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We study passive scalars in turbulent plane channels at computationally high Reynolds
number, which allows to observe previously unnoticed effects. The mean scalar profiles
are found to obey a generalized logarithmic law which includes a linear correction term
in the whole lower half-channel, and they follow a universal parabolic defect profile in the
core region. This is consistent with recent findings regarding the mean velocity profiles in
channel flow. The scalar variances also exhibit a near universal parabolic distribution in
the core flow and hints of a sizeable log layer, unlike the velocity variances. The energy
spectra highlight the formation of large scalar-bearing eddies with size proportional to
the channel height which are caused by local production excess over dissipation, and
which are clearly visible in the flow visualizations. Close correspondence of the momen-
tum and scalar eddies is observed, the main difference being that the latter tend to
form sharper gradients, which translates into higher scalar dissipation. Another notable
Reynolds number effect is the decreased correlation of the passive scalar field with the
vertical velocity field, which is traced to the reduced effectiveness of ejection events.

1. Introduction

Turbulent Poiseuille flow in a pressure-driven channel between parallel flat plates is the
most widely studied case among canonical wall-bounded flows, being an ideal candidate
for direct numerical simulation (DNS). Since the pioneering study of Kim et al. (1987)
at low Reynolds number (Reτ ≈ 180, where Reτ = h/δv, with h the channel half-height
and δv = ν/uτ the viscous length scale), several studies have appeared in which Reynolds
numbers are sufficient to observe a nascent logarithmic layer in the mean velocity pro-
file (Moser et al. 1999; del Álamo & Jiménez 2003; Bernardini et al. 2014; Lee & Moser
2015). These studies have also allowed to observe the onset of structural changes in the
overall flow organization, mainly related to the strengthening of outer-layer global modes
which are found to superpose onto and modulate the energetic near-wall eddies (Hutchins
& Marusic 2007).

At least as important as the statistics of the velocity field are the statistics of passive
scalars suspended in the fluid phase, which are representative for the behavior of diluted
contaminants, and/or the temperature field under the assumption of low Mach numbers
and small temperature differences (Monin & Yaglom 1971; Cebeci & Bradshaw 1984).
It is well known that measurements of concentration of passive tracers and of small
temperature differences are extremely complicated, and in fact available measurements
of even basic passive scalar statistics are rather limited (Gowen & Smith 1967; Kader
1981; Subramanian & Antonia 1981; Nagano & Tagawa 1988), mostly including the mean
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flow properties. Hence, DNS constitutes an invaluable tool for the study of passive scalar
turbulence in Poiseuille flow. Early numerical experiments of passive scalars in turbulent
channel flow (Kim & Moin 1989) were carried out at Reτ = 180, for Pr = 0.1, 0.71, 2
(here the molecular Prandtl number is defined as the ratio of the kinematic viscosity to
the thermal diffusivity, Pr = ν/α), by assuming uniform volumetric heating and constant
wall properties. That study first showed close similarity in the near-wall region between
the streamwise velocity and the scalar fields. Specifically, the scalar field was found to
be organized into streaks whose size scales in wall units, with a correlation coefficient
between streamwise velocity fluctuations and scalar fluctuations close to one. Numerical
studies of scalar fields in a channel driven by differences at the two walls were carried
out by Lyons et al. (1991); Wikström & Johansson (1998); Kawamura et al. (2000).
While the behavior in the near-wall region is similar between the forced case and the
assigned scalar difference case, much stronger fluctuations are observed in the latter,
owing to the formation of strong core eddies with an organization similar to the velocity
field in turbulent Couette flow (Pirozzoli et al. 2014). Furthermore, low-Re simulations
seemed to suggest influence of the wall state on the Karman constant for the scalar
fields (Kawamura et al. 2000).

Studies of the effect of Pr in a wide range have been rather limited so far, mainly
because of the need of extremely fine meshes to resolve the scalar fields, since the ratio
of the Kolmogorov scale to the Batchelor scalar dissipative scale is supposed to be of
the order of Pr−1/2 (Batchelor 1959; Tennekes & Lumley 1972). Kawamura et al. (1998)
performed DNS of channel flow at Reτ = 180 with a constant time-averaged heat-flux
condition, in the range of Prandtl number 0.025 6 Pr 6 5. The results proved validity
of Kader’s correlation for the passive scalar distribution (Kader 1981), and of heat flux
correlations originally developed by Sleicher & Rouse (1975) for pipe flow. Except for
very low Pr , the study also showed near universality of the distributions of the turbulent
Prandtl number, with values of order unity throughout. Schwertfirm & Manhart (2007)
extended the study to Pr ≈ 50, basically observing a continuation of the lower-Pr results
of Kawamura et al. (1998).

Reynolds number effects on passive scalar fields are difficult to study in DNS, ow-
ing to the rapid increase of the necessary computational resources. Kawamura et al.

(1999) performed DNS of channel flow with forced scalar fields at Reτ = 180, 395, and
Pr = 0.025, 0.2, 0.71. The main conclusion was that the log-law constant for the scalar
field is roughly independent on the Reynolds number, with values of the Karman constant
in the range 0.40 6 kθ 6 0.42. Similarly, the turbulent Prandtl number was found to
be weakly affected by Reynolds number variations. Abe et al. (2004b) further extended
the range of Reynolds numbers to Reτ = 1020, focusing the attention on the variation
of the surface heat flux fluctuations. Those authors estimated a value of the Karman
constant of kθ ≈ 0.43, and observed an increase of the r.m.s. wall heat flux with Reτ ,
to a greater extent in the case of low Pr . Based on the same DNS database, Abe &
Antonia (2009) quantified the degree of similarity between velocity and scalar fields and
their corresponding derivatives near the wall through correlation coefficients, joint pdfs,
Taylor series expansions, and instantaneous fields. That study indicated that impaired
similarity between u and θ occurs in regions where the magnitude of the streamwise
pressure gradient is large due to the presence of near-wall vortical motions. The magni-
tudes of the scalar-velocity correlation coefficients were found to be relatively unaffected
by the Reynolds number, although the authors explicitly stated that a firm conclusion
could not be made due to the small range of Reτ available at that time. Antonia et al.

(2009) quantitatively analyzed similarities and differences between the fluctuating ve-
locity vector and temperature fluctuations in turbulent channel flow. Strong similarities
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Flow case Line style Reb Reτ Nx Ny Nz ∆x+ ∆y+
w ∆z+ Tuτ/h

P550 dashed 20063 548 1280 384 640 8.1 0.06 5.4 29.8
P1000 dash-dot 39600 995 2560 512 1280 7.3 0.09 4.9 23.5
P2000 dash-dot-dot 87067 2017 5120 768 2560 7.4 0.13 5.0 13.2
P4000 solid 191333 4088 10240 1024 5120 7.5 0.19 5.0 3.31

Table 1: List of parameters for turbulent channel flow cases. Reb = 2hub/ν is the bulk
Reynolds number, and Reτ = huτ/ν is the friction Reynolds number. Nx, Ny, Nz are
the number of grid points in the streamwise, wall-normal, and spanwise directions. ∆x+,
∆z+ are the grid spacings in the wall-parallel direction and ∆y+w the minimum spacing in
the wall-normal direction, in wall units. The simulation time T is given in terms of eddy
turnover times h/uτ . An error stretching function y(η) = erf [a (η − 0.5)] / erf (0.5 a),
a = 4, η = [−1, 1] has been used to cluster points in the wall-normal direction.

Scalar field Symbol Pr Boundary conditions

A Square 0.2 Uniform forcing
B Triangle 0.71 Uniform forcing
C Diamond 1 Uniform forcing
D Circle 0.71 Assigned difference

Table 2: Test conditions for passive scalar fields.

were observed for the low-wavenumber part of the spectra, whereas the scalar spectra
were found to exhibit larger energy at high wavenumbers, especially in the outer region,
where the scalar field was found to be less mixed than the velocity field.

The main motivation of the present study is to extend DNS of passive scalars to higher
Reynolds numbers, specifically up to Reτ ≈ 4000. It is known (Bernardini et al. 2014;
Lee & Moser 2015) that in this range of Reynolds numbers a near logarithmic layer starts
to emerge in the mean velocity profile, hence asymptotic high-Reynolds-number effects
are expected to manifest themselves which were not observed in previous studies.

2. Computational setup

We solve the Navier-Stokes momentum equations for a divergence-free velocity field

∂uj

∂xj
= 0,

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
+Π δi1, (2.1)

where Π is the driving force required to maintain a constant flow rate in the x direc-
tion. The equations are discretized in a Cartesian coordinate system (x, y, z denote the
streamwise, wall-normal and spanwise directions) using staggered central second-order
finite-difference approximations, to guarantee that kinetic energy is globally conserved in
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the limit of inviscid flow. Time advancement is carried out by means of a hybrid third-
order low-storage Runge-Kutta algorithm coupled with the second-order Crank-Nicolson
scheme combined in the fractional-step procedure, whereby the convective terms are
treated explicitly and the diffusive terms are treated implicitly, limited to the wall-normal
direction. The Poisson equation for the pressure field stemming from the incompressibil-
ity condition is efficiently solved through Fourier transform-based methods (Kim & Moin
1985). A full description of the algorithm is provided in Orlandi (2000). The fluid equa-
tions are augmented with the transport equations for passive scalar fields with finite
diffusion

∂θ

∂t
+

∂θuj

∂xj
=

1

RePr

∂2θ

∂xj∂xj
+Q, (2.2)

where θ is the transported variable (temperature or concentration), Pr is either the
Prandtl number or the Schmidt number, and Q is a suitable source term. In the numerical
discretization the transported variable is located at the cell center in such a way that the
variance of θ is exactly preserved in the limit of inviscid flow. The source term is defined
to be either zero in the case of walls with different values of θ, or dynamically adjusted in
such a way that the integral of θ over the channel is strictly constant in time, in analogy
with the treatment of the driving force in the momentum equation. This approach is
slightly different from that used by Kim & Moin (1989), who also adopted a spatially
uniform forcing, however with an a-priori selected source term Q = 1/Pr . Our approach
also differs from that used by Kawamura et al. (1998) and Abe et al. (2004b), who
enforced a strictly constant wall flux in time by adding a spatially non-uniform source
term. In our case, although the wall flux is not strictly constant in time, its value starts
to fluctuate with excursions of no more than 1% with respect to the mean value, once
a statistically steady state is achieved. For the sake of efficiency and accuracy (Kleiser
& Zang 1991; Bernardini et al. 2013) the computations are carried out in a reference
frame in which the bulk velocity is zero. In addition to allowing a larger computational
time step, this expedient minimizes the dispersion errors associated with finite-difference
discretization.

Details on the computational mesh and on the parameters used for DNS of the fluid
phase are provided in table 1. The set-up is very similar to our previous study (Bernardini
et al. 2014), with the main difference of slightly improved resolution in all coordinate
directions. The DNS have been carried out in a (Lx × Ly × Lz) = (6πh × 2h × 2πh)
computational box, which is sufficiently long to accommodate the largest outer-layer
flow structures. Points are clustered towards the walls according to an error function
mapping, to have the first point at ∆y+w ≈ 0.1, and the maximum spacing in terms of local
Kolmogorov units is (∆y/η)max ≈ 2.4 for all flow cases. The resolution in the wall-parallel
directions in terms of Kolmogorov units is ∆x/η . 5.3, ∆z/η . 3.6 throughout. Since the
maximum Prandtl number is unity Batchelor units (Batchelor 1959) are larger than or
equal to Kolmogorov units, hence the resolution for the scalar fields is no worse than for
the velocity field. The adequacy of the mesh resolution has been checked by monitoring
the streamwise and spanwise passive scalar spectral densities (not shown here). The
absence of any energy pile-up and the exponential decay of the high-wavenumber-end of
the spectra is a strong hint that the sharp gradients of passive scalar fields are correctly
resolved. A grid sensitivity study has also been performed for the P550 flow case, which
has shown that doubling the mesh points in the wall-parallel directions yields a change
of less than 1% in the peak scalar variance. The adequacy of the time interval for the
statistical analysis was also tested for the most critical P4000 flow case by comparing the
mean and the variance of the passive scalar field, collected in quarters of the full window.
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Figure 1: Mean scalar profiles for flow cases P550 (a), P1000 (b), P2000 (c), P4000 (d).
The data are compared with the fits of Kader (1981) (thick grey lines) and with DNS
data of Abe et al. (2004b) at Reτ = 1020 (solid symbols in panel b). Refer to tables 1,2
for nomenclature of the DNS data.

The results of this exercise (not shown) indicate scatter of about 1 %, confined to the
outer wall layer. Four different conditions for the passive scalar fields are considered (see
table 2) for each Reτ , including three simulations with uniform forcing and θ = 0 at
the two walls, and one with zero forcing and assigned difference between the two walls
(θ = ±1). Of special interest is the case Pr = 1 (scalar field C), which obeys to the
same equations as the streamwise velocity field, in the absence of nonlinear feedback
effects and in the absence of redistribution to the other velocity components through the
pressure-strain term (Pope 2000).

3. Results

3.1. Mean and r.m.s. values

The mean scalar distributions are given in figure 1 in wall units, where the friction
temperature is defined as

θτ =
α

uτ

dθ

dy

∣
∣
∣
∣
w

, (3.1)

α being the scalar diffusivity. Semi-empirical fits for the mean scalar profiles in channel
flows with constant heating were given by Kader (1981) based on available experimental
data, under the main assumption that the overlap layer exhibits logarithmic variation of
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the type

θ − θw
θτ

=
1

kθ
log y+ + Cθ(Pr), (3.2)

where kθ is the Karman constant for the scalar field, and the additive constant is an
empirically determined function of the Prandtl number. The curve fits of Kader (1981)
with the original set of constants (including kθ = 0.47) are compared with the DNS data
in figure 1. All passive scalar profiles visually exhibit a near-logarithmic layer which is
widening with Reτ and, as well established, the effect of Prandtl number increase is the
increase of the additive constant in the logarithmic law, the slope of the graphs being
visually the same. The scalar field D with assigned difference at the two walls has a
different behavior than the others, with mean profiles which start to deviate from the
corresponding forced case B at y/h ≈ 0.2 and sloping toward the channel centerline where
the mean gradient in not zero, similar to the mean velocity profile of Couette flow. This
behavior led (Kawamura et al. 2000) to conclude, based on low-Re simulations, that the
scalar Karman constant should be different between the forced and assigned temperature
case. However, based on the present high-Re data we are led to conclude that the mean
scalar profile in the logarithmic layer is very little affected by the type of forcing. Overall
good agreement with Kader’s correlation is found, with larger deviations at low Prandtl
number. Kader’s formula typically overshoots the numerical values, with deviations up
to 4% in the log layer. Reasons for this difference may reside in the fact that the wall
heat flux is not precisely constant in the DNS. The DNS data of Abe et al. (2004b) at
Reτ = 1020, Pr = 0.71 are also shown for comparison in panel (b). While the logarithmic
part of the profile is very similar to ours, a fuller scalar profile is found in their DNS
which better agrees with Kader’s fit. Additional simulations has been carried out In order
to clarify this issue we have carried out additional DNS using the same computational
set-up as Abe et al. (2004b) in terms of box size and/or scalar forcing scheme. Nearly
identical results as Abe et al. (2004b) are obtained when the same forcing is used, which
suggests that the forcing has an impact on the computed statistics, at least as far as the
core part of the channel is concerned.

The inner-scaled profiles exhibit clear Prandtl number sensitivity of the scalar fields,
owing to different thickness of the conductive sublayer. To highlight outer scaling, the
velocity and scalar profiles are shown in defect form in figure 2. The figure suggests close
universality of the profiles with respect to both Reynolds and Prandtl number, in line
with theoretical expectations (Monin & Yaglom 1971). In the overlap layer, the scalar
profiles are nearly logarithmic, with

θCL − θ

θτ
= −

1

kθ
log η +Bθ, (3.3)

where η = y/h, and θCL is the mean centerline value. Fitting the DNS data in defect
representation is easier than for the inner-layer representation, and yields an approximate
value for the Karman constant for the scalar fields of kθ ≈ 0.46, and an additive constant
Bθ ≈ 0.18. For comparison, fitting the defect velocity profile (see figure 2a) yields k ≈

0.41, B ≈ 0.46, hence the wake strength is found to be greater in the velocity field than
in the scalar fields.

The shape of the scalar profiles in the core layer of channels have been the subject of
several conjectures in the past (Monin & Yaglom 1971; Kader 1981; Cebeci & Bradshaw
1984), which typically led to empirical polynomial fits of the scalar profiles from exper-
imental data. It has been recently shown (Pirozzoli 2014; Orlandi et al. 2015) that the
crude assumption of uniform eddy viscosity is rather accurate in predicting the mean ve-
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Figure 2: Mean velocity (a,c) and scalar (b,d) profiles in defect form for scalar fields A-C.
Logarithmic fits of the overlap profiles are shown in panels (a,b), and parabolic fits of
the core profiles are shown in panels (c,d) with thick grey lines. Refer to tables 1,2 for
nomenclature of the DNS data.

locity profiles for all canonical wall-bounded flows, including Poiseuille flow. Specifically,
under the assumption that the relevant outer eddy velocity scale is uτ and the typical
size is h one has

νt = cµuτh, (3.4)

where cµ is a suitable constant, whence the parabolic core mean velocity law follows

u+

CL
− u+ =

1

2cµ
(1− η)

2
. (3.5)

We argue that a uniform eddy diffusivity assumption may also apply to passive scalar
fields, under the ansatz

αt = cαuτh, (3.6)

which yields the parabolic core scalar law

θ+
CL

− θ+ =
1

2cα
(1− η)

2
. (3.7)

Fitting equation (3.7) to the DNS data in figure 2 yields cµ ≈ 0.076, cα ≈ 0.093, the
relevant turbulent Prandtl number being Pr t = νt/αt ≈ 0.81. The accuracy of the fit is
apparently very good down to η ≈ 0.2, regardless of the Reynolds and Prandtl number.
Although the inner- and outer-scaled scalar profiles appear to exhibit near-logarithmic
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Figure 3: Diagnostic function for mean velocity (a) and for scalar fields A-C (b). The
thick grey lines correspond to equation (3.8) with k = 0.41, γ = 1.1, β = 0 (a), and
kθ = 0.46, γθ = 1.15, βθ = 0 (b). Refer to tables 1,2 for nomenclature of the DNS data.

layers, and the log-layer approximation is in fact satisfactory for most practical purposes,
a more into-depth analysis shows that the situation is probably more intricate (Pirozzoli
2014). In figure 3 we show the log-law diagnostic function, Ξu = y+du+/dy+, Ξθ =
y+dθ+/dy+, for the velocity and the scalar fields. Clearly, constancy of Ξ would indicate
the presence of a genuine log layer. As noticed by Bernardini et al. (2014), no clear
plateau is found in Ξu, neither for the velocity nor for the scalar field. However, there is
rather clear evidence for the presence of a range with nearly linear variation of Ξu with
the wall distance, whose slope (in inner units) decreases with Reτ , and which is predicted
by some refined overlap theories (Afzal & Yajnik 1973). According to such generalized
log layer formulations,

Ξ =
1

k
+ γη +

β

Reτ
, (3.8)

where (Bernardini et al. 2014), k ≈ 0.41, γ ≈ 1.1, β ≈ 180 for the streamwise velocity
field. Fitting the mean scalar profiles in figure 3(b) in the range 100/Reτ 6 η 6 0.5 yields
kθ ≈ 0.46, γθ ≈ 1.15 ≈ γ, with very weak effect of the molecular Prandtl number. It
should be noted that the presence of a generalized logarithmic layer does not prevent the
onset of a narrow genuine logarithmic layer at higher Reynolds, which however should
be confined to a narrower range of wall distances (Lee & Moser 2015).
The variances of the streamwise velocity and scalar fluctuations are shown in figure 4 in

inner and outer scaling. The inner-scaled scalar profiles (panel (b)) are strongly affected
by the molecular conductivity, being an increasing function of Pr . As expected based
on the formal similarity of the governing equations, the shape of the scalar variance
profiles at Pr = 1 is similar to the streamwise velocity variance, with the main exception
of a higher value of the near-wall peak. Of course, the scalar variance in flow case D
has a very different behavior in the outer layer, where production does not drop to
zero (Kawamura et al. 2000), and a second peak emerges which is larger than the near-
wall one, and also increasing with Reτ . Comparison with previous DNS by Abe et al.

(2004b) is quite favourable, whereas substantial differences are found with respect to
available experimental data of Subramanian & Antonia (1981), not shown. The velocity
and scalar variances are shown in defect form in panels (c), (d). Collapse in the defect
representation is but fair for the velocity field, whereas more convincing universality
over the Re and Pr range is found for the scalar variances. The odd behavior of the
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Figure 4: Streamwise velocity variance (a,c) and scalar variance (b,d) as a function of
the wall distance in inner units (a,b) and outer units (c,d). In panel (b) the solid circles
indicate DNS data of Abe et al. (2004b). Refer to tables 1,2 for nomenclature of the DNS
data.

streamwise velocity variance is at the root of alternative (mixed) scalings which have
been proposed over the years (DeGraaff & Eaton 2000; del Álamo et al. 2004), and it
is probably related to the difficulty to identify a logarithmic layer as requested by the
attached eddy hypothesis (Townsend 1976; Perry & Marusic 1995; Orlandi et al. 2015).
The peaks of the scalar and streamwise velocity variances are shown in figure 5 as a

function of the Reynolds number. Attached-eddy arguments support logarithmic increase
of the inner peak of the streamwise velocity variance with Reτ because of the increasing
effect of overlying attached eddies (Townsend 1976; Hutchins et al. 2009). The present
data suggest that the same behavior also applies to passive scalar fields. Specifically, we
find that the growth rate is approximately the same at all Pr , with a strongly increasing
additive constant. The case of assigned wall difference shows moderate increase in the
near-wall peak for given Pr , owing to energy leakage from stronger eddies forming in the
channel core (also see the later spectral maps). As previously noticed, scalar field D also
exhibits a prominent peak at the channel centerline, whose amplitude (solid circles in
figure 5) shows a similar growth rate with Reτ as the near-wall peaks.

Similarities between passive scalar and streamwise velocity statistics are more closely
scrutinized in figure 6, where we compare the variances and the vertical turbulent fluxes
for Pr = 1 (scalar field C). As previously noticed, the scalar variances attain a higher peak
in the near-wall region, whereas they tend to form log-like layers for 100/Reτ 6 η 6 0.2.
In this region the streamwise velocity variance is higher and it tends to form a ‘bump’
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Figure 5: Peak scalar variances at various Pr (see table 2 for nomenclature of symbols) as
a function of Reτ , compared with the peak streamwise velocity variance (solid squares).
The solid circles denote the centerline peak of the scalar variance for field D.
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Figure 6: Variances (a) and vertical turbulent fluxes (b) for streamwise velocity field
(lines) and passive scalar field C (lines+symbols). Refer to tables 1,2 for nomenclature.

which precludes the observation of a logarithmic layer, although no evidence for an outer
peak is found at the Reynolds numbers under scrutiny. On the other hand, the vertical
turbulent fluxes, shown in figure 6(b) are (visually) very nearly indistinguishable, hence
suggesting that the lift-up mechanism which is responsible for the u − v and v − θ
correlations is very nearly linear in nature. At the same time, it must be stated that
small differences in the vertical turbulent fluxes are at the core of observable differences
in the mean profiles, which were clear in figure 1.

3.2. Energetics

Differences in the behavior of scalar and streamwise velocity variances can be further
elaborated by monitoring the respective budget equations, reported below (Pope 2000)

0 = −
dv′u′2/2

dy
+ ν

d2u′2/2

dy2
−u′v′

du

dy
︸ ︷︷ ︸

P11

−
dp′v′

dy
+ p′

∂u′

∂x
︸ ︷︷ ︸

R11

− ν
∂u′

∂xk

∂u′

∂xk
︸ ︷︷ ︸

ε11

, (3.9)
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panel (b) denote the contributions of viscous dissipation ε11 (squares) and pressure R11
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0 = −
dv′θ′2/2

dy
+ α

d2θ′2/2

dy2
−θ′v′

∂θ

∂y
︸ ︷︷ ︸

Pθ

−α
∂θ′

∂xk

∂θ′

∂xk
︸ ︷︷ ︸

εθ

. (3.10)

In figure 7 we show the source terms in equations (3.9), (3.10) associated with production
(P11 and Pθ, respectively), viscous dissipation (ε11 and εθ), and pressure-strain corre-
lation (R11, absent in the scalar variance equation). It must be noted that, in order to
more closely compare small terms (all scaling as 1/y), the various quantities are reported
in pre-multiplied form in semi-log representation, so that equal areas underneath the
curves correspond to equal integral contributions. The near-wall region (say y+ . 100)
is characterized by nearly equal values of velocity and scalar production. On the other
hand, similarity of velocity and scalar dissipation is confined to the viscous sublayer,
consistent with the analogy noticed by Abe & Antonia (2009). Further away from the
wall the dissipation rates become very different, the velocity dissipation being much less
than the scalar dissipation. However, this difference is more than compensated by the
pressure term in the streamwise momentum equation, which should hence be regarded
as responsible for the lower near-wall peak of the velocity variance as compared to the
scalar variance. In the outer wall layer streamwise momentum production significantly
exceeds scalar production, thus making up for the previously noticed outer bump in the
streamwise velocity variance. Consistent with greater production, the total velocity dis-
sipation is also found to exceed scalar dissipation, mostly because of the pressure term,
whose pre-multiplied distribution tends to form an outer peak.

The effect of the various source terms in the variance budgets can be appreciated
by inspecting the global energy balance equations, which are easily derived from the
streamwise momentum and scalar transport equations

hΠub
︸ ︷︷ ︸

W

=

∫ h

0

ε11dy

︸ ︷︷ ︸

V11

+

∫ h

0

−R11dy

︸ ︷︷ ︸

T

+ ν

∫ h

0

(du/dy)
2
dy

︸ ︷︷ ︸

V 11

, (3.11)
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Figure 8: Global energy balance of streamwise velocity (lines) and scalar field C (lines and
symbols) as a function of Reynolds number, expressed in wall units (a) and as a fraction
of the total power expenditure (b). Solid lines: total power expenditure (W ); dashed lines:
turbulent dissipation (V ); dash-dot-dotted lines: mean flow dissipation (V ); dash-dotted
lines: pressure transfer (T ).

hQθ∗
︸ ︷︷ ︸

Wθ

=

∫ h

0

εθdy

︸ ︷︷ ︸

Vθ

+α

∫ h

0

(
dθ/dy

)2
dy

︸ ︷︷ ︸

V θ

, (3.12)

where θ∗ = 1/h
∫ h

0
θdy is the mean value of θ across the channel, which states that

the power spent to force the momentum and the scalar transport equations is partly
dissipated by the mean flow (the V terms) and by turbulent motions (the V terms), and
partly to produce the wall-normal and spanwise velocity components (the T redistributive
term). The budget terms of equations (3.11) and (3.12) are shown in figure 8, in wall
units (panel (a)) and as a fractional contribution to the overall power expenditure (b).
As expected, the power expenditure (W ) in wall units (which reduces to W+ = u+

b =
√

2/Cf ∼ logReτ in the streamwise momentum equation) is increasing logarithmically
with Reτ , both for the velocity and for the scalar field, although slightly faster growth is
found for the former. In the scalar field the growth is clearly associated with growth of the
turbulent dissipation term, whereas mean flow dissipation is very weakly decreasing with
Reτ . In the streamwise velocity field mean flow dissipation is again nearly constant, but
both turbulent dissipation and pressure redistribution are increasing with Reτ . As clearer
in panel (b), the latter term is increasing faster, and it is expected to dominate in the
asymptotic high-Re regime, if the slow logarithmic trends here observed are confirmed.

The production excess over the total dissipation is displayed in figure 9. It appears that
a production excess of up to about about 5% is present from y+ ≈ 200 to y/h ≈ 0.5 in
the velocity field and in the scalar fields with uniform forcing. On the other hand, scalar
field D with assigned wall difference has excess production in the core of the channel, say
y/h & 0.6, where the large eddies reside. It is noteworthy that, in outer representation, the
production excess curves attain a common outer envelope which, if extrapolated would
probably lead to a finite value in the infinite Reynolds number limit. This outer-layer
production excess has been previously linked to the presence of large energy-containing
eddies in Poiseuille flow (Bernardini et al. 2014), and it is more apparent in Couette
flow (Pirozzoli et al. 2014). This is confirmed by the flow visualizations of figure 10,
where we report instantaneous cross-stream contours of u′ and θ′ (for scalar fields C
and D), for flow case P4000, taken at the same time instant. The velocity field and the
scalar field in the forced case away from walls is organized into ’towering’ eddies which
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Figure 9: Outer-scaled production-to-dissipation excess for streamwise velocity field (a),
and scalar fields A (b), C (c), D (d). Refer to tables 1,2 for nomenclature of the DNS
data.

are attached to the wall, and which exhibit spanwise growth with the wall distance.
Particularly striking is the similarity between the streamwise velocity fluctuation field
and the passive scalar field C, which clearly indicates that eddies supporting momentum
fluctuations also carry the scalar field. In this respect it should also be noted that the
interfaces between neighboring eddies are visually sharper in the scalar field, whereas
they are more ‘blurred’ in the velocity field, which is a likely consequence of its active
behavior. Similar observations at lower Reynolds number were reported by Antonia et al.

(2009). Also striking is the similarity between the two scalar fields in the lower part of
the channel (say y/h . 0.5) where the correlation coefficient (not shown) is always
larger than 0.8. However, a different organization is recovered in the channel core, where
scalar field D exhibits very large eddies, reminiscent of the momentum eddies in Couette
flow (Pirozzoli et al. 2014).

This scenario is quantitatively confirmed by the spectral maps shown in figure 11. In
order to highlight scale changes, in the figure we show the spanwise spectral densities of
the streamwise velocity and of the scalar fields, normalized by the respective variance,
by defining

Êϕ(kz) = Eϕ(kz)/ϕ′2. (3.13)

The maps clearly bring out a two-scale organization of the flow field, with a near-wall
peak associated with the wall regeneration cycle (Jiménez & Pinelli 1999), and an outer
peak associated with outer-layer large-scale motions (Hutchins & Marusic 2007). The



14 S. Pirozzoli, M. Bernardini, P. Orlandi

(a)

(b)

(c)

Figure 10: Instantaneous cross-stream visualizations of u′ (a), and θ′ for scalar field C
(b) and D (c), for flow case P4000. Panel (a): from −3uτ to 3uτ ; panel (b): from −2θτ
to 2θτ ; from −4θτ to 4θτ . Sixty-four contour levels are shown, in shades from black to
white.

latter peak is found to be centered at y/h ≈ 0.3, and to correspond to eddies with typical
wavelength λz/h ≈ 1, consistent with the findings of Abe et al. (2004a). Secondary peaks
corresponding to harmonics of this fundamental wavelength are observed at the higher
Reynolds numbers, suggesting that the typical outer modes are not purely sinusoidal
with respect to the spanwise direction. Notably, the same organization is recovered in
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Figure 11: Variation of pre-multiplied, normalized spanwise spectral densities with wall
distance: (a-c) spectra of u (kzÊu) for flow cases P1000 (a), P2000 (b), P4000 (c); (d-l)
spectra of θ (kzÊθ) for flow cases P1000 (d,g,j), P2000 (e,h,j), P4000 (f,i,l), for the scalar
fields A (d-f), C (g-i), D (j-l). Contour levels from 0 to 0.5 are shown, in intervals of 0.04.

the scalar fields. While the near-wall peak sensitively depends in magnitude (but not
position and wavelength) on the Prandtl number, being inhibited by diffusion at low Pr ,
the outer peak is quite robust and universal with respect to both Re and Pr . The main
effect of passive scalar forcing is the presence of extra energy near the channel centerline,
associated with the large core eddies of figure 10c.

The structure of the flow field and the statistical association between velocity and scalar
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Figure 12: Correlation coefficients: u− v (a), u− θ (b), v − θ (c). Refer to tables 1,2 for
nomenclature of the DNS data.

fluctuations can be further analyzed in terms of the correlation coefficients, defined as

Cab =
a′b′

(

a′2 b′2
)1/2

, (3.14)

and shown in figure 12. As also previously noticed by Priyadarshana & Klewicki (2004),
the u− v correlation coefficient stays close to 0.4 throughout the wall layer, with a slight
but steady reduction as Reτ increases, which may be interpreted as a reduction in the
flow anisotropy. What we see here is that the v − θ correlation exhibits a similar trend
with respect to the Reynolds number, and it also appears to be an increasing function of
Pr . The u− θ correlation coefficients further highlights strong correlation of streamwise
velocity and scalar fluctuations, as also found in previous dedicated studies (Antonia
et al. 2009). The main finding here is that, while the values in the outer layer seem to be
similar for all the flow cases, the near-wall correlation is diminished in the low-Pr cases as
the diffusion rate for momentum and scalar fields is sensibly different (Kawamura et al.

2004).
Additional details can be captured by analysing the joint pdf of the normalized velocity

and scalar fluctuations. Let ã = a′/a′2
1/2

be a normalized fluctuation of variable a, the
correlation coefficient between a and b is

Cab =

∫ ∫

ãb̃P(ã, b̃)dãdb̃. (3.15)
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Figure 13: ‘Coherent’ part of joint pdfs at y+ = 5, for flow case P1000 (a,d,g), P2000
(b,e,h), P4000 (c,g,i), scalar field C. Sixteen contour levels are shown, from −0.04 to 0.04
in panels (a-c),(g-i) and from −0.36 to 0.36 in panels (d-f). Colour scale is from blue
(negative values) to red (positive values).

We then define the ‘coherent’ part of the joint pdf of a and b as

P′(ã, b̃) = P(ã, b̃)− P(ã) · P(b̃), (3.16)

is such a way that it is identically zero if a and b are statistically independent. The joint
pdfs thus constructed then convey information about the local ‘excess’ or ‘lack’ of events
with respect to the case of statistical independence, and of course their integrated value
is zero, rather than unity. It is also straightforward to show that

Cab =

∫ ∫

ãb̃P′(ã, b̃)dãdb̃. (3.17)

In figure 13 and 14 we show the coherent joint pdfs of velocity and scalar fluctuations at
various Reτ , at y

+ = 5 and y+ = 100, limited to Pr = 1 (scalar field C). At y+ = 100,
the u − v and v − θ joint pdfs indicate increased frequency of events in the second and
fourth quadrant, with maxima at about one standard deviation from the mean. On the
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Figure 14: ‘Coherent’ part of joint pdfs at y+ = 100, for flow case P1000 (a,d,g), P2000
(b,e,h), P4000 (c,g,i), scalar field C. Sixteen contour levels are shown, from −0.04 to
0.04 in panels (a-c),(g-i), and from −0.1 to 0.1 in panels (d-f). Colour scale is from blue
(negative values) to red (positive values).

other hand, the u − θ joint pdfs show clear preference for events in the first and third
quadrant, again with maximum values around one standard deviation away from the
mean. A similar behavior is also recovered near the wall, where events in the u− θ plane
are even more concentrated along the main diagonal, whereas events with low absolute
value of v′ seem to be favoured in the u−v and v−θ joint pdf’s. The pdf’s here reported
do not show visually observable hints of Reynolds number dependence.

To identify the motions responsible for the previously noticed Reynolds number vari-
ation of the correlation coefficients, in figure 15 we show the quadrant contributions to
equation (3.17), in such a way that they add up to the correlation coefficient. The u− v
correlation (panels (a,b)) receives positive contribution from all quadrants (unlike in
the conventional quadrant analysis), with greater influence of second-quadrant motions
(ejections), which are apparently responsible for the decreasing trend with Reτ . On the
other hand, fourth-quadrant motions (sweeps) seem to be marginally affected. A very
similar scenario is observed for the v− θ correlation in panels (e,f). The quadrant contri-
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Figure 15: Quadrant contributions to correlation coefficients of u − v (a,b), u − θ (c,d),
v−θ (e,f) at y+ = 5 (a,c,e), and y+ = 100 (b,d,f), for scalar field C. Quadrant I: squares;
quadrant II: triangles; quadrant III: diamonds; quadrant IV: circles.

butions to the u− θ correlations, shown in panels (c,d) highlight dominant contribution
from first- and especially third-quadrant events, namely events with like-signed u and θ
fluctuations, and insensitivity to Reτ .

It is noteworthy that the observed changes in the u−v and v−θ correlation coefficients
can be effectively compensated through normalization with the respective wall-normal
velocity variance, as shown in figure 16. Compared with figure 12, it shows near uni-
versality of −u′v′/v′2 both in the inner and in the outer layer, with an overlap layer
extending from y+ ≈ 100 to y/h ≈ 0.5, in which the distribution is then expected to be
logarithmic (as in fact probably is), with values not far from 0.7. Concerning the scalar
fields, the figures again shows universality with Re in the inner and in the outer layer,
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Figure 16: Ratio of turbulent shear stress (a-b) and turbulent scalar flux (c-d) to vertical
velocity variance, in inner (a,c), and outer (b,d) units. Refer to tables 1,2 for nomenclature
of the DNS data.

the effect of Pr being limited to the conductive sublayer. In the overlap layer a loga-
rithmic distribution is clearly established for the cases with uniform forcing, with values
close to those of the turbulent shear stress. The similarity between turbulent fluxes and
vertical velocity fluctuations is probably not unexpected, since the production term in
the evolution equation for the turbulent shear stress is proportional to the vertical veloc-
ity variance (Pope 2000). The same can be readily shown also for the vertical turbulent
scalar flux. Constancy of the u− v and v − θ correlation coefficients is the core of many
classical turbulence models (i.e. the k−ε model) is put into question by the present DNS
results, hence the above information is potentially useful for the construction of improved
models for turbulent scalar transport, for instance in the fashion of Durbin’s k − ε− v2

model (Durbin 1991).

3.3. Engineering correlations

A quantity of great importance in RANS models of scalar transport is the turbulent
Prandtl number, defined as (Cebeci & Bradshaw 1984)

Pr t =
νt
αt

=
u′v′

v′θ′
dθ/dy

du/dy
, (3.18)

whose distribution is shown in figure 17. Consistent with most available numerical and
experimental data (Cebeci & Bradshaw 1984; Kader 1981), for Pr ≈ 1, Pr t is not far
from 0.85 in a large part of the wall layer, from y+ ≈ 100 to y/h ≈ 0.5. Deviations appear
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Figure 17: Turbulent Prandtl number as a function of wall distance. The thick grey
lines indicate the predictions of equation (3.19) at Pr = 0.2, 0.71, 1. Refer to table 1 for
nomenclature of the DNS data.

in case A at Pr = 0.2, for which Pr t is closer to 0.9. Unlike previous simulations at lower
Re (Kawamura et al. 2000), the turbulent Prandtl number is not found to be severely
affected by the wall state, at least far from the channel centerline. Theoretical estimates
for the wall-normal variation of Pr t in the inner layer were proposed by Cebeci (1973),
according to which

Pr t =
k

kθ

1− exp(−y+/A)

1− exp(−y+/B)
, B =

1

Pr1/2

5∑

i=1

Ci (log10 Pr)
i−1

, (3.19)

where A = 26, C1 = 34.96, C2 = 28.79, C3 = 33.95, C4 = 6.3, C5 = −1.186. The
prediction of equation (3.19), shown in grey lines in figure 17, are found not to be very
accurate. It is also noteworthy that the assumption of constant Pr t is not very accurate
in the central part of the channel, where the distributions fall rather abruptly to lower
values, consistent with the observations previously made about figure 2.

Another quantity of primary engineering interest is the Nusselt number, defined as

Nu =
h

(θb − θw)

dθ

dy

∣
∣
∣
∣
w

, (3.20)

where θb =
∫
uθ dy/

∫
u dy is the bulk value of θ, which is shown in figure 18. As is

well known (Cebeci & Bradshaw 1984), Nu is found to be an increasing function of the
Reynolds and the Prandtl number. It is noteworthy that scalar field D, which corresponds
to the case of assigned temperature difference yields very similar (in fact, slightly smaller)
Nusselt number than case B with uniform heating. In fact, it turns out that although the
heat flux is larger in case D owing to more efficient redistribution of temperature in the
core part of the channel by the previously noticed large eddies, the bulk temperature is
also larger, the two effect very nearly compensating each other in equation (3.20). In the
figure we also report predictions from the empirical fits for constant temperature walls
proposed by Kays et al. (1980)

Nu = 0.021Re0.8b Pr0.5, (3.21)

by Sleicher & Rouse (1975),

Nu = 4.8 + 0.0156Re0.85b Pr0.93, (3.22)
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Figure 18: Nusselt number for scalar fields A-D (symbols as in table 2) at various Reynolds
numbers (colors as in table 1), compared with the empirical formulas of Kays et al. (1980)
(dashed lines), Sleicher & Rouse (1975) (dot-dashed lines) Gnielinski (1976) (solid lines).

as well as the thermal analogy by Gnielinski (1976)

Nu =
PrCf/2 (Reb − 1000)

1 + 12.7(Cf/2)1/2
(

Pr2/3 − 1
) , (3.23)

where Cf is the skin friction coefficient. Figure 18 shows accurate prediction of Kays
& Crawford correlation at O(1) Prandtl number, and superior accuracy of the formula
by Sleicher Rouse at low Pr . Gnielinski’s thermal analogy performs relatively well at
all Pr under scrutiny, and it can probably be further improved by slightly changing the
additive coefficient at the numerator of equation (3.23). Consistent with the previous
observations, the above correlations can be applied with the same accuracy to both the
case of assigned wall temperature difference and assigned heat flux.

4. Conclusions

The statistics of passive scalars in turbulent channel flow have been studied by means
of DNS at much higher Reynolds number than previous studies, and some previously
unnoticed features have been brought to light. Upon visual analysis, the mean scalar
profiles are found to qualitatively agree with semi-empirical models (Kader 1981) based
on logarithmic overlap layer behavior with Prandtl-dependent shift. However, closer ex-
amination shows that, similar to what previously found for the velocity field (Bernardini
et al. 2014), the scalar fields also exhibit systematic deviations from the logarithmic
behavior, mainly in the form of an additional term scaling linearly with the outer wall
distance, whose slope thus decreases with Reτ in wall units. This ‘extended’ logarith-
mic layer occupies about 50% of each half-channel, hence it is much wider than alleged
‘genuine’ log layers which may arise at yet higher Reynolds number. The outer representa-
tion is particularly useful in this respect as it allows to identify with good approximation
asymptotic values of the Karman constant, which is found to be k = 0.41 for the velocity
field, and kθ = 0.46 for the scalar field, regardless of the Prandtl number and of the wall
state. Outer defect representation also well highlights the presence of extended regions
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with parabolic variation of the mean scalar fields and of the velocity field in the core of
forced channels, which smoothly join the quasi-logarithmic overlap profiles. It is found
that the curvature of the parabolic region is higher for the velocity field, hence making
up for a stronger wake region with respect to passive scalars. This observation has been
traced to greater eddy diffusivity of the scalar field, which reflects in turbulent Prandtl
below unity throughout the outer layer (say, y+ & 100). The scalar variance fields are
found to have the same qualitative behavior as the streamwise velocity variance, with
the exception of the case of assigned wall difference, which also exhibits significant scalar
activity toward the channel centerline. The near-wall peak in the buffer layer is inhib-
ited at low Prandtl number, as the thickness of the conductive sublayer is comparable
with the buffer layer thickness. The amplitude of the near-wall scalar variance peak at
Pr = 1 appears to be higher than for the streamwise velocity field, as in the latter case
redistributive effects due to pressure/strain correlation are activated. A near logarithmic
layer appears away from the wall, followed by a nearly universal core region, where the
scalar variances are again near parabolic. In this region the turbulence kinetic energy
production term is larger than the scalar production term, hence the streamwise veloc-
ity fluctuations are stronger than the scalar fluctuations, which is the likely reason why
a ‘bump’ is observed in the velocity variances rather than a genuine logarithmic layer,
at least at these Reynolds numbers. Throughout the wall layer the scalar dissipation is
found to be significantly larger than the streamwise velocity dissipation, which implies
that the smallest scalar-bearing eddies are more energetic, as confirmed by inspection of
their energy spectra. This is also reflected in the instantaneous flow visualizations, which
show sharper fronts of the scalar-bearing eddies as compared to those associated with
the streamwise velocity field, although visual correspondence of the two fields is clear,
and their correlation coefficient remains higher than 0.6 across large part of the wall
layer. Reynolds number effects manifest themselves in the decrease of the u−v and u−θ
correlation coefficients in the outer layer, which is an indication that inactive motions
become comparatively more important. An in-depth analysis has shown that the decrease
is mainly related to decreased contribution of the second-quadrant motions (ejections),
and it can be compensated by normalization with the vertical velocity variance. From
an engineering standpoint, our high-Re data show that the turbulent Prandtl number
remains in the range between 0.85 and 0.9 in the lower 50% of the wall layer, and it
decreases almost linearly toward the centerline, where Pr t ≈ 0.7. The Nusselt number
follows the classical increasing behavior with Reτ and Pr , and it is in good agreement
with established thermal analogies. Open issues include the detailed assessment of the
scalar forcing strategy, which is found to have some effect on the statistical properties in
the core part of the flow. Small but systematic differences with respect to old correlations
for the mean scalar profiles (Kader 1981) also deserve further investigation.

Flow statistics are available at the web page http://newton.dma.uniroma1.it/scalars/,
with supporting documentation.

We acknowledge that the results reported in this paper have been achieved using
the PRACE Research Infrastructure resource FERMI based at CINECA, Casalecchio di
Reno, Italy.

REFERENCES

Abe, H. & Antonia, R.A. 2009 Near-wall similarity between velocity and scalar fluctuations
in a turbulent channel flow. Phys. Fluids 21, 025109.

Abe, H., Kawamura, H. & Choi, H. 2004a Very large-scale structures and their effects on the



24 S. Pirozzoli, M. Bernardini, P. Orlandi

wall shear-stress fluctuations in a turbulent channel flow up to reτ= 640. J. Fluids Eng.
126, 835–843.

Abe, H., Kawamura, H. & Matsuo, Y. 2004b Surface heat-flux fluctuations in a turbulent
channel flow up to Reτ = 1020 with Pr= 0.025 and 0.71. Int. J. Heat Fluid Flow 25,
404–419.

Afzal, N. & Yajnik, K. 1973 Analysis of turbulent pipe and channel flows at moderately large
Reynolds number. J. Fluid Mech. 61, 23–31.
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