1,147 research outputs found

    Qduino: a cyber-physical programming platform for multicore Systems-on-Chip

    Full text link
    Emerging multicore Systems-on-Chip are enabling new cyber-physical applications such as autonomous drones, driverless cars and smart manufacturing using web-connected 3D printers. Common to those applications is a communicating task pipeline, to acquire and process sensor data and produce outputs that control actuators. As a result, these applications usually have timing requirements for both individual tasks and task pipelines formed for sensor data processing and actuation. Current cyber-physical programming platforms, such as Arduino and embedded Linux with the POSIX interface do not allow application developers to specify those timing requirements. Moreover, none of them provide the programming interface to schedule tasks and map them to processor cores, while managing I/O in a predictable manner, on multicore hardware platforms. Hence, this thesis presents the Qduino programming platform. Qduino adopts the simplicity of the Arduino API, with additional support for real-time multithreaded sketches on multicore architectures. Qduino allows application developers to specify timing properties of individual tasks as well as task pipelines at the design stage. To this end, we propose a mathematical framework to derive each task’s budget and period from the specified end-to-end timing requirements. The second part of the thesis is motivated by the observation that at the center of these pipelines are tasks that typically require complex software support, such as sensor data fusion or image processing algorithms. These features are usually developed by many man-year engineering efforts and thus commonly seen on General-Purpose Operating Systems (GPOS). Therefore, in order to support modern, intelligent cyber-physical applications, we enhance the Qduino platform’s extensibility by taking advantage of the Quest-V virtualized partitioning kernel. The platform’s usability is demonstrated by building a novel web-connected 3D printer and a prototypical autonomous drone framework in Qduino

    A location-aware framework for intelligent real-time mobile applications

    Get PDF
    The Location-Aware Information Systems Client (LAISYC) supports intelligent, real-time, mobile applications for GPS-enabled mobile phones by dynamically adjusting platform parameters for application performance while conserving device resources such as battery life

    InfoFilter: Supporting Quality of Service for Fresh Information Delivery

    Get PDF
    With the explosive growth of the Internet and World Wide Web comes a dramatic increase in the number of users that compete for the shared resources of distributed system environments. Most implementations of application servers and distributed search software do not distinguish among requests to different web pages. This has the implication that the behavior of application servers is quite unpredictable. Applications that require timely delivery of fresh information consequently suffer the most in such competitive environments. This paper presents a model of quality of service (QoS) and the design of a QoS-enabled information delivery system that implements such a QoS modeL The goal of this development is two-fold. On one hand, we want to enable users or applications to specify the desired quality of service requ.irements for their requests so that application-aware QoS adaptation is supported throughout the Web query and search processing. On the other hand, we want to enable an application server to customize how it shou.ld respond to external requests by setting priorities among query requests and allocating server resources using adaptive QoS control mechanisms. We introduce the Infopipe approach as the systems support architecture and underlying technology for building a QoS-enabled distributed system for fresh information delivery

    SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO SELECTED NETWORK FLOWS

    Get PDF
    Despite the huge success and adoption of computer networks in the recent decades, traditional network architecture falls short of some requirements by many applications. One particular shortcoming is the lack of convenient methods for providing quality of service (QoS) guarantee to various network applications. In this dissertation, we explore new Software-Defined Networking (SDN) mechanisms to provision QoS to targeted network flows. Our study contributes to providing QoS support to applications in three aspects. First, we explore using alternative routing paths for selected flows that have QoS requirements. Instead of using the default shortest path used by the current network routing protocols, we investigate using the SDN controller to install forwarding rules in switches that can achieve higher bandwidth. Second, we develop new mechanisms for guaranteeing the latency requirement by those applications depending on timely delivery of sensor data and control signals. The new mechanism pre-allocates higher priority queues in routers/switches and reserves these queues for control/sensor traffic. Third, we explore how to make the applications take advantage of the opportunity provided by SDN. In particular, we study new transmission mechanisms for big data transfer in the cloud computing environment. Instead of using a single TCP path to transfer data, we investigate how to let the application set up multiple TCP paths for the same application to achieve higher throughput. We evaluate these new mechanisms with experiments and compare them with existing approaches

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200
    • …
    corecore