is first computed. Target features are computed based on the target image and the chosen 

transform parameters. Since images are discretized signals, an interpolation is necessary to estimate the 

target features. Given the computed similarity value and the optimization strategies, new values of the 

transformation are computed and the procedure repeats. The optimization process usually will iterate 

until it considers that the similarity has reached an extremum.   

 

Figure 3.3.1 Overview of registration framework. 

3.3.1 Transform and Regularization 

For registration, different types of transformations are available. Based on the selected transformation 

type, the results of registration might differ considerably. They are commonly categorized based on their 

ability to capture global or local changes. Local transforms are also often referred to as non-rigid types. 
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Transforms are also characterized by the amount of degrees of freedom (DOF); the number of 

independent transformation parameters. The more DOFs a transform has, the more complex changes it 

can express. A list of well-known registration transformations can be viewed in Table 3.3.1.1, categorized 

as either global or local.  

Rigid and similarity are two of the most commonly seen transformation types of the global category. They 

are also known as linear transforms as they cannot model local geometric differences between images. 

Affine transform characterized by translation, rotation, scaling and shearing is a first crude approximation 

of a non-rigid transformation [76].  Polynomial transform is another attempt at approximating a non-rigid 

transformation while providing better control over the DOF [79].  

Non-rigid approaches focuses more on local features with attempt to model more accurately the amount 

of deformations by increasing the DOF. Piece-wise affine transform was proposed with the intention to 

allow for a tradeoff between DOF and non-rigidity. It works by splitting the reference and target images 

into pieces and to compute the best affine transform to match each of the pieces. Spline-based 

registration algorithms use corresponding ‘‘control’’ points, in the source and target image and a spline 

function to define correspondences away from these points [80]. Each control point belonging to a thin-

plate spline has a global influence on the transformation in that, if its position is perturbed, all other points 

in the transformed image change. This can be a disadvantage because it limits the ability to model complex 

and localized deformations and because, as the number of control points increases, the computational 

cost associated with moving a single point rises steeply. By contrast, B-splines are only defined in the 

vicinity of each control point; perturbing the position of one control point only affects the transformation 

in the neighborhood of the point. Because of this property, B-splines are often referred to as having ‘‘local 

support’’. B-spline based non-rigid registration techniques are popular due to their general applicability, 

transparency and computational efficiency [81]. 

Transformation Type DOF Global Remarks 

Rigid 6 Yes Intra-patient, rigid structures 

Similarity 7 Yes Intra-patient, different scales 

Affine 12 Yes Coarse approximation of non-rigid transform 

Polynomial 
3 ∑ 𝐶𝑖+2

0
𝑑

𝑖=1
 

Yes d = polynomial order, non-rigid approximation 
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Piece-wise affine 12N No Non-rigid, N = number of pieces 

FFD (bspline) 3𝑁𝑥𝑁𝑦𝑁𝑧 No Non-rigid, 𝑁𝑥𝑁𝑦𝑁𝑧 = grid size 

Deformation maps 3N No N = number of deformation vectors 

Table 3.3.1.1. Common 3D registration transforms. 

3.3.2 Similarity Metrics 

Similarity metrics express the quality of matching between reference and target features. They are a key 

component of the registration process as the optimization tries to minimize them. A number of similarity 

metrics exist for different image types. The commonly seen metrics are listed in table 3.3.2.1, which can 

be categorized based on the types of image features to be registered. For biomedical images, Mutual 

Information (MI) [82] is one of the most used metrics, which is based on the concepts of information 

theory where MI minimizes the joint density of the gray value distribution by using kernel density 

estimation techniques. In order to make MI less sensitive to the overlap of the reference and the 

transformed image, normalized MI (NMI) [83] was proposed, which encountered great success [84-86]. 

Similarity Metric Metric Type 

Sum of square differences (SSD) Intensity conservation 

Cross correlation (CC) Intensity conservation 

Normalized cross correlation (NCC) Intensity conservation 

Normalized gradient flow (NGF) Intensity changes conservation 

Correlation ration (CR) Functional relationship in image intensity 

Bivariate correlation ration (BCR) Functional relationship in image intensity 

Mutual information (MI) Functional relationship in image intensity 

Normalized mutual information (NMI) Functional relationship in image intensity 

Table 3.3.2.1. List of common similarity metrics and their metric type. 

3.4 Atlas-based Approaches 

Atlas-based approaches are a type of image segmentation method which make use of a known template 

or pre-defined shape of the targeted anatomy as a reference frame for segmentation. Compared to other 

methods, atlas-based approaches make use of prior knowledge gained from the pre-defined template(s) 
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and can segment an image without regard to regions or voxel intensity. The template(s) used for 

segmentation are referred to as atlases, hence the name atlas-based approaches. An atlas is generated 

by compiling information on the anatomy that requires segmenting, usually each atlas comes in pairs, 

composed of two parts; the atlas image and a segmentation label. The atlas-guided approaches essentially 

treats segmentation as a registration problem. The simplest approach involves registering a single atlas 

image to the target image, and then applying the transformation map to the segmentation label to warp 

it to the same reference frame as the registered atlas image. The transformed segmentation label should 

now overlap with the targeted anatomy for segmentation. More advanced methods of atlas-guided 

approaches utilizes multiple atlases incorporating statistics as well as additional methods for 

segmentation. This section primarily introduces the core concepts of atlas-guided approaches for 

segmentation and registration which will be used as part of the methods included for respiratory airway 

modelling and segmentation in the later chapters. 

3.4.1 Multi-atlas 

Multi-atlas segmentation (MAS) was first introduced and popularized in the works of Rohlfing et al. [87] 

and Klein et al. [88] where multiple atlases were combined together to segment anatomical structures. 

MAS in its simplest implementation is essentially merging individual atlases together on the same 

reference frame to gain a general idea of where the target structure lies based on the region of overlap. 

MAS has become much more sophisticated over the years through the combination with other algorithms 

employing ideas from other fields such as machine learning, probabilistic modelling, optimization, and 

computer vision. For a more in-depth review of multi-atlas segmentation algorithms in biomedical images, 

refer to [89].  

3.4.2 Probabilistic atlas 

Probabilistic atlas segmentation (PAS) appeared around the same time as MAS where statistics about the 

labels, such as the probability of observing a particular label at a given location, are precomputed in atlas 

space. The novel image is then segmented in the atlas coordinate frame with a probabilistic inference 

procedure that utilized parametric statistical models. The spatial normalization to the atlas could be 

computed via registration with a population template created at training, or estimated jointly with the 

segmentation within the probabilistic model; the latter alternative has the advantage that it is adaptive 

to variations in image intensity profiles, such as MRI contrast [90].  
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Probabilistic atlas-based segmentation offers two major advantages. First, by employing a single 

coordinate frame, to which all images are normalized, one automatically established spatial 

correspondence across all images. This facilitates the statistical analysis of biological variation across the 

population. The second advantage is in the computational cost. One only need to run the computationally 

expensive image registration step (spatial normalization) only once per novel image [89]. 

3.5 Deformable Models  

Deformable models covers a broad range of segmentation algorithms which performs image 

segmentation through the evolution or deformation of some form of model. In medical image processing, 

deformable model approaches tend to segment the targeted anatomical structure through overlaying a 

model in the same spatial coordinates (usually via registration), and evolve the model into the same 

structure as the targeted anatomy. The model used for segmentation can be represented using different 

methods. Types of deformable model segmentation approaches can be categorized based on the type of 

representation used for the model.  

The two main representations are continuous and discrete. In discrete representation, less information is 

typically used to denote the shape of the anatomy. This is usually done using a set of points. The points 

(co-ordinates) used to represent the shape are usually spread evenly around the anatomy and should 

capture the important features of the anatomy. The surface of the shape can then be represented using 

meshes such as triangular or simplex meshes, which fills in the gap left behind by the set of points. Using 

less points to represent a shape can allow for more complex representation of shapes with higher arbitrary 

topology while remaining computationally inexpensive. 

Continuous representation yields more accurate details of the shape at a cost of requiring higher 

computational requirements. Continuous representations commonly rely on some form of 

parameterization which limits the amount of freedom on the variation of shape topology. For instance, 

spherical harmonics could only describe shape topologies equivalent to a sphere. However, the amount 

of parameterization needed for shape representation varies based on the selected approach. In general, 

parameterization restrictions are adequate for the segmentation of structures with a relatively simple 

geometry, though they might not be as suitable for more complex shapes. However, the advantages of 

continuous approaches is that they are more robust to image artefacts and missing information whereas 

discrete approaches tend to perform poorly due to their reliance on image information.   
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Continuous Representation 

Explicit Implicit 

Snakes Level-sets 

Spherical Harmonics  Medial 

  

Discrete Representation 

Meshes Particle Systems 

Triangular meshes Point Cloud 

Simplex meshes  

Table 3.5.1. List of different representation types for shape. 

This section covers the three commonly used methods of representation. Section 2.5.1 introduces the 

explicit representation active contour snakes. Section 2.5.2 focuses on the implicit representation using 

level-sets. Section 2.5.3 traverses through the discrete representation of deformable model approaches. 

Section 2.5.4 introduces the correspondence issue that affects deformable model approaches.  

3.5.1 Snakes 

One of the earliest deformable model approaches dates back to Kass et al.’s Active Contours Model, 

popularly known as Snakes. It introduced the idea that model evolution can be driven by two main 

energies. Given a 2D image domain 𝛺 , snakes are parametric curves 𝐶: [0,1] → 𝛺  driven by the 

minimization of an energy function: 

 𝐸(𝐶) =
𝛼

2
∫ |𝐶 ′(𝑞)|2𝑑𝑞 +

𝛽

2

1

0 ∫ |𝐶 ′′(𝑞)|2𝑑𝑞
1

0
+ 𝛾 ∫ |𝑓(𝐶(𝑞))|𝑑𝑞

1

0
 (3.5.1.1) 

The first two integrals denote the internal energy which enforces model smoothness based on Tikhonov 

stabilizers of the 2nd order. The last integral expresses the external energy which attracts the contour 

towards the boundaries of the structures to segment. In its simplest form, snakes are attracted by edges 

with higher gradient magnitude, i.e. 𝑓(𝑥) = ‖𝛻𝐼(𝑥)‖ . Coefficients 𝛼 ,   𝛽  and 𝛾  weight the stretching, 

bending and image attraction of the snake. Natural extensions to the 3D case were proposed by [91] based 

on the first and second order derivatives.  

Based on the principle of variation, the snake evolution follows the Euler Lagrange equation: 𝛻𝐸(𝐶) = 0. 

To solve this equation, an artificial time variable 𝑡 is introduced and the snake 𝐶(𝑞) is thus made dynamic: 

 
𝜕

𝜕𝑡
𝐶(𝑡, 𝑞) =  𝛼𝐶 ′′(𝑡, 𝑞) −  𝛽𝐶′′′′(𝑡, 𝑞) + 𝛾𝛻𝑓(𝐶(𝑡, 𝑞)) (3.5.1.2) 
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This equation can be efficiently solved with finite differences discretization and the iterative solving of the 

discrete system. This minimization is local and the snake will thus converge to a local minimum. 

The main weaknesses of snakes include its necessity to be initialized closely enough to the boundary of 

the targeted anatomy, its inability to move into concavities of the boundaries, and its fixed topology. The 

first shortcoming was partially addressed by Cohen [92] through the introduction of “balloon” forces 

which pushed the snake to inflate or delate in the normal direction. The main issue with this force was 

the need of a priori knowledge on whether an inflation or deflation was required, which prevented the 

initialization of the snake across the boundaries of the anatomy. The use of gradient vector flow fields [93] 

to model the external energy resulted in an increase of the snake capture range and a better delineation 

of concavities. Davatzikos and Prince [94] proposed the use of constraint points to better capture 

concavities in case of the brain cortex. The support of topological changes was included in the “T-Snakes” 

of McInerney and Terzopoukos [95]. Chan and Vese [96] further introduced the concept of snakes without 

edges, which has now been popularly referred to as the Chan-Vese segmentation approach. For more 

details regarding active contour models and its applications on image segmentation, it can be obtained 

from the following surveys [97, 98].   

3.5.2 Level-sets 

Level-sets were first introduced by Osher and Sethian [99], featuring an implicit shape representation and 

could be employed with regional or edge-based features. The level-sets shape model is embedded in a 

higher dimensional space, such that for a level-set 𝑆, an iso-hypersurface of a function 𝜙: 𝛺 → ℝ, 𝛺 ∈ ℝ𝑑 

can be represented through: 

 𝑆 = {𝑥 ∈ 𝛺|𝜙(𝑥) = 𝑐} (3.5.2.1) 

Where 𝑐 is a constant usually equal to zero. When 𝑑 = 2 or 𝑑 = 3 the level-set 𝑆 is an iso-contour or an 

iso-surface. The level-set 𝑆 is also seen as the boundary 𝜕𝑅 which enclose a region 𝑅: 

 𝑠 = 𝜕𝑅 (3.5.2.2) 

𝑅 = {𝑥 ∈ 𝛺|𝜙(𝑥) < 𝑐} 

This formulation allows an implicit definition of the deformable model with 𝜙. By evolving the function 𝜙, 

the deformable model represented by 𝑆  becomes implicitly modified. The greatest advantage with 

respect to using level-sets for deformable modelling is that 𝑆 can naturally undergo topological changes 
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as it can split and/or merge into various iso-hypersurfaces during its evolution [100]. The common way to 

define the function 𝜙 is to use the zero level-set, the signed distance function (SDF) for the representation 

of the deformable model. Given a point 𝑥 ∈ 𝛺, 𝑆𝐷𝐹(𝑥) is the signed Euclidean distance between 𝑥 and 

its closest point on the deformable model. A negative sign is arbitrarily chosen, e.g. 𝑆𝐷𝐹(𝑥) < 0 when 

𝑥 ∈ 𝑅  given equation (3.5.2.1). Figure 3.5.2.1 illustrates the usage of SDF to implicitly define a nasal 

structure. 

 

Figure 3.5.2.1. Implicit deformable model representation of 2D slices of the nasal cavity computed using SDF. 

The level-set approach for deformable models was first introduced to medical image segmentation by 

Malladi et al. [101], where a time parameter 𝑡 was applied to the level-sets equation to evolve the SDF 

overtime similar to that of snakes: 

 
𝜕

𝜕𝑡
 𝜙 + 𝑣⃗. 𝛻𝜙 = 0 (3.5.2.3)  

where 𝑣⃗ is the external force field driving the evolution towards the correct image location. This field is 

computed based on image information such as the image gradient magnitude. This formulation requires 

the need to solve partial differential equations (PDE). Caseslles et al. [102] combined the snake-based 

evolution with the level-sets formulation into a new method called geodesic active contours (GAC). In 

addition to the possible topology changes, GAC brings several advantages with respect to the classic 

snakes implementation. First, there is no need for re-parameterization during evolution. Second, the 

function 𝜙 is independent from the contour parametrization which means that the deformation are only 

dependent on the shape of the deformable model.  

Although GAC have solved the problem of re-parametrization during the level-set evolution, it could not 

solve the issue of experiencing irregularities within the level-set function (LSF) during the evolution. The 
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original remedy to this issue was proposed by Weber et al. [103] through the re-initialization of the LSF, 

and to periodically replace the degraded LSF with a SDF. However, this approach causes extra 

computational burden and required additional time in order for the algorithm to complete the level-set 

evolution. An alternative solution to this issue was proposed by Li et al. [104] through adding an additional 

energy term called the Distance Regularization Term to the level-set equation. The distance regularization 

term is defined with a potential function such that the derived level-set evolution (LSE) has a unique 

forward-and-backward (FAB) diffusion effect which is able to maintain a desired shape of the LSF. This 

yields a new type of level-set evolution which the paper named it as the Distance Regularized Level-Set 

Evolution (DRLSE). The Distance Regularization effect is able to ultimately eliminate the need for re-

initialization. 

While there are many advantages to using level-sets for deformable models, disadvantages also exist. In 

cases where the topology of the anatomical structure is known in advance, the ability of the level-set to 

adopt topological changes can become an issue. The other main problem in using level-sets is the 

computational burden, especially in 3D. Using level-sets for shape representation can be extremely 

memory inefficient [105]. For further reviews on level-sets, the following papers are recommended for 

reading [105-107]. 

3.5.3 Discrete Deformable Models 

Discrete deformable models are characterized by a series of points representing the boundaries of the 

shape model. When an explicit connectivity is established between the points, the discrete deformable 

models are referred to as meshes. Figure 3.5.3.1 illustrates various possible representations for a nasal 

cavity shape. 
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Figure 3.5.3.1 Examples of explicit discrete deformable model representation. The nasal cavity shape (left) is 
represented using 3D geometry, the trachea airway (right) is represented using triangular mesh. 

More formally, a discrete model 𝑆 can be represented in a 𝑑-dimensional space as a triplet 𝑆 = {𝑋, 𝑁, 𝐺}, 

where 𝑋 = {𝑥1, … , 𝑥𝑀} is the point set composed of 𝑀 points 𝑥𝑖 ∈ ℝ𝑑, 𝑁 = {𝑛1, … , 𝑛𝑀} is the optional 

normal set, one normal per point, and 𝐺 is the connectivity information which specifies the point indices 

of using edges and the edges of faces. 𝐺 is only defined for meshes. Normals can be defined from the 

point set 𝑋 using only point-based techniques such as Oriented Particles [108], Moving Least Squares 

(MLS) [109], and Implicit Surface [110], or in conjunction with the connectivity information 𝐺 based on 

neighbours positions [111].  

For discrete deformable models, meshes are the most popular method of shape model establishment. 

The most commonly seen type is Triangular Meshes, which are two dimensional manifolds characterized 

by triangular faces. In the field of computer graphics, triangular meshes are natively supported by the 

graphics hardware. In the domain of image segmentation, they are often the preferred choice for 

combining with discrete points for the representation of shapes due to their superior ability at capturing 

the arbitrary topology and complexity of shapes.  

Miller et al. [111] proposed their geometrical deformable models that evolved under external and internal 

constraints. Local curvature was estimated from the neighbours of a vertex. The evolution was carried out 

with an algorithm that moved vertices in the direction of steepest descent along the cost surface 

computed from the external and internal constraints. Local curvature was estimated from the neighbours 

of a vertex. The evolution was carried out with an algorithm that moved vertices in the direction of 

steepest descent along the cost surface computed from the external and internal constraints. Lachaud 

and Montanvert [112] designed a coarse-to-fine segmentation approach using triangular meshes which 
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was able to undergo topological changes via Eulerian topological transformation of creation, deletion or 

inversion. Snel et al. [113] used multi-resolution deformable triangular meshes to segment carpal bones 

in MRI images based on Lagrangian mechanics. More recently, Willimon et al. [114] introduced an 

automatic mesh generator that provides a triangular mesh encapsulating the entire non-rigid object 

without pre-defined values or feature correspondence. 

 

Figure 3.5.3.1 Illustration of a triangular mesh (left) and a 2-simplex mesh (right) 

Another popularly used mesh type is Delingette’s simplex meshes [115]. The algorithm is able to 

reconstruct surfaces with minimal restriction on their shape or topology.  𝑘-simplex meshes are discrete 

models with a constant vertex connectivity of 𝑘 + 1 neighbours. Figure 3.5.3.1 shows an example of the 

structure of a 2-simplex mesh used to represent surfaces when compared against triangular mesh. Each 

vertex of a 2-simplex mesh is connected to three neighbours. 2-simplex meshes are topologically dual to 

triangulations, meaning there exists a dual triangle for each mesh vertex and a dual triangulation vertex 

for each mesh face. Due to their constant connectivity, the geometry of simplex meshes is rather simple. 

A notion of surface local shape description allows the definition of shape memory constraints in the 

deformation process. 

Many works have adapted simplex meshes for deformable models. These include segmentation works by 

Gilles et al. [116, 117] on the musculoskeletal structures from MRI. Schmid et al. [118] made use of 2-

simplex meshes for their statistical shape model (a more complex type of deformable model) for MRI 

bone segmentation in presence of small field of view. A review on the types of discrete representation for 

deformable models can be found in [100]. 

3.6 Statistical Shape Models (Knowledge-based Deformable Models) 

Deformable models which incorporate statistical prior knowledge derived from probabilistic analysis from 

within a distribution of a class of shape objects are often referred to as Statistical Shape Models (SSM).  

SSMs are commonly applied for computing accurate 3D representations of a targeted anatomy. Based on 
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a set of training data, the variability of the class of training data is modelled by means of a normal 

distribution, and SSM can then formulate statistical averages and variations, as well as reconstruct patient 

specific anatomical representations through combining the statistical priors with the observed data. SSMs 

have been employed in many applications due to its wide range of capabilities such as in object 

recognition [36], image manipulation [37], surgery planning [38] as well as segmentation [39, 107, 119]. 

However, this thesis will focus primarily on the aspect of SSM modelling and segmentation. 

SSMs can be categorized in the same way as deformable models where it is primarily split between 

discrete and continuous representation for shape. Discrete methods of SSM creation and utilization are 

commonly referred to as Point Distribution Models (PDM) while continuous methods are commonly 

referred to as level-set distribution models (LSDM) within the medical image analysis literature. Section 

2.6.1 introduces more specific details of PDM as well as their advantages and disadvantages. Section 2.6.2 

covers the details of LSDM and recent works related to its use in medical images.  

3.6.1 Point Distribution Models 

The earliest well known shape model that incorporated statistical means as part of its variance distribution 

belongs to Cootes et al.’s [120] Active Shape Model (ASM) which made use of a set of discrete “landmark” 

points to represent their shape (popularly referred to PDMs). A landmark is a point of correspondence 

used to examine and measure shape change [121]. This method has since become inaugurated as the 

conventional approach to building SSMs. Typical steps involve the use of a set of points distributed across 

the surface of the targeted shape (which can be extracted into a single vector space using algorithms such 

as Marching Cubes [122]) for representation, to which once successfully aligned and gathered into a 

common space frame, principal component analysis (PCA) is then deployed to extract the mean shape 

and a number of modes of variations from the collection of points used during representation [119]. 

While landmark approaches have become the conventional method for building shape models, a key issue 

that needs to be addressed is correspondence. When measuring shape variance of a certain part of an 

object across a population, it is important to compare the same features. If two training shapes are 

misaligned, the resulting PCA will not be capturing the appropriate anatomical shape variance. This holds 

especially true for landmark-based approaches where the targeted shape is usually represented by only a 

small handful of points where each landmark point needs to directly correlate across all training data 

through precise point correspondence, which previously required the manual labelling of points across all 
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training data as a means of achieving accurate point correspondence, a feat which is tedious and difficult 

to achieve especially for complex 3D objects such as the nasal cavity.  

Although pioneering works such as Davies et al. [123] and Wang et al. [124] provided the means for 

achieving automatic landmark correspondences through methods such as Minimum Description Length 

(MDL, global method) and Landmark Sliding (pairwise method), they have shown to be inefficient when 

the population size is large, or they tend to be less accurate and can produce poor shape correspondence 

when the population has a large amount of shape variations [125]. While recent works such as Munsell et 

al. [126] aimed at improving the quality of automatic correspondence methods through the introduction 

of a shape tree for pre-organising shape instances, the effectiveness of these methods have yet to be fully 

evaluated against large volumes of training data with complex shape variations.  

3.6.2 Level-set Distribution Models 

Level sets were first introduced by Osher and Sethian [99], featuring an implicit shape representation and 

can be employed with regional or edge-based features. Leventon et al. [107] further extended the original 

energy formulation by adding an additional term which deforms the contour towards a previously learned 

shape model and demonstrated its usage in SSM literature. The advantage of using level-sets is that one 

can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without 

having to parameterize these objects. The use of signed distance function as the representation of shape 

prevents solving the general correspondence problem due to its tolerance to slight misalignment of object 

features. By coarsely aligning the training data (typically binary segmentations) using techniques such as 

rigid registration prior to shape representation (via SDF), the entire correspondence issue can potentially 

be bypassed [127]. However, this approach requires a considerably higher dimensional space for PCA 

computation due to the choice of using signed distance maps (data created using SDF) for representation 

over distinctive landmark points. The size of the resulting covariance matrix is typically twofold the 

number of pixels of each training image, which makes the level set approach to be less practical for 

implementation on 3D training data. Nevertheless, this problem of needing high computational space 

requirement is gradually being solved by the advancement of modern day computer hardware. This is 

evident with a number of recent publications such as Wimmer et al. [128] which employed parametric 

representations of densities to their level set-based active shape model in order to boost classifiers to 

analyse appearance information. More recently, Tomoshige Sho, et al. [129] integrated an error model 

into their conditional level set based SSM which estimated the reliability of the observed conditional 

features and subsequently relaxes the conditional statistical shape model accordingly. 
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Level set SSM was also implemented in the work of Last et al. [39, 50] where they adapted their SSM to 

obtain locally optimal solutions by allowing a unique fit of the corresponding SSM in each contour point 

in order to overcome the issue of having limited training samples. Their locally deformable SSM was used 

to segment the paranasal sinuses, which are air-filled spaces located within the bones of the skull and face 

surrounding the nasal cavity structure. Their focus was on a rough structure of the entire paranasal sinus 

region which encompasses the nasal cavity, as exemplified in figure 3.6.2.1, and thus not needing to model 

the complexities present in the nasal cavities. These complexities demand an SSM that is capable of 

capturing thin and curvy structures with high degrees of variation across a population.  

 

Figure 3.6.2.1 Illustration indicating differences between Last el al. (2011)’s work and the nasal cavity region. 

3.7 Incorporating Prior Knowledge to Existing Algorithms 

Knowledge derived from statistical shape models can be incorporated into many existing segmentation 

algorithms. In the medical image analysis literature, detailed knowledge of the targeted anatomy can 

often greatly improve the results of segmentation. The current state-of-the-art region-based 

segmentation algorithms include Graph Cut [130], Random Walks [131], and Geodesic methods [132]. 

These methods basically treat an image as a weighted graph with nodes corresponding to pixels in the 

image and edges being placed between neighboring pixels, and minimize a certain energy function on this 

graph to produce a segmentation. A shared benefit of region-based segmentation algorithms is their 

compatibility with the SSM of continuous representation, where SSM results derived from PCA can be 

incorporated to restrict and/or influence the outcome of segmentation. Section 3.7.1 presents the 

incorporation of level-set SSM with Geodesic methods. Section 3.7.2 introduces Graph-Cut LSDM. Section 

3.7.3 focuses on adapting level-set SSM with Random Walks. 
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3.7.1 Geodesic Methods  

Geodesic methods are essentially level-set based segmentations which involves solving the energy-based 

active contours minimization problem. Level-set based segmentation approaches have existed within the 

image processing field for a long time now. Generally, a classical level-set framework consists of an implicit 

data representation of a hypersurface, a set of partial differential equations (PDE) that govern how the 

curve moves, and the corresponding numerical solution for implementing this method. Geodesic level-set 

methods have since evolved over time through the additions of newer energy terms and functions as 

mentioned previously in Section 3.5.2.  

Statistical knowledge gained via PCA on training datasets represented in the form of SDM can be 

incorporated into geodesic level-set PDEs as an additional energy term which is capable of constraining 

the LSF to valid anatomical shapes of the targeted anatomy as the LSF evolves over time. Given an energy 

function 𝐸(𝜀) over a contour 𝜀 as the sum of an internal and external energy, the function to evolve the 

shape contour to minimize the energy is as follows: 

 𝐸(𝐶) =
𝛼

2
∫ |𝐶 ′(𝑞)|2𝑑𝑞 +

𝛽

2

1

0 ∫ |𝐶 ′′(𝑞)|2𝑑𝑞
1

0
+ 𝛾 ∫ |𝑓(𝐶(𝑞))|𝑑𝑞

1

0
 (3.7.1.1) 

The minimization problem can then be reduced to the following form:  

 𝑚𝑖𝑛 ∫ 𝑔(| 𝛻𝐼(𝜀(𝑞))|) |𝜀′(𝑞)|𝑑𝑞 (3.7.1.2) 

where 𝑔 is a function of the image gradient in the form of 
1

1+|𝛻𝐼||2 with 𝐼 being the input image. Using 

Euler-Lagrange, the following shape evolution equation can be derived:  

 
𝜕𝜀(𝑡)

𝜕𝑡
= 𝑔𝑘𝑁 − (𝛻𝑔. 𝑁)𝑁 (3.7.1.3) 

where 𝑘 is the shape and 𝑁 is the unit normal. By defining an embedding function 𝑢 of the contour 𝜀, the 

equation for a higher dimensional SDM surface 𝑢 can be computed.  

 
𝜕𝑢

𝜕𝑡
= 𝑔(𝑐 + 𝑘)|𝛻𝑢| + 𝛻𝑢. 𝛻𝑔 (3.7.1.4) 

Where 𝑐 is an image-dependent balloon force which stabilizes the contour to flow outward [92]. In this 

LSF function, the surface 𝑢 evolves at every point perpendicular to the level-sets as a function of the 

curvature at that point and the image gradient. Given the contour at time 𝑡, an evolution step that brings 

the contour closer to the final anatomical shape based on the local gradient and global shape information 
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is computed. Equation 3.7.1.4 provides the means of evolving the initial surface shape 𝑢  over time 

towards the solution to the original minimization problem stated in Equation 3.7.1.2. The surface of the 

SDM at time 𝑡 + 1 can be computed from 𝑢(𝑡) by:  

 𝑢(𝑡 + 1) = 𝑢(𝑡) + 𝜆1(𝑔(𝑐 + 𝑘)|𝛻𝑢(𝑡)| + 𝛻𝑢(𝑡). 𝛻𝑔 (3.7.1.5) 

where 𝜆1 is a parameter defining the update step size. By estimating the final surface 𝑢∗ at a given time 

𝑡, the contour can be evolved in the direction of the maximum a posteriori final surface:  

 𝑢(𝑡 + 1) = 𝑢(𝑡) + 𝜆2(𝑢∗(𝑡) − 𝑢(𝑡)) (3.7.1.6) 

where 𝜆2 ∈ [0,1]  is the linear coefficient that determines the amount of influence the maximum a 

posteriori take effect during LSE. Combining these equations yields the following expression:  

 𝑢(𝑡 + 1) = 𝑢(𝑡) + 𝜆1(𝑔(𝑐 + 𝑘)|𝛻𝑢(𝑡)| + 𝛻𝑢(𝑡). 𝛻𝑔) + 𝜆2(𝑢∗(𝑡) − 𝑢(𝑡)) (3.7.1.7) 

Many recent works have modified or updated equation 2.7.6 through the introduction of new energy 

terms such as seen in Li et al. [106] where a distance regularized term was proposed to remove the need 

for re-initialization. Wang et al. [133] improved on the current Chan-Vese level-set methods through 

binding the shape energy and local intensity feature to evolve the surface both globally and locally 

towards the closet shape driven by the PCA, for their liver segmentation algorithm. Qin et al. [134] 

modified their geodesic level-set methods with an adaptive shape prior to constrain the direction of the 

LSE for bladder MR image segmentation.  

3.7.2 Graph-Cuts 

Graph Cuts segmentation was originally proposed by Boykov and Jolly [130] where given some foreground 

and background seeds, an energy function based on both boundary and region information can be 

minimized to result in a segmentation. The goal is essentially to find a set of labels 𝐴 =

(𝐴1, 𝐴2, … , 𝐴𝑝, … , 𝐴|𝑃|) that minimizes an energy function 𝐸(𝐴) given by: 

 𝐸(𝐴) = 𝜆𝑅(𝐴) + 𝐵(𝐴) = 𝜆 ∑ 𝑅𝑝(𝐴𝑝) + ∑ 𝐵𝑝,𝑞𝛿𝐴𝑝≠𝐴𝑞{𝑝,𝑞}∈𝑁𝑝𝑝∈𝑃  (3.7.2.1) 

where the set 𝑃 is a set of pixels or voxels in a 2D or 3D image, and the energy 𝑅𝑝(𝐴𝑝) is a matching cost 

of a graph, assigning label 𝐴𝑝 ∈ 𝐿 to 𝑝. The symbol 𝐴𝑝 is an element of label set 𝐿 = (1,0); with 1 being 

the foreground and 0 being the background. This cost is defined by a negative log probability of the 

intensity values from the CT image, where the probability density function of each class is assumed to be 
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a normal distribution with parameters estimated by an EM algorithm. The set 𝑁𝑝 is a set of voxels in the 

6-neighborhood of 𝑝, and the function 𝛿 is 1 if 𝐴𝑝 ≠ 𝐴𝑞 and 0 otherwise. The energy 𝐵𝑝,𝑞 is a n-link cost 

of labeling the pair 𝑝 and 𝑞 with labels 𝐴𝑝 ≠ 𝐴𝑞 ∈ 𝐿. The coefficient 𝜆 is a constant value balancing the 

two costs. Detailed explanation of each energy term can be found in [130].  

3.7.3 Random Walk 

Random Walk is another region-based segmentation algorithm which treats an image as a graph and 

solves an energy minimizing problem in order to obtain a segmentation [131]. Given an input image, a 

graph consisting of 𝐺 = (𝑉, 𝐸) with nodes 𝑣 ∈ 𝑉  and edges 𝑒 ∈ 𝐸  can be derived. For 3D images, 26-

connected lattice was used for the construction of 𝑉 and 𝐸. An edge 𝑒, spanning two nodes 𝑣𝑖 and 𝑣𝑗, is 

denoted by 𝑒𝑖𝑗. A weight is assigned to each edge in order to provide better path finding. The weight of 

an edge 𝑒𝑖𝑗  is denoted by 𝑤𝑖𝑗 and is given as:  

 𝑤𝑖𝑗 = exp (−𝛽(𝑔𝑖 − 𝑔𝑗)2) (3.7.3.1) 

where 𝑔𝑖 indicates the image intensity at voxel 𝑖. The value of 𝛽 is a changeable parameter value which 

controls the edge weight 𝑤𝑖𝑗, where large values of 𝛽 restricts the random walks from crossing edges 

more easily. The degree of a node is 𝑑𝑖 = 𝛴𝑤𝑖𝑗  for all edges 𝑒𝑖𝑗  incident on 𝑣𝑖 . An input image is 

associated with a graph by identifying each voxel with a node and defining edges being the connection 

between voxels to its neighbors.   

The random walks segmentation algorithm computes the probability for each voxel 𝑥 that a random walk 

leaving that voxel will first arrive at a foreground seed before arriving at a background seed. These 

probabilities can be calculated analytically by solving the Dirichlet problem with the boundary conditions 

given by seed locations. A Dirichlet integral is defined as: 

 𝐷[𝑈] =
1

2
∫ |𝛻𝑈|2 𝑑𝛺

𝛺
 (3.7.3.2) 

for a field u and a region 𝛺. A solution can then be obtained through solving a harmonic function that 

satisfies the Laplace equation: 

 𝛻2𝑈 = 0. (3.7.3.3) 

The Laplacian matrix can be defined as: 
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 𝐿(𝑖, 𝑗) = {
𝑑𝑖

−𝑤𝑖𝑗

0

    
if 𝑖 = 𝑗,
if 𝑣𝑖 and 𝑣𝑖 are adjacent nodes,
otherwise,

 (3.7.3.4)  

where 𝐿(𝑖, 𝑗) is indexed by nodes 𝑣𝑖 and 𝑣𝑗. 

Given a set of foreground seeds 𝑉𝐹 and background seeds 𝑉𝐵, where 𝑉𝐹 ∩ 𝑉𝐵 = ∅, 𝑉𝑆 = 𝑉𝐹 ∪ 𝑉𝐵. We can 

compute the probabilities 𝑥𝑖 that a random walk leaving node 𝑣𝑖 arrives at a node in 𝑉𝐹 before arriving at 

a node 𝑉𝐵 by solving: 

 𝐿𝑈𝑥𝑈 = −𝐵𝑥𝑆. (3.7.3.5) 

 

The variable 𝑥𝑈  represent the set of probabilities corresponding to unseeded nodes. 𝑥𝑆  is the set of 

probabilities corresponding to seeded nodes (i.e., 1 for foreground and 0 for background nodes). 𝐿𝑈 and 

𝐵 correspond to the matrix decomposition of 𝐿 

 𝐿 = [
𝐿𝑆 𝐵

𝐵𝑇 𝐿𝑈
] (3.7.3.6) 

Using the probability obtained by solving (3.7.3.5), each voxel in the image is then assigned to its 

corresponding label for which it has the highest likelihood of being (either as part of the foreground or 

background). As such, the Dirichlet integral for the random walk energy is formulated as follows: 

 𝐸𝑟𝑤 =
1

2
𝑥𝑇𝐿𝑥 (3.7.3.7) 

As each node in the random walk algorithm is labeled as either foreground for background, the probability 

matrix for the entire graph can be formulated as 𝑥 = [
𝑥𝑆

𝑥𝑈
]. Hence (3.7.3.7) can be decomposed as: 

 𝐸𝑟𝑤[𝑥𝑈] =
1

2
[𝑥𝑆

𝑇 𝑥𝑈
𝑇] [

𝐿𝑆 𝐵

𝐵𝑇 𝐿𝑈
] [

𝑥𝑆

𝑥𝑈
] (3.7.3.8) 

The solution of the unlabeled probabilities can be obtained by differentiating (3.7.3.8) with respect to 𝑥𝑈. 

Random Walk with Shape Priors 
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Assuming there is a set of real-valued, nodewise priors 𝜆𝑖
𝑠 that represent the probability density that the 

intensity at node 𝑣𝑖 belongs to the intensity distribution of a predicted label (shape) 𝑔𝑠. Baye’s theorem 

gives the probability that a node 𝑣𝑖 belongs to 𝑔𝑠 as: 

 𝑥𝑖
𝑠 =

𝜆𝑖
𝑠

∑ 𝜆
𝑖
𝑞𝑘

𝑞=1
 (3.7.3.9) 

which can be rewritten in vector notation as: 

 (∑ ∧𝑞𝑘
𝑞=1 )𝑥𝑠 = 𝜆𝑠 (3.7.3.10) 

where ∧𝑠 is a diagonal matrix with the values of 𝜆𝑠. From this, the minimum energy distribution for the 

aspatial functional (3.7.3.7) can then be expressed as: 

 𝐸𝑟𝑤(𝑥𝑠) = ∑ 𝑥𝑞𝑇 ∧𝑞 𝑥𝑞 + (𝑥𝑞 − 1)𝑇𝑘
𝑞=1,   𝑞≠𝑠 ∧𝑠 (𝑥𝑠 − 1). (3.7.3.10) 

These energies may be combined into a single functional with the introduction of a free parameter 𝛾 as: 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑟𝑤 + 𝛾𝐸𝑟𝑤 (3.7.3.11) 

and be minimized with respect to the free nodal probabilities. When adapting with shape priors, 𝛾𝐸𝑟𝑤 is 

replaced with the energy functional of the shape prior label, which in this thesis will hence be referred to 

as 𝐸𝑝𝑟𝑖𝑜𝑟𝑠 . Adaptations of this method have been used for medical image segmentation in multiple 

situations. For further details, please refer to [155-156].  
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Chapter 4. Statistical Shape Modelling 

4.1 Introduction 

As discussed in previous chapters, SSMs have been widely used for computing accurate 3D 

representations of a targeted anatomy. Although methods of SSM construction have already been 

established, an optimized framework for modelling the respiratory airway still do not exist.  This chapter 

focuses on the appropriate method of SSM construction and its applications to model generation. Section 

4.2 details the selected framework used in this thesis for a level-set SSM construction. Section 4.3 

describes the usage of SSM for segmentation through the incorporation of shape energy. Section 4.4 

evaluates the robustness of the created SSM through performing assessment on the generality, specificity 

and compactness. Section 4.5 discusses the captured variances as well as the effectiveness of SSM at 

predicting new shapes.  

4.2 Level-Set Shape Model Construction 

The method of SSM construction can be divided into four procedures: training data creation; shape 

alignment; shape representation; and shape model construction. An overview of the entire process is 

illustrated in figure 4.2.1. 

 

Figure 4.2.1. Framework depicting method of nasal SSM construction 



49 
 

4.2.1 Training Data Creation 

Nasal Cavity 

For the training data material on the nasal cavity, fifty male subjects between the ages of 35 to 50 provided 

consent for allowing their CT data to be used in this research. All CT images were obtained from Royal 

Prince Alfred hospital’s Radiology department with each patient’s image taken with a GE Lightspeed-16 

CT Scanner using Helical CT imaging protocols with an average exposure time of 707 seconds. The resulting 

images maintain a resolution of 220 by 220 mm (512 by 512 voxels) each with an average of 200 slices 

where each slice consists of a voxel width and height of 0.43 mm and a voxel depth of 1.25 mm – yielding 

an approximate overall dimension of 220 by 220 by 250 mm. 

 

Figure 4.2.1.1 Semi-automatic Geodesic Active Contours segmentation performed using GeoS. 

In order to ensure a robust SSM construction, the obtained CT images were semi-automatically 

segmented using GeoS: Geodesic Image Segmentation [28] by an experienced operator with the 

assistance of a nasal surgeon. Figure 4.2.1.1 depicts the software used for segmentation. The segmented 

data were further re-examined by a medical professional with expertise in CT readings to ensure the 

quality of the training data. Each CT image required approximately half an hour to segment. The semi-

automatically segmented images were then used as material for SSM construction. 
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Trachea and Bronchi 

The training data for the trachea and bronchi consisted of 20 whole-body PET-CT patient studies from 20 

patients with non-small cell lung cancer (NSCLC) who were scanned in the Department of PET and Nuclear 

Medicine (Molecular Imaging) at Royal Prince Alfred Hospital (Camperdown, NSW, Australia) on a 

Biograph TruePoint scanner (Siemens Medical Solutions, Hoffman Estates, IL, USA). All the CT images had 

a voxel depth of 3 mm, pixel width and height of 0.97 mm, and a matrix size of 512×512 (500 by 500 mm). 

The ground truth data were semi-automatically segmented by an operator experienced in medical image 

processing using Geodesic Image Segmentation. The segmented components is comprised of the trachea 

which is the central airway that divides at the carina into the left and right main bronchi; the main bronchi 

then subdivide into smaller lobar bronchi and bronchioles. The resulting segmentation were used as 

training data for the creation of SSM. 

4.2.2 Shape Alignment and Representation 

The next step in building our SSM was to align the training shapes (binary segmentations) to a common 

reference shape to ensure accurate computation of statistics across a population. In order to align the 

training data, an intensity-based medical image registration using Elastix [29] was performed on the 

training images (both nasal and tracheal), where rigid registration was initially used to roughly align the 

training images, followed by a similarity registration to capture scale changes. Of the 50 nasal 

segmentation images, a single volume was randomly selected as the reference for registration and the 

rest were separately aligned accordingly to the referenced volume. The same goes to the trachea 

segmentations.  

After registration, Euclidean distance transform was used to convert the binary training data into signed 

distance maps (SDM); the zero level set representation of binary segmentations; where each voxel in a 

training image is assigned with a value that is of the distance between it and its nearest nonzero voxel 

[30]. This allows direct comparisons to be made on a voxel level across a set of SDMs, as voxels of 

corresponding positions should contain similar values and movement. Since each distance map is subject 

to approximations instead of precise positions, it is tolerant to slight misalignments and can still allow PCA 

to capture shape variances inherent in the population due to dependence of nearby voxels in shape 

representation. 
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4.2.3 Principal Component Analysis 

Statistical shape model construction consists of extracting the mean shape and a number of modes of 

variation from a collection of training samples. The variation among the set of segmented training shapes 

is used to describe the variation of the shape model; as such, having a large training dataset would allow 

for a better representation of the overall distribution of allowable shapes.  

We employ shape model construction of Leventon et al. [107] where each shape in the training dataset is 

embedded as the zero level set of a higher dimensional shape. Here, each zero level set distance map 𝑥 is 

a Euclidean distance transform of a binary training shape. The training set 𝑇 consists of a set of signed 

distance maps 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛}, where 𝑛 is the total number of training shapes. The mean distance 

surface 𝑥̅ is first computed by taking the mean of the signed distance maps 

 𝑥̅ =
1

𝑛
∑ 𝑥𝑖  (4.2.3.1) 

The mean shape 𝑥̅ is then subtracted from each 𝑥𝑖 to create a mean-offset map 𝑥𝑖. Each 𝑥𝑖  is placed as a 

column vector in an  𝑁𝑑 × 𝑛  dimensional matrix  𝑀 , where 𝑁𝑑  is the total number of voxels in each 

training shape 𝑥𝑖 . Using Singular Value Decomposition (SVD), the covariance matrix 
1

𝑛
𝑀𝑀𝑇  is 

decomposed as: 

 𝑈𝛴𝑉𝑇 =
1

𝑛
𝑀𝑀𝑇  (4.2.3.2) 

where 𝑈 is a matrix whose column vectors represent the set of orthogonal modes of shape variation and 

𝛴 is a diagonal matrix of corresponding singular values.  

Decomposing the covariance matrix results in an ordered set of eigenvalues and eigenvectors. Each 

eigenvector represents a principal mode of shape variation. The associated eigenvalues characterise the 

amount of shape variance defined by each mode of variation. All training shapes and new nasal shapes 

can be reconstructed through a linear combination of eigenvectors and the mean signed distance model. 

4.2.4 Shape Estimation and Reconstruction 

Using data obtained from equation (4.2.3.2), an estimate of a novel shape 𝑢 can be represented by 𝑘 

principal components in a 𝑘-dimensional vector of shape parameters ∝, with the maximum value of 𝑘 ≤

𝑛: 

 ∝= 𝑈𝑘
𝑇(𝑢 − 𝑥̅)  (4.2.4.1) 
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where 𝑈𝑘  is a matrix consisting of the first 𝑘 columns of 𝑈 that is used to project a surface into the eigen-

space. Given the shape parameters ∝, an estimate of the shape 𝑢, namely 𝑢̃ is reconstructed from 𝑈𝑘  

and 𝑥̅ such that:  

 𝑢̃ = 𝑈𝑘 ∝ + 𝑥̅  (4.2.4.2) 

where 𝑢̃ results in a matrix containing the estimate SDM of the input shape 𝑢. The output of 𝑢̃ can then 

be converted back into that of a binary image. This method is used as a means of validating the accuracy 

of the constructed nasal SSM through its ability at predicting new shapes. 

4.3 Shape Priors 

The estimated shape 𝑢̃ can further be incorporated into an additional energy term and be adapted with 

other segmentation methods. In this thesis, the constructed SSM for the nasal cavity was combined with 

random walker (RW) for image segmentation. The general overview of the RW algorithm was given in 

section 3.7.3.  

4.3.1 Adapting Shape Prior Energy to Random Walker 

To combine level-set shape energy into RW, a new energy term called 𝐸𝑝𝑟𝑖𝑜𝑟𝑠 is defined and added to the 

Dirichlet energy functional given in eq (3.7.3.7), and the entire equation is rewritten as: 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑟𝑤 + 𝐸𝑝𝑟𝑖𝑜𝑟𝑠  (4.3.1.1) 

where 𝐸𝑝𝑟𝑖𝑜𝑟𝑠  is the fitting constraint that requires the function to be as close to the prior label 

assignment as possible, and can be simplified as: 

 𝐸𝑝𝑟𝑖𝑜𝑟𝑠 = (𝑧 − 𝑢̃)𝑇(𝑧 − 𝑢̃) (4.3.1.2) 

where 𝑧 is the solution of random walk probabilities which was formulated as 𝑧 = [
𝑧𝑆

𝑧𝑈
]. In section 3.7.3, 

𝑧 was denoted as 𝑥. To avoid confusions, it has been changed accordingly.  

In order to adapt (4.2.4.2) to the probability framework in graph-based systems using matrix calculus, 𝑥̅ 

needs to be converted from its SDM representation to probability representation using 𝑥̅𝑝𝑟𝑜𝑏 =
1

1+exp (𝑥̅ )
. 

Thus the shape prior energy function can be rewritten as: 

 𝐸𝑝𝑟𝑖𝑜𝑟𝑠 = (𝑧 − (𝑈𝑘 ∝ + 𝑥̅𝑝𝑟𝑜𝑏))𝑇(𝑧 − (𝑈𝑘 ∝ + 𝑥̅𝑝𝑟𝑜𝑏)) (4.3.1.2) 
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A segmentation can then be performed through the minimization of the functional 𝐸𝑡𝑜𝑡𝑎𝑙(𝑧, ∝). 

4.4 Evaluation 

4.4.1 Evaluation Metrics 

We measure the performance of the built SSMs with three quantitative measures: compactness, 

generality and specificity [135]. Compactness evaluates shape correspondence by measuring the amount 

of variance of the resulting SSM. Generality evaluates the resulting SSM’s ability at representing new 

shapes, and specificity evaluates shape correspondence through measuring the SSM’s capability to 

generate new legal shapes. We measured compactness as 𝐶(𝑀) = ∑𝑖=1
𝑀 𝜆𝑖 where 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue 

and 𝑀 being the number of eigenmodes. Model specificity was measured as:  

 𝑆(𝑀) =
1

𝑁
∑𝑗=1

𝑁 ‖𝑣𝑗(𝑀) − 𝑤𝑗
𝑐‖2 (4.4.1.1) 

where 𝑁 is a chosen number of randomly generated shapes, 𝑣𝑗(𝑀) is a randomly generated nasal shape,  

and 𝑤𝑗
𝑐  is the binary nasal training shape in {𝑤1,𝑤2, … 𝑤𝑛} that has the shortest Euclidean distance to 

𝑣𝑗(𝑀). The signed distance map form of 𝑣𝑗(𝑀) was randomly generated as:  

 𝑣𝑗(𝑀) = 𝑥̅ + ∑𝑖=1
𝑀 𝑏𝑖𝑈𝑖  (4.4.1.2) 

where 𝑏𝑖 is a randomly generated value from a Gaussian distribution 𝑁(0, 𝜆𝑖).  

We use relevant comparison metrics [136] to assess the quality of nasal reconstructions: (i) the average 

symmetric surface distance (ASSD in mm), (ii) the average symmetric root mean square surface distance 

(ASRSD in mm), (iii) Absolute Relative Volume Difference (ARVD in %), (iv) Signed Relative Volume 

Difference (SRVD in ml), (v) Maximum Surface Distance (MSD in mm), (vi) Volumetric Overlap Error (VOE 

in %), and the (vii) Dice Coefficient Similarity (DSC) calculated as the overlap between the two volumes 

according to: 𝐷𝑆𝐶 =  
2 |𝑋 ∩ 𝑌|

|𝑋|+|𝑌|
 where 𝑋 is the segmentation label and 𝑌 being the ground truth label. 

The ASSD and ASRSD are given in millimetres and are based on the surface voxels of two segmentations. 

The ASSD reflects the overall accuracy of the segmentation while the ASRSD measures the error variations 

over the shape by including the variance in its calculation. MSD is known as Hausdorff Distance where 

differences between both sets of surface voxels are determined using Euclidean distances, and the 

maximum value yields the maximum symmetric surface distance. VOE measures the volumetric overlap 
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error between two sets of voxels and is given in percentages where a perfect segmentation gives a score 

of 100.  

4.4.2 Compactness 

 

Figure 4.4.2.1. Graph depicting measurement of compactness of constructed SSM. 

4.4.3 Specificity 

For specificity evaluation, we selected N in equation (5) to be 1000. Overall, 50,000 nasal shapes were 

randomly generated as the results of this evaluation. The outcome of S(M) in 𝑚𝑚 difference (Euclidean 

distance divided by total number of voxels, then converted to volume difference) resulted in a range from 

530 to 830 𝑚𝑚3. An averaged volumetric difference of 585 𝑚𝑚3 was measured when comparing each 

training shape against 49 other shapes, which can be used as comparison relative to the specificity results.  
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Figure 4.4.3.1. Graph depicting measurement of specificity of 50,000 nasal shapes across 49 eigenmodes. 

4.4.4 Generalization 

Cross validation was performed on 50 training data set in order to evaluate the generality of our built SSM. 

This process was repeated for every shape in the training data set. The effectiveness of dimensionality 

reduction was measured using direct comparisons in performance between SSM built using different 

amounts of eigenmodes (min 1, max 49). Figure 4.4.4.1 depicts the performance of SSM at predicting new 

shapes measured using ASSD from 1 mode to 49 modes.  

 

Figure 4.4.4.1 Cross validation accuracy measured using ASSD metrics across 1 to 49 eigenmodes 
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Table 4.4.4.1 presents the overall measurement of shape approximation evaluated using a number of 

mentioned metrics. An averaged reconstructed accuracy of 1.51 mm ASSD was observed when using 49 

modes as compared to a measurement of 1.54 mm for 40 modes (40 modes was standard deviation of 

0.15 mm was calculated for ASSD of 49 modes. The majority of shapes scored within similar accuracy 

range, with an outlier difference of no more than 0.64 mm. The differences between ASSD and ASRSD, 

along with the large MSD value suggest that error distribution over the shapes was inhomogeneous. For 

each nasal shape, we computed the asymmetric distance at the voxel level as being the distance between 

each voxel of a reference shape and its projection on the reconstructed shape. It is found that large errors 

mostly occur amongst the nasal side and end passages, where the two areas have been noted to contain 

large amounts of discrepancy within the training data set. These findings of error prone areas were 

expected after initial examination of the training dataset. The overall results of validation confirm the 

success of constructed nasal SSM and that the reconstructed shapes are able to approximately match that 

of the original testing shape, with an averaged error rate of 1.5 mm. 

Modes DSC Mean SVD [ML] SRVD [%] ARVD [%] ASSD [MM] ASRSD [MM] MSD [MM] VOE [%] 

1 69 25.46 16.19 18.29 2.10 3.22 21.98 48.16 

10 71 10.43 6.37 10.09 1.80 2.61 17.46 46.01 

20 71 5.49 3.59 8.34 1.66 2.36 15.83 45.07 

30 72 3.19 2.37 8.38 1.59 2.24 14.83 44.74 

40 72 1.72 1.38 6.83 1.54 2.14 13.91 44.56 

49 73 1.30 1.07 6.78 1.51 2.08 13.28 44.57 

Table 4.4.4.1 Comprehensive evaluation of generality using different metrics 

4.4.5 Case Analysis 

An averaged DSC of 73 and ASSD of 1.51 mm was measured when using 49 eigenmodes, with the highest 

individual accuracy measurement of 81 DSC achieved for shape number 42. Visual comparison between 

the estimated nasal reconstruction shape and original training shape of case number 42 showed high 

similarity in features and overall shape. The worst case accuracy measurement was observed in case 

number 1 which yielded an ASSD of 1.67 mm and a DSC value of 59. This was attributed to the unusual 
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structure observed in training shape 1’s side passage, which consists of two smaller pairs of airway instead 

of the typical one pair airway observed in the majority of the training shapes. The reconstructed and 

original shapes for case number 42 and 1 are shown in figure 4.4.5.1, featuring as visualisation of the best 

and worst shape prediction cases. 

 

Figure 4.4.5.1 Visualization of best and worst shape predicting cases 

Overall, 36 cross validation cases out of 50 were able to achieve a DSC score of equal or higher than 70 

when using 49 eigenmodes. Excluding case number 1, the rest of the reconstructed shape predication 

cases were able to achieve a minimum score of 60 DSC or higher. Further examination reveals that high 

scoring shapes all share approximate similarities in structure and size when investigated visually. 

Comparison of DSC and ASSD score between cross validation cases using 40 and 49 modes reveal near 

similar performance in results between the two. This was expected as 40 modes was initially projected to 

be able to capture up to 98% of total shape variance. Subsequently, using higher number of modes 

generally results in better performance.    

4.4.6 Examination of Eigenmodes 

Examination of the eigenvalues produced by the PCA showed that the first mode was able to capture up 

to 10% of the variance in the training data, with the first thirty-one modes capturing over 95% of the total 

variation. The effect of each eigenmode was investigated through manipulating the shape parameter ∝

 of each mode 𝑖 (Eq. 4.2.4.2) in the interval [−3𝜎, 3𝜎](𝜎 = √𝜆𝑖) and visualising the produced nasal model. 

Figure 4.4.6.1 depicts the first three modes and their sigma deviations. 
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Figure 4.4.6.1 Visualization of the first 3 modes and their sigma deviations 

The first eigenmode focuses on the two front passages of the nasal cavity starting from the entrance of 

the nostrils. As the deviation increases negatively, a difference in the size of the nostril entrances can be 

observed; the larger the deviation is, the bigger and more distorted the entrance becomes. Differences in 

the size and curve of the upper section of the nasal airway were also observed. A display of fullness, or 

well-roundness, can be used to describe the top part of the cavity seen in the -3𝜎 deviation of the first 

mode. As the value of the shape parameter moves towards the positively end of the spectrum, the top 

part of the cavity starts to curve inwards and no longer displays the fullness of the passage, while the 

entrance of the nasal airway becomes considerably smaller.  

The second mode influences the size ratio between the front and back of the nasal structure. As we move 

towards the negative end of the spectrum, the main body of the nasal structure decreases in size while 

the end passage becomes longer and larger. As for the positive end of the spectrum, it becomes the 

opposite where the front part of the cavity becomes larger while the end passage becomes relatively thin 

and small. The third mode influences the length and height of the nasal structure, as can be seen in figure 

4.4.6.2, the overall structure changes in length and height each time we increase or decrease the shape 

parameter. From the left to right, the nasal shapes become taller and longer in length each time the sigma 

deviation increases from negative to positive, and slowly turns from a rectangular sized shape into a semi-

circle shape when viewed from the side.   
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Figure 4.4.6.2 Side view illustration of Mode 3 

Although only the first three modes have been visualised in figure 4.4.6.2, clear distinctions can be 

perceived between each eigenmode. The examination of the first twenty-one modes reveal that each 

mode influences a specific aspect of the nasal shape. The first ten modes heavily influence the overall 

structure of the nasal cavity whereas the effects of the later modes are not as strongly observed. 

Structural changes within the side and upper nasal airway are often correlated to the size of the end nasal 

passage as well as the width of the entire shape. Comparison between different modes of variation against 

the initial training images shows similarity in structure, shape and size. 

4.5 Discussion 

4.5.1 Training Data Size and Complexity 

While current results demonstrated the feasibility of level set representation for nasal SSM construction, 

we suggest that a higher level of shape prediction accuracy can be achieved if a larger training data size 

was used. As with all level set approaches, its ability at predicting shapes outside of its modelled class can 

be subpar when compared with using landmarks [127]. For our training data, an average voxel difference 

of 2500 (575 𝑚𝑚3) was measured when comparing each training shape against 49 other shapes. This 

signifies that each of the training shapes approximately contained 2500 features different to others. To 

further reinforce this view, the first principal mode of our resulting SSM was only able to capture up to 

10% of total shape variance. Overall, 40 eigenmodes were required to model 98% of nasal shape variance. 

This suggested that out of the 50 training shapes, 40 of them contained unique features that are not 

possessed by other shapes, which greatly impacted our SSM’s generality. Hence, we expect an increase in 

training data size will improve on the overall shape prediction results, as with all population based method, 

the larger the size of the training data, the better the outcome will be. 



60 
 

4.5.2 SSM Specificity 

As discussed in the earlier sections of this paper, specificity expresses the capability of SSM to generate 

shapes that are specific to the underlying model. An SSM of high specificity is ultimately what we are 

aiming for as one of the primary goals of this study. However, prior works have noted that for level set 

based SSMs where PCA is computed using signed distance maps, the resulting feature space might not be 

a linear space, which is problematic as the linearity of the space is theoretically one of the assumptions to 

use PCA [127]. This means that with level set SSMs, there exists a probability that it can create shapes 

outside of its legal bounds (non-specific shapes). Therefore, extra evaluative metrics were employed for 

the assessment of specificity in order to determine the validity of all generated shapes.  

Our initial specificity evaluation revealed a steady increase in voxel difference as more and more 

eigenmodes were used. Of the 50,000 randomly generated nasal shapes, the highest average voxel 

difference was measured to be of 3605 voxels. If these voxels are randomly distributed across the nasal 

surface, an accurate distance error could be calculated using voxels to millimetre conversion. However, 

since current specificity evaluation methods do not provide information on the distribution of error voxels, 

the outcome of the evaluation cannot be accurately assessed. Hence, in order to gain a more 

comprehensive understanding on the accuracy and validity of our specificity evaluation, ASSD metric was 

computed once more for each generated shape against the training dataset using the same evaluation 

method. Results listed in the previous section revealed that every mode column maintained an averaged 

distance error of less than 1.5 mm. The highest distance error within the 50,000 nasal shapes was 

measured to be 1.79 mm. Visualisation of the worst specificity case is shown in the figure below. Visual 

examination showed no irregularity in the structure of the generated shape. The worst case for every 

mode M was also visually examined to ensure validity. Overall assessment of shape specificity revealed 

no irregular nasal shape was created in the 50,000 generated shapes. 
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Chapter 5. Using Shape-Priors for Segmentation 

5.1 Introduction 

This chapter focuses on the adaption of prior knowledge for airway segmentation. Section 5.2 adapts the 

constructed level-set SSM directly with random walker as a hard constraint for the segmentation of the 

nasal cavity. Section 5.3 adopts a softer constraint process based on the weights of the constructed graph 

for random walker segmentation on the trachea and bronchial airway. The majority of section 5.2 is taken 

from [149] while section 5.3 is primarily comprised of [150]. 

5.2 Nasal Cavity Segmentation 

5.2.1 Overview 

The nasal cavity belongs to the upper respiratory tract and is a major passage for the transportation of 

oxygen into the lung. Accurate segmentation of the nasal cavity plays a pivotal role for the creation of 

patient specific nasal models which are essential for the diagnosis and treatment planning of nasal-related 

disorders and diseases [6, 27], be of benefit to endonasal surgeries [137], and is critical for research on 

nasal airflow and drug delivery [24, 25]. Due to the complexity and diversity of the nasal structure as well 

as the lack of boundary distinction to other airway components, existing algorithms are unable to produce 

a standalone segmentation of the nasal cavity.   

The current known methods [43-50] are capable of producing adequate segmentations of the upper 

respiratory tract consisting of the nasal cavity, paranasal sinuses and the pharynx using relatively simple 

algorithms such as thresholding [45-48], region growing [43, 44], level-sets [49], and a level-sets 

distribution model [50]. However, the majority of these methods requires manual delineation [43-46] 

and/or requires the imaging modality to be taken from cone-beam CT (CBCT) [46-49] which provides 

higher contrast and reduces the amount of motion artifacts. More importantly, these methods are 

restricted by their inability to differentiate and/or separate the nasal cavity from other airway regions 

components within the upper respiratory tract, thus limiting its application in nasal drug delivery [25] and 

computational fluid dynamics [51].  

The nasal cavity is recognized as a difficult structure to segment due to the complexity and diversity of its 

anatomy; its interconnectedness to other airway regions; the lack of clear boundaries; and the narrowness 

observed in many of its airway passages [27, 29]. Figure 5.2.1.1 exemplifies the close proximity of the 
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paranasal sinuses to the nasal cavity and highlighted some of the connectivity observed between the two 

regions. The nasal cavity is further directly connected to the entrance of the nostrils, making it difficult for 

generic segmentation algorithms to prevent leakage. In order to establish clear boundaries around the 

nasal cavity and to separate it from other airway regions, spatial and anatomical information needs to be 

utilized.   

 

Figure 5.2.1.1 Examples illustrating the connectivity between the nasal cavity to other airway regions in CT. 

Statistical shape models (SSM) have been widely employed in the medical image analysis literature as a 

reliable method for segmentation [119]. Based on a set of training data, the variability of a class of objects 

can be captured by means of a normal distribution, and the SSM can incorporate this knowledge for 

segmentation. However, due to the diversity of the nasal cavity structure, it is challenging to establish 

precise point correspondence for the construction of a generic SSM of the discrete nature. Level-set 

approaches, which are based on evolving contours do not require point correspondence and can still 

incorporate statistical knowledge as shape priors into its energy formulation [107, 128]. Although level-

set methods have been known to suffer from issues such as becoming trapped inside a local minimum 

during segmentation, these issues can be avoided by adapting its shape priors for use with other advanced 

segmentation methods such as graph-based algorithms. 

Graph-based algorithms such as graph-cuts (GC) [130] or random walker (RW) [131] have been adapted 

to work with level-set SSMs in recent literature to overcome the known issues of level-set SSMs at 

segmentation [129]. Graph-based algorithms formulate an image as a graph, model voxels as graph 

vertices, assign weights to vertex connectivities and produce vertex labeling by minimizing energy 

functionals usually based on weights. Compared to GC, RW can better localize specific regions within an 
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image through the initialization of foreground and background voxels. This makes RW a preferable choice 

to be adapted with SSM shape priors for nasal segmentation.              

In this study, we propose a new fully automated segmentation algorithm designed to overcome the 

challenges involved in differentiating the nasal cavity from other airway components of the same voxel 

intensity range. Compared to other literature, our paper makes the following contributions: (i) we present 

a robust probabilistic-atlas approach for initialization, allowing automatic derivation of the foreground 

and background seeds needed for our improved statistical RW segmentation; and (ii) we introduce a novel 

constraint method to locally bind the estimated shape probabilities of RW at each differential iteration 

stage during segmentation to converge towards a global minimum. Our proposed method was evaluated 

with 30 volumes of clinical CT data. 

5.2.2 Methods 

Initialization: Affine and Bspline registration using Elastix [138] is performed on the atlas CT images to 

align them to the input target image. The transformation parameters of the registration is then applied 

on the atlas segmentations to warp them to the same reference frame as the target image. A probabilistic 

multi-atlas 𝐴 is constructed as the average of the registered segmentations {𝐺1, 𝐺2, … , 𝐺𝑛} over the total 

number of the atlases 𝑛, denoted as 𝐴 =
1

𝑛
∑ 𝐺𝑗

𝑛
𝑗=1 . 

Thresholding is applied on the input image to extract the position of the airway voxels. By overlaying 𝐴 on 

top of the thresholded image 𝑇, an estimate 𝑃 of the nasal cavity can be obtained from the union of the 

thresholded image and the atlas, defined as: 𝑃 = 𝐴 ∪ 𝑇. The input image is further cropped in order to 

better localize the nasal cavity and to reduce the computation time. Smaller airway regions captured by 

𝑃 are removed to ensure accurate seeds derivation. Foreground seeds are derived from the remaining 

airway regions that lie within 𝑃. Background seeds are derived from tissue voxels and airway voxels of a 

distance 𝜎 away from 𝑃, with 𝜎 being a numerical parameter specified during initialization.  

Once the required seeds have been derived and an estimate of the nasal cavity 𝑃 is obtained, we construct 

the shape priors to capture the statistical variances of the nasal cavity. 

SSM Construction: We adopt a similar construction method as to section 4, where a mean offset matrix 

of the training data, denoted as {𝑥1 − 𝑥̅, 𝑥2 − 𝑥̅, … , 𝑥𝑛 − 𝑥̅} is constructed, with 𝑥1 to 𝑥𝑛 being the signed 

distance representations of the training shapes and 𝑥̅  being the mean denoted as 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 . The 

resulting eigenvector 𝑈 and eigenvalues obtained from the singular value decomposition (SVD) of the 
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mean offset matrix holds the decomposed features of the nasal cavity shape across a linear distribution. 

An estimate of a novel nasal shape 𝑠𝑒𝑠𝑡, can be represented by 𝑘 principal components in a 𝑘-dimensional 

vector of coefficients, 𝛼: 

 𝑆𝑒𝑠𝑡 = 𝑈𝑘𝛼 + 𝑥̅ (5.2.2.1) 

Due to the diversity of the nasal cavity structure, it is necessary for outlier shapes to be removed from the 

training data. A similarity guided framework was implemented to assign a weight 𝑤 to each training shape 

𝑡 calculated as 𝑤 =
 |𝑃∩𝑡|

|𝑃|+|𝑡|−|𝑃∩𝑡|
. Nasal shapes that scored below the mean weight were removed from 

the training dataset. 

Segmentation: We embed the constructed SSM in a graph-based segmentation framework and formulate 

an image as a graph 𝐺 = (𝑉, 𝐸), where each vertex 𝑣 ∈ 𝑉 corresponds to an image voxel and each edge 

𝑒 ∈ 𝐸 connects two vertices in  𝑉. We borrow the idea from RW and construct the Dirichlet energy as 

𝐸𝑟𝑤 = 𝑧𝑇𝐿𝑧, where 𝐿 is the Laplacian matrix defined in [131] and denotes the pairwise affinities among 

the vertices in 𝑉 , and 𝑧 ∈ 𝑅|𝑉|×2  is a labeling vector indicating voxel foreground (background) 

probabilities. In our nasal cavity segmentation problem, we define a new energy term which holds the 

captured shape variances from the nasal SSM to the labeling vector of image voxels. The labeling vector 

can be optimized by solving a graph Dirichlet problem to produce the final probabilistic labeling. The 

proposed energy term was defined as: 

 𝐸 𝑝𝑟𝑖𝑜𝑟𝑠 = 𝑧 − (𝑈𝑘𝛼 + 𝑥̅𝑝𝑟𝑜𝑏))T(𝑧 − (𝑈𝑘𝛼 + 𝑥̅𝑝𝑟𝑜𝑏)) (5.2.2.2) 

where 𝑥̅𝑝𝑟𝑜𝑏 =
1

1+exp (𝑥̅)
 and 𝑧 = [

𝑧𝑀

𝑧𝑁
] , where 𝑧𝑀  denotes the predefined labels i.e. foreground and 

background seeds, and 𝑧𝑁  denotes other labels. Given the definition of 𝐸𝑝𝑟𝑖𝑜𝑟𝑠 , the complete energy 

function is formulated as 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑟𝑤 + 𝐸𝑝𝑟𝑖𝑜𝑟𝑠. 

An estimation of the nasal cavity is obtained by minimizing the proposed functional 𝐸𝑡𝑜𝑡𝑎𝑙(𝑧𝑁, 𝛼) , 

iteratively, with respect to each of its variables 𝑧𝑁 and 𝛼. First, we start from the mean shape and initialize 

𝛼 = 0. Since 𝐸𝑡𝑜𝑡𝑎𝑙 is convex, we differentiate 𝐸𝑡𝑜𝑡𝑎𝑙 with respect to 𝑧𝑁 and find the critical point yielding: 

 𝑧𝑁 = (𝐿𝑁 + 𝐼)−1(2(𝑈𝑘𝛼 + 𝑥̅𝑝𝑟𝑜𝑏) − 𝐵T𝑧𝑀) (5.2.2.3) 
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where I is an identity matrix, L is the Laplacian matrix of the image and B is the matrix partitioned from L 

which correlates the labeled set to the unlabeled set. Secondly, we use the updated 𝑧𝑁 to differentiate 

𝐸𝑡𝑜𝑡𝑎𝑙 once more with respect to 𝛼, which yields the following: 

 𝛼 = (𝑈𝑘
T𝑈𝑘)−1𝑈𝑘

T(𝑧𝑁 − 𝑥̅). (5.2.2.4) 

In order to reduce the amount of over-segmentation caused by the influence of the shape prior term 

without lessening its effect, we constrained the output of 𝐸𝑡𝑜𝑡𝑎𝑙  to remain within the boundaries of the 

nasal airway by computing a probability of the estimated foreground voxels and removing those which 

overlapped into the tissue regions based on their intensity value at each step of the differential iteration.  

5.2.3 Results 

Experimental Setup 

We performed the leave-one-out cross validation on 30 CT images (30 folds) where 29 ground truth labels 

were used each time for the creation of the PA and SSM. We set the initialization parameter σ=5. This 

value was empirically derived based on experiment validations.   

We compared our algorithm to both the conventional and recent state-of-the-art segmentation 

algorithms including Probabilistic Multi Atlas (MA) [139], Grow-Cut (GC) [140], Seeded Region Growing 

(SRG) [141], Random Walker (RW) [131], Distance Regularized Level Set (DRLSE) [104], and Laplacian 

Coordinates (LAP) [142]. For MA, consistent to our algorithm, for each test images, 29 atlases were 

registered into the input image and the final result was the average of the transformed labels. We used 

the same seeds derived from our algorithm to initialize the segmentation for GC, SRG, LAP, DRLSE and RW. 

We used the same evaluation metrics as the previous SSM generality assessment. 

Experimental Results 

Table 5.2.3.1 presents the segmentation results of our algorithm compared with other methods. Our 

algorithm achieved the highest averaged DSC (90.9%), the lowest averaged distance error (0.34±0.07 mm), 

the lowest ASRSD (1.07 mm), and the least amount of VOE (16.6%). 
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Evaluation Metrics DSC ASSD ASRSD MSD VOE 

Our method 𝟗𝟎. 𝟗 ± 𝟐. 𝟐 𝟎. 𝟑𝟒 ± 𝟎. 𝟎𝟕 𝟏. 𝟎𝟕 ± 𝟎. 𝟏𝟏 𝟗. 𝟓 ± 𝟎. 𝟕 𝟏𝟔. 𝟔 ± 𝟑. 𝟔 

GC 65.08±4.7 1.72±0.2 2.98±0.6 22.31±7.2 50.67±4.7 

RW 64.59±4.4 0.98±0.04 1.67±0.01 10.58±0.3 50.03±4.3 

DRLSE 63.91±0.9 1.13±0.01 1.91±0.1 12.23±0.7 52.78±1.0 

LAP 61.79±2.8 1.22±0.04 2.04±0.2 11.51±0.6 54.39±2.9 

MA 60.91±3.7 1.06±0.1 1.63±0.2 9.87±0.9 56.08±4.1 

SRG 60.21±6.2 1.26±0.2 2.22±0.2 15.43±1.0 55.88±5.9 

Table 5.2.3.1. Comparative evaluation of our algorithm against other methods at segmenting the nasal cavity 

Quantitative evaluation of our proposed algorithm (blue) when compared against the RW (orange) is 

shown in figure 5.2.3.1. We selected RW as the base method for comparison to demonstrate the effect of 

the level set shape priors on nasal segmentation. Our algorithm which incorporated statistical knowledge 

achieved the best minimum (85.1%) and maximum (97.2%). 

 

Figure 5.2.3.1. A quantitative DSC evaluation of our algorithm with comparison to the base RW algorithm 
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Figure 5.2.3.1. Comparison of our method (right column) against MA, RW, and LAP 

5.2.4 Discussion 

Overall, our method was able to achieve a much higher accuracy rate primarily due to the influence of 

statistical priors to the segmentation algorithm. The nasal passages contains very narrow airway pathways 

in which the width of the passage could, at certain sections of the structure, be as thin as roughly two 

voxels across in distance. Furthermore, those voxels at times contains a lowered intensity value due to 

fuzziness of the CT image. This causes seed-reliant algorithms to experience under-segmentation in 

certain areas of the nasal cavity. The effect of the shape priors is able to overcome this difficulty and allow 

our algorithm to connect across thin passages found within the nasal structure through the evolution of 

the shape approximation initialized during the differential stage of the segmentation. Over-segmentation 

was also minimized, preventing leakage into non-nasal airway regions such as the paranasal sinuses. The 

majority of the other tested algorithms were unable to minimize this issue.  

Figure 5.2.3.2 illustrated where the majority of the segmentation errors occur at for other algorithms. 

Region-based methods (RW, LAP, GC, SRG) all experienced the same weakness at segmenting the 

narrower passages within the nasal cavity structure, mainly caused by the fuzziness of the voxel intensity. 

RW, LAP, and DRLSE performed considerably better than GC and SRG due to the advantage of the 

background seeds which prevented the majority of the leakage. GC and SRG suffered from both under-

segmentation and over-segmentation, with the majority of the over-segmented area being at the 
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entrance of the nostrils. Algorithms that made use of prior knowledge tend to perform better in our 

experiments due to their ability to detect the narrower airway passages within the nasal structure.  

5.3 Airway Tree Segmentation 

5.3.1 Overview 

Positron emission tomography (PET) combined with computed tomography (CT) is a routine imaging 

modality for the diagnosis and interpretation of malignant diseases of the thorax [143]. Accurate airway 

segmentation is critical for the localization of sites of abnormal metabolism detected with PET-CT. Such 

localization is pivotal to accurate disease staging prior to consideration of surgery and for radiation 

therapy planning [55, 144]. The CT performed in PET-CT has a lower radiation dose when compared to 

conventional chest CT. This results in images with a relatively lower soft tissue contrast which makes the 

separation of the airway tree from adjacent structures challenging. Figure 5.3.1.1 exemplifies the 

difference between low-contrast CT with high-resolution CT (images from the EXACT09 [52] dataset). In 

this example, we can see that when compared against low-contrast CT, high-resolution CT exhibits 

considerably greater anatomical details and maintains clearer boundary distinctions between airway and 

non-airway voxels. In addition, high-resolution CT is less susceptible to anatomy-related artefacts such as 

airway obstructions and heart beat motion. These image characteristics adds greater complexity in 

segmentation of low-contrast CT images. 

 

Figure 5.3.1.1 Comparison of airway structure between a low-contrast CT (left) 0.97x0.97x3 mm pixel resolution 
(512x512) compared against a high-resolution CT (right) with 0.6 x 0.6 x 0.6 mm pixel resolution (512x512). The 
inserts are1.5x zoomed images. The high-resolution CT have greater details depicting the airway structure. 
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This section presents a fully automated airway segmentation algorithm designed to overcome the 

characteristics of low-contrast CT images. Compared to other methods, our approach makes the following 

contributions: (i) we introduce the use of multi-atlas for the initialization of the segmentation process. For 

low-contrast images that are prone to cause leakage, it is important to accurately determine foreground 

and background voxels. By incorporating shape priors gained from our multi-atlas initialization, robust 

seeds can be derived for segmentation; and (ii) we propose the use of an efficient locally constrained 

random walker algorithm. Random Walker (RW) is a well-known interactive segmentation algorithm 

which requires manual input of seed points and segments the target image as a weighted graph structure 

containing nodes and edges [131]. By combining RW with spatial and anatomical information derived from 

our shape priors, a knowledge-based random walk can be achieved through constraining the edge weights. 

Our algorithm was evaluated against 20 clinical low-contrast CT from PET-CT studies and was compared 

against other well-known algorithms including region growing [141], multi-atlas [145], grow-cut [146], and 

geodesic active contour segmentations [132].  

5.3.2 Methods 

Our method of airway segmentation can be separated into two components: initialization and 

segmentation. The novelty of our method is to utilize shape prior knowledge gained from multi-atlas 

registration to accurately derive robust seeds for our locally constrained random walk segmentation. We 

further made use of our shape priors to restrain the weights among graph edges to lean towards voxels 

with high probability of being part of the airway structure. An overview of the method is shown in figure 

5.3.2.1. 



70 
 

 

Figure 5.3.2.1 Flowchart of our proposed segmentation method. The visualized result shown in part (G) contains an 
obstructed airway branch which is disconnected from the main airway. 

Initialisation: affine and Bspline registration using Elastix [138] were performed on the atlas CT images to 

the input target image. The transformation parameters of the registration were then applied to the atlas 

segmentations to warp them to the same reference frame as the target image. The registered atlas 

segmentations will then be used as shape priors for our algorithm. The results of each shape prior 

transformation was superimposed onto one image to form an initial multi-atlas-based estimation of the 

main trachea structure, which we refer to it as the shape priors region. A visual illustration of the initialized 

shape priors region is shown in Figure 5.3.2.1 (B). In order to reduce computation time, the input image 

was cropped based on the initial placement of the shape priors.       

A signed distance map of the shape priors region was computed to assign a distance value to voxels that 

do not reside in the shape prior region. We selected a distance value 𝜎 , as a parameter used for 

performing a constrained threshold on airway voxels within distance 𝜎 to the shape priors region. The 

thresholded voxels become the initial search area for our airway approximation step as illustrated in 

Figure 5.3.2.1 (E). 3D connected region detection was used to group the thresholded voxels into separate 

airway regions. We iteratively looked through each region 𝑟 for those with a high voxel count and have a 

high probability of being part of the trachea airway. We used the parameter value 𝛾 as selection criteria 

where regions that have a higher voxel count than 𝛾 were kept. Regions that have a voxel count of below 
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𝛾 were removed as background noise. A probability value 𝑃(𝑟) was then calculated and assigned to the 

remaining regions. The value 𝑃(𝑟) can be derived as:  

 𝑃(𝑟) =
|𝑟|∩|𝑋|

|𝑟|
 (5.3.2.1) 

where 𝑋 is the shape priors region. We used 𝜑 as another parameter value for the selection of regions for 

airway approximation. All regions where 𝑃(𝑟) > 𝜑 were kept as the final approximation. The derived 

airway approximation region(s) were further added to the shape priors region.   

The seeds used for segmentation were derived from the airway approximation. For each slice within our 

airway approximation, 2D connected region detection was employed in order to locate the number of 

airway regions within in 2D slice. We selected regions with a pixel count of greater than 𝜆 to derive seeds. 

This was to ensure that our algorithm would only derive seeds from definite regions within the airway 

structure. The centroid of each region was then calculated and used as the foreground seed for random 

walk as shown in Figure 2 (G). Background seeds were derived from the voxels that are on the edge of the 

constrained signed distance region where the boundary voxels maintain a distance value of smaller than 

𝜎.    

Segmentation: we adapted the work reported by Grady et al [131] as part of our segmentation pipeline. 

Given an input image, a graph consisting of 𝐺 = (𝑉, 𝐸) with nodes 𝑣 ∈ 𝑉 and edges 𝑒 ∈ 𝐸 can be derived. 

For 3D images, 26-connected lattice was used for the construction of 𝑉 and 𝐸. An edge 𝑒, spanning two 

nodes 𝑣𝑖  and 𝑣𝑗 , is denoted by 𝑒𝑖𝑗 . A weight is assigned to each edge in order to provide better path 

finding. The weight of an edge 𝑒𝑖𝑗  is denoted by 𝑤𝑖𝑗 and is given as:  

 𝑤𝑖𝑗 = exp (−𝛽𝛼(𝑔𝑖 − 𝑔𝑗)2) (5.3.2.1) 

where 𝑔𝑖 indicates the image intensity at voxel 𝑖. The value of 𝛽 is a changeable parameter value which 

controls the edge weight 𝑤𝑖𝑗, where large values of 𝛽 restricts the random walks from crossing edges 

more easily. 𝛼 is calculated as: 

 𝛼 = 1 + (𝑃(𝑣𝑖) − 𝑃(𝑣𝑗)) (5.3.2.2) 

where 𝑃(𝑣𝑖) is the probability of voxel 𝑖 being part of the airway structure. The probability is derived as: 

 𝑃(𝑣𝑖) =  
𝑥𝑖

𝑁
 (5.3.2.3) 
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such that 𝑥𝑖 is the number of overlap of shape priors at voxel 𝑖 and 𝑁 is the total number of priors used.  

The weight of 𝛼 makes the random walk harder to cross fuzzy boundaries that are outside the region of 

the shape priors or voxels where the probability values are low. This will prevent leakage from occurring 

during segmentation. 

The RW algorithm computes the probability for each voxel that a random walk leaving that voxel will first 

arrive at a foreground seed before arriving at a background seed. These probabilities can be computed by 

solving a linear equations with a graph Laplacian matrix defined as: 

 𝐿(𝑖, 𝑗) = {
𝑑𝑖

−𝑤𝑖𝑗

0

    
if 𝑖 = 𝑗,
if 𝑣𝑖 and 𝑣𝑖 are adjacent nodes,
otherwise,

 (5.3.2.4) 

where 𝐿(𝑖, 𝑗) is indexed by nodes 𝑣𝑖 and 𝑣𝑗. 

Given a set of foreground seeds 𝑉𝐹 and background seeds 𝑉𝐵, where 𝑉𝐹 ∩ 𝑉𝐵 = ∅, 𝑉𝑆 = 𝑉𝐹 ∪ 𝑉𝐵. We can 

compute the probabilities 𝑥𝑖 that a random walk leaving node 𝑣𝑖 arrives at a node in 𝑉𝐹 before arriving at 

a node 𝑉𝐵 by solving 

 𝐿𝑈𝑥𝑈 = −𝐵𝑥𝑆. (5.3.2.5) 

The variable 𝑥𝑈  represent the set of probabilities corresponding to unseeded nodes. 𝑥𝑆  is the set of 

probabilities corresponding to seeded nodes (i.e., 1 for foreground and 0 for background nodes). 𝐿𝑈 and 

𝐵 correspond to the matrix decomposition of 𝐿 

 𝐿 = [
𝐿𝑆 𝐵

𝐵𝑇 𝐿𝑈
]. (5.3.2.6) 

Using the probability obtained by solving (6), each voxel in the image is then assigned to its corresponding 

label for which it has the highest likelihood of being (either as part of the foreground or background).  

While the typical size of the Laplacian matrix 𝐿 is constructed from 𝐸 × 𝐸, which often results in a large 

matrix especially when applied on 3D images. The size of 𝐿  can be heavily reduced if spatial and 

anatomical knowledge was provided beforehand. By constraining the search space of 𝐿 to only the voxels 

that are within a predetermined search space, as shown in Fig 5.3.2.1. (D), a much smaller Laplacian matrix 

can be used for computing the final probabilities.  
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For our algorithm, we locally constrained the search space of 𝐿 by building the Laplacian matrix using only 

edges 𝑒𝑖𝑗  found within the constrained space of our signed distance map created from the combination 

of our shape priors region and the airway approximation, where 𝑖 and 𝑗 are voxels that with a distance 

value of less than 𝜎 + 1. In order for RW to successfully perform segmentation on a constrained space of 

𝐿 , the distance of the constrained search space needs to be greater than 𝜎  so that a walk can exist 

between all foreground and background seeds.   

Below is a pseudo code implementation of our method. 

Algorithm 

Initialisation: 

1: Perform multi-atlas registration using affine and bspline transformations  

2: Obtain the shape priors region from the registration 

3: Calculate a coarse boundary based on the voxel distance away from the highest overlap voxel within the shape 
priors region 

4: Crop input image using boundary calculation 

5: Create a signed distance map of multi-atlas region 

6: Perform thresholding on voxels that have a signed distance value of under 𝜎 

7: Perform 3D region detection on the thresholded result 

8: For each region 𝑟 sort by descending order based on the number of voxels 

If the number of voxels in 𝑟 > 𝛾  

If 𝑃(𝑟) > 𝜑 

Add 𝑟 to airway approximation 

End if 

End if 

    End 

9: For each slice 𝑠 in airway approximation 

 Perform 2D region detection 

 For each region 𝑠𝑟 detected 

If number of pixels in 𝑠𝑟 > 𝜆 

Calculate centroid of 𝑠𝑟 

End if 

 End  

    End  

10:  Derive foreground seeds from centroids 



74 
 

11: Derive background seeds from the boundary of the constrained threshold region 

Segmentation: 

12: Create a search space localization from signed distance map on voxels that have a distance value of under 
𝜎 + 1 

13: Create probabilistic weight map (explained further in later section) 

14: Perform random walk on localized search space 

 

5.3.3 Results 

Experimental Setup 

We performed the leave-one-out cross validation on 20 CT images (20 folds) where 19 ground truth labels 

were used each time as part of our initialization process against the input image. Parameter setting for 

initialization was as following: 𝜎 = 4 , 𝛾 = 800 , 𝜆 = 26 , and 𝜑 = 0.8 . These values were empirically 

derived based on experiment validations. For our setup, we kept the parameter value 𝜎 relatively low in 

order to better accommodate for 𝛾; as larger values of 𝜎 would cause additional lung voxels to be included 

during the approximation phase which would require higher values of 𝛾 to compensate for accuracy. The 

parameter 𝛾 was explained previously for determining which voxel regions to remove from the search 

space (Section II. B). Generally, higher 𝛾 values provide better accuracy as it would remove almost all other 

airway regions picked up during the initial threshold. However, we kept our 𝛾 value low in order to locate 

proximal airway regions that may be disconnected from the main bronchi due to pathological conditions. 

The resulting seed points were then used as part of the starting parameters for our segmentation process, 

where the edge weight parameter 𝛽 was empirically set to 50.   

We compared our proposed algorithm with both semi-automated and fully-automated segmentation 

algorithms including the Multi-Atlas based segmentation (MA) [139, 145], Grow Cut (GC) [140, 146], 

Connected Region Growing (CRG) [141] and Geodesic Active Contour (GAC) [132]. For MA, as consistent 

to our algorithm, for each test images, the rest of 19 atlases were registered into the input image and the 

final result was derived by averaging the transformed labels. We used the same seeds definition to 

initialize the segmentation for GC, CRG and GAC. For CRG a standard deviation was needed to be defined 

as convergence criteria. We iteratively tested the results with an increment of 0.1 and the best performing 

results were reported.  

Experimental Results 



75 
 

Table 5.3.3.1 presents the segmentation results of our algorithm when compared to the other algorithms 

evaluated using the DSC measure. Our algorithm had the highest overall mean (87.2), the smallest 

standard deviation (2.8) and the best minimum (78.6) and maximum accuracy (90.8). GAC was the next 

best performing algorithm with an overall average of (77.4). GC, CRG, and MA performed much worse 

compared to our method and GAC. 

Method Mean SD Min Max 

Our Algorithm 87.1 2.8 78.7 90.8 

GC 54.1 21 11.5 90 

CRG 63.8 19 7.6 76 

GAC 77.4 3.4 68.9 83.2 

MA 57.2 8.3 36.4 66.5 

Table 5.3.3.1 Comparative evaluation of our segmentation algorithm against other methods on 20 testing dataset 
measured using DSC 

Table 5.3.3.2 presents the segmentation results of our algorithm with comparison to other methods 

evaluated using the full set of comprehensive metrics. Our method had the lowest averaged distance error 

of 0.37 mm ASSD, 0.9 mm ASRSD, and contained the least amount of VOE at 21.6%.  

Evaluation 
Metrics 

Our 
algorithm  

GC CRG GAC 

SRVD [ml] 13.8 -34.6 63.2 51.9 

ARVD [%] 13.7 35.3 81 51.9 

ASSD [mm] 0.37 2.21 1.8 2.8 

ASRSD [mm] 0.9 3.8 2.4 7.4 

MSD [mm] 12.3 15.8 10.4 39.8 

VOE [%] 21.6 48.2 49.3 37.1 

Table 5.3.3.2 Comparative evaluation of our segmentation algorithm and other methods measured using ASSD, 
ASRSD, ARVD, SRVD, MSD and VOE. 
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Figure 5.3.3.1 Example of airway segmentation results among different algorithms with comparison to our method. 
Green (our method), yellow (MA), purple (GA), blue (CRG) and red (GAC) 

 

5.3.4 Discussion 

Quantitative Evaluation 

Our algorithm performed the best overall. This was mainly because it was able to address the region 

leakage via spatial constraints derived from the multi-atlas registration. Our algorithm further benefited 

the most from robust seeds derived from our initialization process optimized for our modified RW 

segmentation. Compared to conventional region-based methods, our algorithm was designed to take full 

advantage of knowledge derived from shape priors. Generally, region-based methods including GC, CRG 

and GAC performed well at segmenting the trachea when it was distinctively separated from the lungs; 

however, over segmentations commonly occurred when the distance between the trachea and the lungs 

became small, i.e., less than 3 voxels, and/or if the boundary voxels were fuzzy. Figure 5.3.3.1 shows 

examples of our algorithm correctly segmenting the trachea section while GC, GAC and CRG suffered from 

over-segmentation. GC performed the worst overall due to the excessive leakage. CRG generally 

performed well and had fewer leakages in the majority of the images; however it failed in images with 

weak boundaries. CRG had the lowest minimum accuracy of (7.6 DSC) and also suffered most from under-

segmentation in the majority of the images, where smaller bronchial branches often went unsegmented. 

GAC performed second where it encountered less leakages compared to GC and CRG. However, the main 

issue that was experienced with GAC was the reliance on seeds. We observed that GAC was able to 

accurately segment sections of the airway which contains seeds derived from our initialization process. 

However, GAC was unable to extend its segmentation range beyond the location of derived seeds deeper 
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into the airway branches. MA also performed relatively poorly when compared to other evaluated 

methods, which was likely due to the large variations observed in the trachea where MA was based on 

averaging from the probabilistic atlases. Although the overall accuracy of MA was not high, as expected, 

it encountered minimal leakage due to the spatial constraint of the multi-atlases. 

Segmentation Challenges 

The greatest challenge experienced when segmenting the airway structure on low-contrast CT images was 

resolving the region leakage problem. Unlike in high-resolution CT images, the walls of the bronchial tree 

tends to fade into the background soon after the trachea bifurcates as shown in Figure 4. In situations like 

this, region-based algorithms tend to leak out into the lungs. Additional challenges encountered were 

from pathological conditions found within the airway structures such as patients with missing lungs or 

those suffering from tracheobronchial injury [147] where an entire section of the trachea to bronchi 

passage was disconnected from the main airway.    

 

Figure 5.3.3.2 Illustration showing the disappearance of airway wall. The airspace that are connected to the main 
trachea structure are highlighted in red. 

To overcome these challenges, we designed our initialization to identify large disconnected sections of 

the airway structure during the airway approximation stage. Seeds were then allocated to all the identified 

sections of the airway. We achieved this through the use of shape priors initialized from our multi-atlas 

registration. Airways that fell within the boundaries of the shape priors were included within our 

approximation process. Random walk segmentation using multiple seeds, including those derived from 

disconnected airway sections, was then able to correctly segment these pathological CT images.   
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Application to PET-CT Visualization 

Figure 5.3.3.3 shows an application of our airway segmentation in a volume rendered visualization of a 

multi-modality PET-CT lung cancer. The CT volume rendering (with transfer function manipulations the 

same as in [148]) was augmented on a single slice of the PET image. In this figure, we can see the tumor 

region in context of the segmented trachea airway structure. Each column depicts different views: (a) 

coronal in left column; (b) axial in middle column; and (c) sagittal in right column. In this example, the 

segmented PET-CT enables visualization of patho-physiological function with PET in the spatial context of 

its anatomical CT counterpart. Our trachea segmentation provides visual distinction and thus allows 

differentiation of the trachea with neighboring CT structures.   

 

Figure 5.3.3.3. Volume visualizations of PET-CT in a lung cancer patient in which the segmented trachea (colorized 

by red) is outlined: (a) coronal; (b) axial; and (c) sagittal views. The relation of the parenchymal tumour (labeled and 

indicated by arrows) and its relation to the central airways is more easily appreciated from our segmentation. 

  



79 
 

Chapter 6. Computational Fluid Dynamics 

6.1 Introduction 

This chapter focuses on the applications of SSM and its clinical significance especially in the field of 

computational fluid dynamics (CFD). CFD is a branch of fluid mechanics that uses numerical analysis and 

data structures to solve and analyze problems that involve fluid flows. Accurate modelling and mapping 

of the nasal airway is essential for deriving a clearer understanding of the pathophysiology and airflow 

within the respiratory system. Many clinical applications and studies, such as nasal surgery, require 

detailed information regarding each individual patient’s nasal structure and airflow, and recently, the use 

of computer-assisted measures via CFD has become a standard approach to model the airflow within the 

nasal cavity [26]. Although CFD modelling has become a fast and reliable research tool for the studying of 

nasal pathophysiology and airflow [24, 149-152], there is a lack of reliable frameworks to efficiently 

segment the nasal cavity from medical images for the creation of CFD models. Due to the connectivity 

between the nasal cavity and other airway components, such as the paranasal sinuses where the 

connected airways share a similar intensity value range and do not possess any distinct boundaries to 

differentiate between them, conventional algorithms are unable to reliably extract the nasal passage 

without manual delineation [153]. Hence, the majority of the methods targeted at the nasal structure 

have been either forced to include all nearby airway components as part of their segmentation [39, 49, 

50] or require manual intervention in order to derive results [43-45]. In order to overcome the current 

limitations of a lack of efficient pipeline for the creation of accurate nasal models, and to meet the 

increasing demand of more readily available nasal models, an alternative method of nasal cavity model 

production needs to be considered. 

Based on the initial segmentation framework presented in the earlier chapter, this thesis proposes an 

automated pipeline for the creation of nasal CFD models. In order to validate the usefulness of the 

proposed pipeline, the output of our segmentation models will be directly compared to the ground truth 

models in regards to performing CFD of turbulent flow through the nasal cavity. The results of the 

comparison will demonstrate the effectiveness of our nasal segmentation framework.  

6.2 Experimental Setup 

Ten pairs of nasal segmentations (from the output of our method and the corresponding ground truth) 

were arbitrarily selected for conducting CFD simulations. The segmentation output were directly exported 
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as STL and read into ANSYS SpaceClaim (version 17.0) where the geometry was checked for quality and 

any remaining spikes or disconnected regions were removed. This cleaned geometry was then read into 

ANSYS Fluent Meshing (version 17.0) where the inflow and outflow regions were separated from the wall 

region. A wrapping algorithm was then applied with minimum and maximum surface mesh sizes of 

typically 0.1 and 2.5 mm, respectively. An arbitrarily dimensioned rectangular prism was introduced as a 

body of influence which acted as a secondary sizing control limiting the size of surface mesh to a maximum 

of 0.1 mm in regions of the nasal cavity that were separated by narrow gaps. Once the volumetric region 

was computed it was automatically meshed using polyhedral elements growing according to the local size 

field of the region. Inflation was applied at all walls with the Fluent Meshing default algorithm, which uses 

a first aspect ratio of 10, last aspect ratio of 4.8, growth rate of 1.2 and is set to generate five layers at the 

walls. Node locations were then automatically adjusted by systematically reducing the threshold for the 

maximum skewness to approximately 0.6. The nasal geometry was then prepared for solving and a mesh 

file was produced and imported into the ANSYS Fluent solver. The number of elements per model ranged 

from 600,000 to about 1,000,000.  

The study by Engelhardt et al. [154] which models airflow and particle deposition in the nasal cavity 

presents calculated Reynolds (Re) numbers for various flow rates. For the breathing rate of 30 L/min a Re > 

3000 was calculated, indicating turbulent flow. A flow rate of 30 L/min was selected to replicate fast nasal 

inhalation as would practically occur with administration of therapeutic nasal sprays. As such, the flow 

was modelled using the realizable k-ε turbulence model and a target mass flow rate of 6.13×10‒4 kg/s (30 

L/min) set at the pressure outlet, where the static pressure was also set to 0 Pa gauge. The total pressure 

at the inlet was set to 0 Pa (gauge). The coupled solver was used with convergence achieved when all of 

the locally scaled residuals fell below 10‒4, which typically required 200 iterations.  

Once the simulation was converged, Lagrangian particle tracking with a turbulent dispersion model was 

applied. The particle diameter size distribution is described using the Rosin-Rammler distribution, with 

the distribution parameters determined from experimental data obtained by analyzing water plumes from 

a spray bottle using a Malvern Spraytec®. The minimum and maximum diameters were set to 0.12 µm 

and 1000 µm, respectively, with a mean diameter of 85.8 µm and a spread parameter of 1.92. After the 

flow had converged, water droplets were injected from each inlet and the simulation completed when all 

the particles had either escaped from the outlet or collided with the rigid walls of the nasal cavity, which 

was set to trap particles upon contact.  
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6.3 Results 

CFD simulations of turbulent flow was performed on the ten pairs of nasal models. The case number of 

the nasal models corresponds to the segmentation outcomes listed in figure 5.2.3.1. For each model, the 

pressure drop was calculated across the geometry in CFD-Post (Version 17.1) with the majority of the 

pressure drops ranging from 4–14 Pa (Figure 6.3.1). Between ground truth and segmented models, the 

results were consistent and not very different from one another except for cases 8 and 18. Additionally, 

case 12 (not shown) reported a pressure drop of about 100 Pa for both the ground truth model and the 

segmented model.  

 

Figure 6.3.1. A summary of the pressure drop calculated for the different cases. Results shown in orange are from 
the ground truth models whereas those in blue are from the segmented models.  

 

The results of case 10 were arbitrarily selected as a representative case to demonstrate the mesh quality, 

pressure values across the model and the velocity streamlines. In this particular case, the ground truth 

model had a cell count and maximum cell skewness of 639,000 and 0.6, respectively. The segmented 

model had approximately 13% increase in the cell count at 734,000, with a maximum cell skewness of 

0.65. The mesh and the overall model geometry are shown in Figure 6.3.2. 
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Figure 6.3.2. An image of the geometries showing the computational mesh for the nasal cavity case 10. The model 
on the left is the ground truth model and on the right is the segmented model. 

Figure 6.3.3 shows the geometry used for case 12. When comparing the geometry of case 12 with that of 

case 10, there exist “lumpy” artefacts highlighted in region 1a which do not exist in the case 10 geometry 

and are more prominent in the segmented model of case 12. Additionally, region 2a and 2b show a 

disconnection between the inferior turbinate and the nasopharynx which is consistent in both models in 

case 12 but does not exist in case 10. 

 

Figure 6.3.4. The geometry of the nasal cavity for case 12. The model on the left is the ground truth model and that 
on the right is the segmented model. Region 1a and 1b demonstrate the lumpy regions on the model and region 2a 
and 2b demonstrate a disconnection between the inferior turbinate and the nasopharynx. 
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Figure 6.3.5 illustrates the geometry used for case 18. When comparing the geometry to both case 10 and 

case 12 above, there exists another difference in that the inferior turbinate is connected the middle 

turbinate (present in the region highlighted by the red square). Additionally, when comparing with the 

two models in case 18, the ground truth model does not show this feature. Moreover, whilst case 18 does 

not contain lumpy artefacts or disconnected regions like those in case 12, the superior region of the nasal 

cavity does not appear to be fully formed as in case 10 (Figure 6.3.2). The connection between these two 

regions was a feature that was also observed in case 8 (not shown). 

 

Figure 6.3.5. The nasal cavity geometry for case 18. The model on the left is the ground truth model and that on the 
right is the segmented model. The region highlighted by the red square shows a narrow connection formed between 
the inferior and middle turbinates in the segmented model.  

The contour plots, shown in Figure 6.3.6, for both the ground truth and segmented models show very 

similar pressure distributions. There is a region of higher pressure on the left nostril indicated in both 

models, as well as higher pressure in the superior parts of the nasal cavities where the geometry narrows. 

The middle and inferior regions show lower pressure when compared with the superior regions and flow 

results (Figure 6.3.7) indicate the majority of the flow is passing through this region. Additionally, flow 

passing through this region is travelling at higher velocities (3.6 m/s) when compared with the superior 

regions (1.29 m/s).  
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Figure 6.3.6. Wall pressure plots for the ground truth model (left) and segmented model (right) indicating the overall 
change in pressure across the mode from approximately ‒21 Pa to 0.2 Pa.  

 

Figure 6.3.7 Streamline plots originating from the inlets for the ground truth (left) and the segmented model (right) 
coloured by velocity magnitude.  
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Additionally, an XZ plane was generated approximately halfway through each model (Y = 0.04 m) to display 

the local velocity at that region (Figure 6.3.8). Higher velocities are observed in the narrower regions of 

the cross-section with the highest velocity (4.7 m/s) occurring in the region of the middle turbinate of the 

ground truth model, through which the majority of the flow travels. In this region, the segmented model 

has a slightly lower velocity (4.2 m/s) 

 

Figure 6.3.8. Local velocity magnitude on and XZ plane located at (Y = 0.04 m). The ground truth model (left) and 
segmented model (right) show similar patterns but the velocity in the ground truth model is higher.  

 

There was little variation found between the ground truth and segmented models in each case for particle 

deposition efficiency which was calculated as the mass flow of particles that were trapped in the model 

during the simulation (Figure 6.3.9). The cases that demonstrated different air flow patterns within each 

case and when compared with the other cases, had particle deposition results that remained consistent 

with every other case. The amount of particles trapped ranged from 90% to 97% across the 10 the pairs.  
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Figure 6.3.9. The percentage of particles trapped by the walls of the nasal geometry for each case: ground truth 

model (orange) and segmented models (blue). 

6.4 Discussion 

The primary objective of these simulations was to determine if models produced from our segmentation 

methods could be used to replace ground truth models as a quicker, more convenient alternative to 

having to manually segment the nasal cavity. The first apparent difference between the two types of 

models was the difference in the cell count of the mesh. As a result of the sensitivity of the segmentation 

process, a large majority of the segmented models have regions in their morphology which are artefacts 

and do not physically exist in the actual nasal cavity. Regions or lumps were apparent in case 12, 

particularly in the posterior region of the geometry just above the middle turbinate when comparing the 

ground truth with segmented models. In some cases, these regions are connected to the main body of 

the nasal cavity by narrow channels which when meshed produce large cell counts because a large 

number of small-sized cells are required to resolve these regions. Additionally, case 12 demonstrated a 

disconnection between the inferior turbinate and the nasopharynx which was not observed in any other 

case but was consistent within the pair. An explanation of this could be a fault in the CT scans or some 

underlying pathology in the patient rather than an error in the segmentation as it was present in the 

ground truth model as well.  



87 
 

These differences in connection of the geometry, particularly in case 12, explain the higher pressure drop 

that was observed when compared with other cases. Moreover, case 12 had another distinguishing 

morphological feature in which the nasopharynx region (i.e. outlet) is smaller in cross-sectional area and 

as such, for the same mass flow passing through attains a lower pressure affecting the overall drop in 

pressure. The narrow regions which connect the inferior turbinate to the middle turbinate in case 8 and 

18 do not contribute to large changes in the external morphology of the nasal cavity, but do change the 

internal structure. They create small holes within the geometry allowing flow to pass through, creating 

pressure and velocity differences between the ground truth and segmented models. They alter the 

expected physical air flow patterns as they are not actual present in the patients from which the CT scans 

are obtained. The aforementioned artefacts are prominent to some extent in most of the cases analysed 

and thereby the slight difference in results in the majority of the cases can be attributed to them.  

Considering the differences in air flow patterns, it would be expected that the particle deposition results 

between the cases and across the cases would vary as well. For the given breathing rate which was 

selected to represent a fast nasal inhalation rate and determined to be turbulent, it would be expected 

that a large majority of the injected droplets would come into contact with the rigid nasal walls and this 

was observed. Overall, The results of CFD showed small differences in airflow and particle deposition 

efficiency between the majority of segmented and ground truth models. 
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Chapter 7 Conclusion 

7.1 Airway Modelling and Segmentation 

The work presented in this thesis addressed the problem of the lack of standardized and quantifiable 

models of the upper airway through the introduction of a robust level set SSM approach capable of 

modeling the statistics of the nasal cavity using 50 clinical training data. This method was also applied to 

model the trachea and bronchial airway using 20 PET-CT clinical training data. Non-parametric SDMs were 

utilized to overcome the challenges of shape correspondence. Experimental results suggested that our 

proposed SSM was able to accurately capture the majority of variations observed from clinical datasets. 

Specificity assessment showed the capability of SSM at generating large amounts of valid nasal shape 

models. A normalized model of the upper airway based on an average of 50 patient image data was further 

created and 3D-printed. Overall, the constructed nasal SSM is the first of its kind based on a large clinical 

dataset and will be of benefit to future research in nasal sleep diagnosis, drug delivery and airflow 

modelling.  

A robust RW algorithm adapted with level-set shape priors was implemented to automatically segment 

the nasal cavity, and thus, demonstrating its capability at separating the targeted structure from its 

surrounding neighbors in the upper respiratory tract. The superior performance of the proposed 

algorithm was demonstrated when compared to other well-known segmentation methods. Overall, it is 

the first automated segmentation algorithm targeted at segmenting the nasal cavity directly. For the 

trachea and bronchial airway, another fully automated algorithm was presented in this thesis to segment 

the airway structure under low-contrast CT images. Experimental evaluation was conducted on 20 low-

contrast clinical patient studies and resulted in higher segmentation accuracy when compared to other 

conventional airway segmentation algorithms. The proposed algorithm showed potential at segmenting 

the trachea airway under pathological conditions. 

7.2 Future Work 

This thesis presented a framework for modelling the statistics of airway structures and applying 

knowledge of the anatomy to improve segmentation. Although the initial aims of this thesis may have 

been achieved, the work conducted could always benefit from additional evaluations and improvements. 

For the modelling of the upper airway, additional training data would have been of benefit for bringing in 

more variations and increasing the population-size for measuring the statistics. The modelling of the 
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paranasal sinuses regions could provide further potential for conducting new experiments as well as be 

useful for other research. While the models produced from both the constructed SSM and individual 

segmentations have been tested for 3D-printing, an optimized framework for patient-specific nasal 

printing can still be derived and established. Further testing samples of the trachea and bronchial airway 

especially of those containing pathological conditions would also be of benefit and can be used to evaluate 

the robustness of the proposed algorithm on segmenting disconnected airway.   
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Appendices 

A.1 Acronyms  

Acronyms used throughout the thesis and their definition: 

ASM: Active Shape Model 

CT: Computed Tomography 

EVD: Eigenvalue Decomposition 

LAP: Laplacian Coordinates  

LSDM: Level Set Distribution Model 

DRLSE: Distance Regularized Level Set Evolution 

GC: Grow-Cut 

LC: Local Constraint 

MA: Multi-Atlas 

MI: Mutual Information 

MRI: Magnetic Resonance Imaging 

PET-CT: Positron Emission Tomography-Computed Tomography  

PCA: Principal Component Analysis 

PDM: Point Distribution Model 

ROI: Region of Interest 

RW: Random Walker 

SDF: Signed Distance Function 

SDM: Signed Distance Map 

SRG: Seeded Region Growing 

SSM: Statistical Shape Model 

A.2 Eigenvalue Output 

 Eigenvalues for Nasal SSM 
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𝝀 in order of decreasing 
magnitude 

𝝀

∑ 𝝀
 

Percentage 

3.08E+06 1.59E-07 15.87% 

2.72E+06 1.4E-07 14.02% 

1.82E+06 9.39E-08 9.39% 

1.73E+06 8.89E-08 8.89% 

1.16E+06 5.97E-08 5.97% 

9.02E+05 4.64E-08 4.64% 

8.25E+05 4.25E-08 4.25% 

5.98E+05 3.08E-08 3.08% 

5.69E+05 2.93E-08 2.93% 

4.94E+05 2.55E-08 2.55% 

4.80E+05 2.47E-08 2.47% 

4.52E+05 2.33E-08 2.33% 

3.72E+05 1.91E-08 1.91% 

3.23E+05 1.66E-08 1.66% 

3.05E+05 1.57E-08 1.57% 

2.90E+05 1.5E-08 1.50% 

2.64E+05 1.36E-08 1.36% 

2.25E+05 1.16E-08 1.16% 

2.13E+05 1.1E-08 1.10% 

2.07E+05 1.07E-08 1.07% 

1.95E+05 1.01E-08 1.01% 

1.69E+05 8.72E-09 0.87% 
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1.60E+05 8.22E-09 0.82% 

1.51E+05 7.75E-09 0.78% 

1.30E+05 6.72E-09 0.67% 

1.22E+05 6.26E-09 0.63% 

1.13E+05 5.8E-09 0.58% 

1.05E+05 5.41E-09 0.54% 

9.75E+04 5.02E-09 0.50% 

9.48E+04 4.88E-09 0.49% 

9.03E+04 4.65E-09 0.47% 

8.71E+04 4.49E-09 0.45% 

7.98E+04 4.11E-09 0.41% 

7.36E+04 3.79E-09 0.38% 

7.04E+04 3.63E-09 0.36% 

6.54E+04 3.37E-09 0.34% 

6.47E+04 3.33E-09 0.33% 

6.19E+04 3.19E-09 0.32% 

5.66E+04 2.91E-09 0.29% 

5.21E+04 2.68E-09 0.27% 

5.04E+04 2.6E-09 0.26% 

4.75E+04 2.45E-09 0.24% 

4.35E+04 2.24E-09 0.22% 

4.22E+04 2.17E-09 0.22% 

3.83E+04 1.97E-09 0.20% 
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3.27E+04 1.68E-09 0.17% 

3.22E+04 1.66E-09 0.17% 

3.08E+04 1.59E-09 0.16% 

2.87E+04 1.48E-09 0.15% 

0.00E+00 0 0.00% 

 

A3. List of Tools used 

The following software were used throughout this study: 

 Elastix Registration Toolkit 

 GeoS Segmentation 

 ITK and VTK Toolkit 

 ImageJ 

 Matlab 

 MITK 

 Solidworks 
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