
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2018

SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF

SERVICE TO SELECTED NETWORK FLOWS SERVICE TO SELECTED NETWORK FLOWS

Faisal Alharbi
University of Kentucky, fbadrany@gmail.com
Digital Object Identifier: https://doi.org/10.13023/etd.2018.317

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Alharbi, Faisal, "SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO SELECTED
NETWORK FLOWS" (2018). Theses and Dissertations--Computer Science. 72.
https://uknowledge.uky.edu/cs_etds/72

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Faisal Alharbi, Student

Dr. Zongming Fei, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO
SELECTED NETWORK FLOWS

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Faisal Alharbi

Lexington, Kentucky

Director: Dr. Zongming Fei, Professor of Computer Science
Lexington, Kentucky 2018

Copyright c© Faisal Alharbi 2018

ABSTRACT OF DISSERTATION

SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO
SELECTED NETWORK FLOWS

Despite the huge success and adoption of computer networks in the recent decades,
traditional network architecture falls short of some requirements by many
applications. One particular shortcoming is the lack of convenient methods for
providing quality of service (QoS) guarantee to various network applications. In this
dissertation, we explore new Software-Defined Networking (SDN) mechanisms to
provision QoS to targeted network flows. Our study contributes to providing QoS
support to applications in three aspects. First, we explore using alternative routing
paths for selected flows that have QoS requirements. Instead of using the default
shortest path used by the current network routing protocols, we investigate using
the SDN controller to install forwarding rules in switches that can achieve higher
bandwidth. Second, we develop new mechanisms for guaranteeing the latency
requirement by those applications depending on timely delivery of sensor data and
control signals. The new mechanism pre-allocates higher priority queues in
routers/switches and reserves these queues for control/sensor traffic. Third, we
explore how to make the applications take advantage of the opportunity provided
by SDN. In particular, we study new transmission mechanisms for big data transfer
in the cloud computing environment. Instead of using a single TCP path to transfer
data, we investigate how to let the application set up multiple TCP paths for the
same application to achieve higher throughput. We evaluate these new mechanisms
with experiments and compare them with existing approaches.

KEYWORDS: Software Defined Networking, Quality of Service, Network
Architecture, Multipath TCP

Author’s signature: Faisal Alharbi

Date: July 31, 2018

SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO
SELECTED NETWORK FLOWS

By
Faisal Alharbi

Director of Dissertation: Dr. Zongming Fei

Director of Graduate Studies: Dr. Miroslaw Truszczynski

Date: July 31, 2018

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my advisor, Dr. Zongming Fei,

for all the guidance and support I received from him. I am grateful to Dr. Fei for

giving me the opportunity to work with him and for providing endless support and

encouragement throughout the entire PhD journey.

I also want to thank the members of my Doctoral Advisory Committee: Dr.

Dakshnamoorthy Manivannan, Dr. Jinze Liu, and Dr. Yuan Liao for their guidance

and feedback.

Finally, I would like to thank my employer, King Abdulaziz City for Science and

Technology, for granting me the scholarship.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Contributions . 4
1.3 Organization . 5

Chapter 2 Background . 6
2.1 Quality of Service . 6

2.1.1 IntServ . 6
2.1.2 DiffServ . 7
2.1.3 QoS Metrics . 8
2.1.4 QoS Routing . 10

2.2 Software-Defined Networking (SDN) 13
2.2.1 Early Efforts Prior to SDN . 13

Routing Control Platform . 13
The 4D project . 14
Ethane . 16

2.2.2 SDN Model . 17
2.2.3 SDN Characteristics . 18
2.2.4 SDN Benefits . 19
2.2.5 OpenFlow . 20
2.2.6 Open vSwitch . 22

Chapter 3 Improving the Quality of Service for Bandwidth-Demanding Traffic
Flows . 24

3.1 Overview . 24
3.2 Related Work . 25
3.3 An SDN-Based Framework for Setting Up Paths for

Bandwidth-Demanding Flows . 26
3.3.1 Status Monitoring . 27
3.3.2 QoS-based Path Setup . 29

3.4 Evaluation . 33
3.4.1 First Experiment . 33

Experiment Setup . 33

iv

Results . 33
3.4.2 Second Experiment . 39

Experiment Setup . 39
Results . 39

3.5 Summary . 40

Chapter 4 Provisioning Quality of Service to Latency-Sensitive Traffic Flows 42
4.1 Overview . 42

4.1.1 Motivation . 42
4.1.2 Latency Measurements in SDN 47
4.1.3 Queueing Disciplines . 48

4.2 Related Work . 49
4.3 An SDN-based Architecture for Supporting Latency-Sensitive Flows . 50

4.3.1 Admission Control . 50
4.3.2 Queues Setup . 52
4.3.3 Installing OpenFlow Rules . 53
4.3.4 Monitoring and Reporting . 53

4.4 Provisioning QoS to Latency-Sensitive Flows 53
4.5 Performance Evaluation . 56
4.6 Summary . 58

Chapter 5 Improving Throughput of Large Flows Using Multipath TCP . . . 59
5.1 Overview . 59

5.1.1 Motivation . 60
5.1.2 Data Center Topologies . 62

5.2 Multipath TCP . 62
5.2.1 Congestion Control . 65

5.3 Related Work . 69
5.4 SDN Based Architecture for Improving Throughput of Large Flows . 71

5.4.1 Load Balancing with OpenFlow Group Tables 73
5.4.2 Routing Auxiliary Subflows 75
5.4.3 Socket API for Creating Auxiliary Subflows 80

5.5 Evaluation . 85
5.5.1 Experiments Setup . 85
5.5.2 Evaluation Results . 87

5.6 Summary . 90

Chapter 6 Conclusion . 92
6.1 Future Work . 93

Appendix . 95

Bibliography . 100

Vita . 105

v

LIST OF FIGURES

2.1 Simplified SDN architecture . 18

3.1 The SDN architecture for providing QoS support 28
3.2 Match fields in OpenFlow . 30
3.3 First experiment topology in Mininet . 34
3.4 Throughputs with five critical flows . 35
3.5 Throughputs for critical flows without QoS routing module 36
3.6 Throughputs for critical flows with QoS routing module 37
3.7 Throughputs with six critical flows . 38
3.8 Utilization of the whole network . 38
3.9 Second experiment topology in Mininet 40
3.10 Average throughput to the number of accepted flows 41

4.1 Effects of the total delay on user satisfication (reprinted from [1]) 44
4.2 Provisioning QoS architecture to latency-sensitive flows 51
4.3 Example of different traffic classes . 55
4.4 Experiment topology . 57
4.5 Measured latency of control traffic messages 57

5.1 Two examples of ECMP hash collision 61
5.2 TCP and MPTCP protocol . 63
5.3 MPTCP subflows initiation . 65
5.4 Disjoint paths vs adaptive routing . 73
5.5 SDN-based architecture for improving throughput of large flows 74
5.6 OpenFlow group table . 76
5.7 MPTCP option for MP JOIN SYN packet 77
5.8 Creating new subflow with with DSCP 84
5.9 Network topology . 86
5.10 Average throughput of large flows . 88
5.11 Throughput of large flows (TM1) . 89
5.12 Throughput of large flows (TM2) . 89
5.13 Completion time of large flows (TM1) 90
5.14 Completion time of large flows (TM2) 90

vi

LIST OF TABLES

2.1 Sample of QoS routing problems solvable in polynomial time 11
2.2 Sample of NP-Complete QoS routing problems 13

3.1 Traffic flows . 34

5.1 Multipath TCP Option subtypes . 63

vii

Chapter 1

Introduction

1.1 Overview

Data communication played a critical role in many computer applications and has

become an essential part of our daily life, particularly due to the ubiquitous usage

of mobile devices. These applications with a communication component have a wide

range of requirements on the underlying computer networks. Traditional low data

rate file transfer or interactive remote login to a shared machine has very limited

requirements for the network, except reliability, which was handled by Transmission

Control Protocol (TCP) through retransmission of lost packets. In contrast, more

recently, applications such as video on demand, big data transfer, cyber physical

systems, cloud computing, etc., present more stringent requirements from the time

perspective, either measured as the latency or finishing time of data transfer, known

as Quality of Service (QoS) requirements. For example, teleconferencing applications

require audio/video data to be transferred with low packet delay to maintain the sense

of real-time interaction. Video streaming requires sufficient bandwidth to play the

video with little or no buffering. Otherwise it will cause interruption of playing the

video at the receiving end. They may have other QoS requirements such as low jitter

(variation in delay) and low packet loss ratio. For big data transfer applications, we

1

do not have strict deadline for packet delivery like in video streaming. However, we

do rely on the networks to provide enough bandwidth so that the transfer can finish

within a reasonable amount of time. In cyber physical systems such as smart grid and

home networking systems, we may need to monitor the status of equipment and send

control signals to initiate an operation. These sensor data and control signals need

to rearch their destinations in time to close the feedback loop, though the amount of

data can be small. All these present challenges to the underlying networks.

Traditional network architecture does not provide QoS support for data

communications. Even if the total network capacity can meet the requirements of

network applications, the quality of service delivered for these applications can be

unsatisfactory because of the best effort nature of the current network. There have

been quite a lot of studies on the mechanisms for providing QoS in traditional

networks. Most of them are theoretical studies and have not been deployed on the

Internet at any significant scale.

One of the reasons is perhaps that the proprietary protocols deployed in network

equipment by the vendors are mostly fixed and cannot be modified by end users.

Vendors of networking devices usually do not want to expose their internal

implementations to the public and tend to keep it closed, which make it difficult to

program the network. This limits flexibility and makes network management more

difficult. The network administrators cannot change their behaviors to meet the

requirements of end applications. The network researchers cannot modify the

software on network routers and switches to experiment, implement and deploy new

protocols to provide QoS support required by the applications.

Software Defined Networking (SDN) is a recently proposed new paradigm for

implementing network functions. It separates the control plane and data plane. Data

plane is in charge of data forwarding functions while the control plane determines

how the data are forwarded. The control plane function is centralized at the SDN

2

controller which installs forwarding rules that will be used by switches on the data

plane. The open standard allows users to write controller modules to define the

behavior of the data plane of the network. In addition, controllers provide northbound

API interface for users to write external application programs that interact with the

controller and have the capability to instruct what data forwarding switches should

do with the data packets.

SDN provides a new opportunity for researchers to experiment new network

mechanisms to provide the service required by applications. In this dissertation, we

explore new SDN mechanisms to provision QoS to targeted network flows. From our

analysis, we realized that there are two fundamental requirements for time-critical

applications, i.e., bandwidth and latency. For bandwidth, instead of using the

default destination-based routing algorithm, we explore alternative routing paths for

selected flows. We take advantage of the flexibility provided SDN and install rules

in the data forwarding switches, with the goal of using a forwarding path with

higher available bandwidth, instead of using the default shortest path used by the

current network routing protocols. To achieve the goal, we need to monitor the

status of the network and develop a method to figure out the current available

bandwidth on relevant links.

The other problem we want to address is latency. We are particularly interested

in those applications that need the sensor data and control signals to be transmitted

in a timely fashion so that the whole system can function properly. As a matter of

fact, we cannot solve the problem caused by the limit of the speed of light. However,

we do observe that one of the contributing factors is that these packets can wait

in the queue when there is competing traffic that uses the same path. We develop

a new mechanism that pre-allocates higher priority queues in routers/switches and

reserves these queues for control/sensor traffic. It is an elastic reservation in the sense

that if the bandwidth is not used by the reserved traffic, it can be used by others.

3

However, the reserved traffic has higher priorities. Therefore, it can guarantee that

the control/sensor traffic is not delayed at congested routers to achieve the goal of

keeping their end-to-end latency within the limit.

While the network can be equipped with mechanisms to install new routing

paths, we also explore how to make the applications take advantage of the

opportunity provided by SDN. From the application perspective, we study new

transmission mechanisms for big data transfer in the cloud computing environment.

Instead of using a single TCP path to transfer data, we investigate how to let the

application set up multiple TCP paths for the same application. We differentiate

short flows and long flows and adaptively determine whether to create subflows for

a TCP connection and how many auxiliary subflows to create. With the knowledge

about the network topology and available capacities provided by the SDN

controller, we develop the algorithm that improves the overall throughput for long

flows, without penalizing those short flows that do not need to use Multipath TCP

(MPTCP).

1.2 Contributions

In this dissertation, we propose three mechanisms that aim to improve the

provisioning of QoS to selected network flows. We identify the requirements of

certain network traffic and present methods and systems to achieve their

performance goals. These mechanisms are based on SDN. The proposed

mechanisms have been developed and evaluated on testbed environments. The main

contributions of this dissertation are:

• Improving the quality of service provided to traffic flows that have demands

for bandwidth. We propose an SDN-based solution for continuous monitoring

of network status and dynamically setting up forwarding paths for bandwidth-

demanding traffic flows.

4

• Provisioning quality of service to latency-sensitive traffic. We propose a

framework for managing and forwarding traffic flows that need to be

transmitted with higher priority to meet deadlines. This framework

accommodates different classes of traffic flows with different levels of

requirements.

• Maximizing the throughput of large flows by using Multipath TCP and SDN.

We propose a novel architecture that allows large traffic flows to achieve higher

throughput by utilizing multiple paths. Our approach enables applications to

dynamically create new subflows which are forwarded through least-congested

paths by the SDN controller.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides background

information related to QoS and SDN. Chapter 3 presents the SDN-based forwarding

solution for improving QoS to bandwidth-demanding traffic flows. Chapter 4

describes provisioning QoS to latency-sensitive traffic. Chapter 5 presents our

approach to improve the throughput of large flows by using Multipath TCP and

SDN. Chapter 6 provides the conclusion and possible future research.

5

Chapter 2

Background

2.1 Quality of Service

Providing Quality of Service was not one of the goals in the initial design of the

Internet. However, Internet applications (e.g., multimedia streaming, online-gaming,

teleconferencing, etc.) evolved over time and their need for QoS guarantee became

clear. Someone can argue that over-provisioning network resources to satisfy QoS

requirements is economically more feasible than replacing existing network

architecture. However, over the years there have been many efforts aimed at

providing QoS. Integrated Services (IntServ) and Differentiated Services (DiffServ)

were the two main proposals, although they were not successfully deployed on a

large scale.

2.1.1 IntServ

IntServ provides Quality of Service guarantee by reserving resources at each router

along the path travelled by the packets of a flow. There are two parts of this

architecture. First, the flow specification which describes the traffic flow and its

requirements. The flow is defined as “distinguishable stream of related datagrams

that results from a single user activity and requires the same QoS” [2]. Second, the

6

Resource Reservation Protocol (RSVP) [3] which is the signaling protocol used

between hosts and routers to request reservation of resources (e.g., bandwidth). In

order to provide the requested QoS, routers need to implement traffic control. The

IntServ architecture defines three components of traffic control: packet scheduler,

classifier, and admission control. Packet scheduler uses a set of queues to manage

forwarding different packet streams. The classifier maps each incoming packet into

some class. The admission control accepts or rejects a new QoS request for a traffic

flow.

Although IntServ provides QoS guarantee, it has some drawbacks that prevented

wide adoption of this architecture [4]. It requires maintaining flow state information

which is proportional to the number of flows. This affects the scalability, especially in

large networks like the Internet. It also requires all routers along the path to support

the three components of traffic control and RSVP protocol. These limitations lead

to the second proposal, DiffServ.

2.1.2 DiffServ

DiffServ was proposed to overcome the difficulties adopting IntServ. It provides

mechanisms for aggregating traffic flows into classes. The coarse-grained traffic

classes improve the scalability, in contrast with IntServs fine-grained traffic flows.

The classification is done by utilizing Differentiated Services Code Point (DSCP) [5]

field in the IPv4 and IPv6 headers. DSCP was introduced to replace ToS field in

IPv4. The classified packets are marked so they can be identified by routers and

forwarded accordingly. All packets that have the same DSCP value are grouped into

one class called Behavior Aggregate and will be treated equally by all routers in the

domain. The classifying and marking need to be performed only at the network

edge. However, all routers need to implement Per-Hop Behaviors (PHBs) which

describe properties for forwarding traffic classes (e.g., minimum bandwidth).

7

Per-Hop Behaviors ensure that high priority traffic will receive favorable treatment

over other traffic classes. This is usually achieved by implementing different priority

queues and traffic shaping (rate limiting). This architecture does not provide hard

QoS guarantee like IntServ.

2.1.3 QoS Metrics

Quality of service requirements are typically stated in service level agreements

(SLAs) that specify the guaranteed network performance to be provided for clients’

applications by service providers. Network performance is measured against a set of

attributes that include:

• Guaranteed minimum bandwidth. Throughput achieved by traffic streams is

affected by several factors like link capacity and network congestion. Providing

guaranteed minimum bandwidth to certain traffic flows (e.g., real-time video

streaming) ensures that such flows will deliver data as required to the receiving

end.

• Guaranteed maximum latency. End-to-end latency (delay) is the total time it

takes for a single packet to be transmitted from the source host to the

destination host. It involves transmission delay, propagation delay, queueing

delay and processing delay. Voice over IP (VoIP), teleconferencing and online

Internet gaming are examples of network applications that increased latency

affects their performance.

• Guaranteed maximum packet loss ratio. Network congestion can lead to

failure of delivering some packets. This can happen when buffers in network

devices reach their maximum capacity. In this case, routers and switches will

have to drop some packets. TCP, being a reliable transport protocol, ensures

the integrity of transmitted data by employing receipt acknowledgements and

8

retransmitting lost packets. However, dropped packets affect the performance

of TCP protocol as it is considered a congestion signal (identified by

retransmission timeouts and duplicated acknowledgements). In response to

congestion signal, the TCP congestion control algorithm will reduce the

sending rate of the TCP stream to avoid congestion.

• Guaranteed maximum jitter (variation in latency). Network conditions change

over time which can lead to different latency for packets belonging to the same

traffic flow. This variation in latency is not desirable and can affect the quality

of service for many applications like audio/video streaming and online Internet

gaming.

Apart from over-provisioning network resources (which is not a cost-optimal

solution), service providers can use mechanisms like resource reservation at each

node along the path taken by data packets and QoS-aware routing. Resource

reservation can involve giving higher priorities to certain traffic flows over other

traffic. QoS-aware routing tries to route traffic flows through paths that satisfy QoS

requirements.

Before going through the different types of QoS routing problems, we describe

the representation of the network and its properties. The network is represented as

a directed graph G(V,E), where V is the set of all nodes in the network and E is

the set of all links between nodes. Each link e ∈ E has associated properties: eb is

the available bandwidth capacity, ed is the delay, and el is the ratio of packet loss

(i.e., percentage of lost packets to the total number of packets; a ratio of 0 means no

lost packets). The accuracy of these attributes is very crucial to the performance of

QoS routing algorithms. The network state and measurements need to be updated in

order for routing algorithms to find the most suitable paths with sufficient resources

that meet required QoS parameters.

9

The path finding problem should return a path P from a source node s to a

destination node d that satisfies the required QoS parameters. We define the following

functions for a path P :

D(P) =
∑
e∈P

ed

B(P) = min
∀e∈P

(eb)

L(P) = 1−
∏
e∈P

(1− el)

The delay function is additive while the bandwidth function is concave [6]. The

packet loss ratio function is multiplicative but can be changed to additive by taking

logarithm of the ratio .

2.1.4 QoS Routing

The path finding problem in QoS routing can involve one or more QoS parameters.

Algorithms for QoS routing have been studied extensively in the literature [7, 8]. Each

required parameter can be either a constraint problem or an optimization problem.

For example, a bandwidth constrained problem is defined as finding a path P such

that each link in the path e ∈ P has available capacity larger than or equal to the

required bandwidth parameter. The widest path problem, a bandwidth optimization

problem, is defined as finding a path P that has the largest available capacity (i.e,

maximizing the bottleneck of the suitable path). Table 2.1 shows a sample list of

QoS routing problems that can be solved in polynomial time. For the simplest form,

a single QoS parameter, variations of shortest path finding algorithms (e.g., Dijkstra

algorithm or Bellman-Ford algorithm) can be used to solve the problem and find

a suitable path. Some composite parameter problems (e.g., constrained-bandwidth

10

least-delay problem) can be solved in polynomial time by running the shortest path

algorithm (weights of the graph edges are delay measurements) and removing the link

that has available capacity less than the bandwidth constraint.

Table 2.1: Sample of QoS routing problems solvable in polynomial time

Attributes Params Constraint Optimization Notes

Bandwidth Bmin B(P) > Bmin Constrained
bandwidth

Delay Dmax D(P) ≤ Dmax Constrained
delay

Packet loss Lmax L(P) ≤ Lmax Constrained
packet loss

Bandwidth arg maxP (B(P)) Widest
path

Delay arg minP (D(P)) Least delay

Packet loss arg minP (L(P)) Least
packet loss

Bandwidth, Delay Bmin B(P) > Bmin arg minP (D(P)) constrained-
bandwidth
least-delay

Bandwidth, Packet loss Bmin B(P) > Bmin arg minP (L(P)) constrained-
bandwidth
least-packet
loss

Delay, Bandwidth Dmax, Bmin D(P) ≤ Dmax

B(P) > Bmin

Constrained
delay-
bandwidth

There are other composite-metric routing problems which are known to be NP-

Complete. These problems include [7, 9, 8, 10]:

• Multi-Constrained-Path (MCP) problems. For a given network G(V,E) where

each link (u, v) ∈ E has m additive weights wi(u, v) ≤ 0, i = 1, ...,m, and given

m constraints of additive parameters Ci, i = 1, ...,m, the problem is stated as

finding a path P ∈ P ′ where P ′ is the set of all feasible paths from source node

s to destination node d such that:

∀p ∈ P ′,Wi(p) ≤ Ci for i = 1, ...,m

11

where:

Wi(p) =
∑

(u,v)∈p

Wi(u, v)

An example of the MCP problems is the constrained-delay constrained-jitter

problem. The goal is to find a path such that the delay is less than the delay

constraint parameter and the jitter is less than the jitter constraint parameter.

It should be noted that it is possible to have multiple paths that satisfy all

constraints. Any such path is considered a feasible solution for this problem.

• Multi-Constrained Optimal Path (MCOP) problems. For a given network

G(V,E) where each link (u, v) ∈ E has m additive weights

wi(u, v) ≤ 0, i = 1, ...,m, and given m constraints of additive parameters

Ci, i = 1, ...,m and an additive cost parameter Wk, the problem is stated as

finding a path P ∈ P ′ where P ′ is the set of all feasible paths from source

node s to destination node d such that:

(a) ∀p ∈ P ′,Wi(p) ≤ Ci for i = 1, ...,m

(b) Wk(P) is minimized over all feasible paths satisfying (a).

where:

Wi(p) =
∑

(u,v)∈p

Wi(u, v)

An example of MCOP problems is the constrained-delay least-jitter problem.

The goal is to find a path such that the delay is less than the delay constraint

parameter and the jitter is minimized.

Table 2.2 shows a sample list of NP-Complete QoS routing problems. For these

problems we have to use heuristics and approximation algorithms. Many of these

algorithms were discussed in [11, 7, 9, 12, 13].

12

Table 2.2: Sample of NP-Complete QoS routing problems

Metrics Params Constraint Optimization Notes

Delay,
Jitter

Dmax, Jmax D(P) ≤ Dmax

J(P) ≤ Jmax

Constrained
delay-jitter

Delay,
Packet loss

Dmax, Lmax D(P) ≤ Dmax

L(P) ≤ Lmax

Constrained
delay-packet
loss

Delay,
Jitter

Dmax D(P) ≤ Dmax arg minP (J(P)) Constrained-
delay least-
jitter

Jitter,
Packet loss

Jmax J(P) ≤ Jmax arg minP (L(P)) Constrained-
jitter least-
packet loss

2.2 Software-Defined Networking (SDN)

2.2.1 Early Efforts Prior to SDN

Before SDN became a trending research topic in the area of networking, several

efforts that share certain similar ideas have been discussed and proposed to solve

the challenges of traditional network architecture. These efforts contributed in

different aspects to the currently popular SDN architectures. The ideas and

concepts range from decoupling control plane and forwarding plane to achieving

some level of programmability in networks [14, 15]. In this section, we will describe

briefly some of these efforts.

Routing Control Platform

The Routing Control Platform (RCP) [16] was proposed to solve some issues with

existing routing mechanism within autonomous systems (AS). The internal Border

Gateway Protocol (iBGP) architecture used within AS requires full-mesh

configuration which does not scale to large networks. While using a hierarchy of

Routing Reflectors (RR) helps in avoiding the scalability issue, it causes problems

such as protocol oscillations, persistent loops, and configuration complexity. These

problems make it difficult to manage the autonomous systems in terms of

13

configuration changes, diagnosis and troubleshooting of forwarding errors. These

problems happen because routing decisions are made by routers that do not have a

complete view of the whole network

In RCP architecture, the BGP decision process is implemented in a logically

centralized platform. The routing control platform is separate from the IP

forwarding plane. The main goal of this platform is to perform route selection

decisions centrally instead of making routers do this job. The RCP avoids the

aforementioned problems by computing routing decisions based on a complete view

of the whole network topology and the available routes. This information is

collected using the existing protocols BGP and Interior Gateway Protocol (IGP).

There are three modules in this RCP architecture: the IGP Viewer, the BGP

Engine, and the Route Control Server. The IGP Viewer maintains an up-to-date

view of the IGP topology. The BGP Engine is responsible for learning BGP routes

from each router. The Route Control Server uses the information obtained from the

other two modules to compute the best route for each router. After the route

selection process is executed centrally, the Route Control Server communicates with

routers through the BGP engine and installs new forwarding entries that correspond

to the selected routes. The communication between the Routing Control Platform

and routers is done through existing standard protocols (BGP and IGP) without

any modification or introduction of new protocols.

The 4D project

The 4D project was one of the earliest attempts to promote the initiative of

decoupling the network architecture into different planes. The clean slate 4D

approach to network control and management [17] proposed an extreme design

principle by separating the routing decisions logic and packet forwarding. It is

considered an extreme design point because the packet forwarding and the control

14

logic were tightly coupled in existing network devices. According to [17], the

problems with the current Internet architecture is caused by the complexity of the

control and management planes. This is due to the fact that the control logic and

packet forwarding are bundled into distributed routers and switches. Instead of

adding to previous building blocks to solve current problems, the 4D project team

suggested a clean slate approach that provides an alternative perspective to the

incremental evolution in computer networks.

The leading principles of this design approach focus on satisfying network-level

objectives, having network-wide topology view, and providing direct control over

the operation of networking devices. The proposed clean slate 4D architecture

decouples networking functions into 4 planes: data, discovery, dissemination, and

decision planes. The data plane is for processing individual packets based on

configurable rules dictated by the decision plane. The discovery plane is responsible

for gathering network topology information and other network measurements. The

dissemination plane serves as a reliable communication channel between the

decision plane and the data plane. It is used for installing rules on networking

devices to control how packets are processed. The decision plane acts like the

“brain” of the network and aims to replace the management plane in traditional

network architecture. It consists of logically centralized controllers hosted on

multiple servers. The main purpose of this plane is to make all decisions that

manage and control the network. To do this efficiently, it makes use of the

information gathered by the discovery plane (the global view of the network

topology and the real-time network measurements). The output of the decision

plane comes as packet-handling states that are configured in networking devices in

the data plane by the dissemination plane

15

Ethane

Ethane [18] is considered the direct predecessor of OpenFlow. The project

continued on the previous work of SANE [19]. SANE was also a clean slate design

approach focusing on enterprise security. However, SANE was difficult to deploy in

the real world because it requires changing the entire networking infrastructure.

Ethane mitigated this problem by supporting the incremental deployment. It does

not require changing the entire infrastructure and Ethane switches can be

incrementally deployed within existing network infrastructure.

The design of Ethane followed the lead of 4D project. It decouples the control

plane and the data plane. It also adopts a logically centralized controller that has

access to the whole network. The emphasis of this centralized controller is to enforce

global network policies. The other component is a layer of Ethane switches. These

switches are very simple and contain only a flow table and a secure communication

channel to the centralized controller. This simple design of switches is the foundation

of OpenFlow switches as we will see in the next section.

The Ethane switch forwards packets based on the matched flow table entry. If a

packet was not matched by any flow table entry, which is the usual case for the first

packet of any flow in this system, then it is forwarded to the centralized controller.

The controller will install the appropriate flow table entries on Ethane switches.

The installed flow table entries are based on analyzing the packet by the controller.

The main goal of the controller is to enforce global network policies. The design

objectives of Ethane (enforcing enterprise-level policies) and the size of their target

infrastructure (small campus networks) make the reactive mode a reasonable design

approach. However, this solution does not scale to large networks.

16

2.2.2 SDN Model

Software-Defined Networking is a new networking architecture that aims to create

a breakthrough improvement of how computer networks are designed and managed.

The basic concept of SDN is to separate networking functions into two different

planes: control plane and data plane. Traffic control decisions are made by application

programs (called controllers) in the control plane while forwarding traffic is done

by networking devices in the data plane. The communication between the control

plane and the data plane is done through standardized protocols. OpenFlow [20] is

the most successfully implemented SDN protocol. One of the benefits of having a

centralized network controller is the availability of global view of network topology

and monitoring its measurements. This allows the controller to make more educated

routing decisions. In the traditional network architecture, processing traffic is based

on packets. Network devices make forwarding decisions using address information in

data packets, but data usually is sent as a flow from host to host. Software-Defined

Networking uses the flow as the basic unit for handling traffic. Figure 2.1 shows a

simplified SDN architecture.

In the pre-SDN era, QoS routing decisions were mostly handled in network devices.

Proposed algorithms can be grouped into three categories: source routing (which

runs at the source node), distributed routing (calculating the path is distributed

among multiple nodes), and hierarchical routing (routing logic and network state

are distributed among clusters of nodes). The advantages and disadvantages of each

approach were discussed in the literature [7]. However, the advent of SDN changes

the way of handling routing decisions. Network nodes do not need to maintain a

global state of the network or compute QoS routes. These tasks can be delegated to

the control plane.

17

Figure 2.1: Simplified SDN architecture

2.2.3 SDN Characteristics

Software-Defined Networking has some distinguishing characteristics that define how

it is different from the traditional networking architecture. These characteristics

include [14, 21]:

• Decoupling control and forward functions. While these two functions are tightly

coupled in traditional networking devices, the separation between control plane

and data forwarding plane is a key feature of Software-Defined Networking.

• Logically centralized network management. The management tools and

protocols are distributed in the traditional network architecture in a way that

makes the management task very difficult and sometimes inefficient.

18

• Open standards. To promote the development of new network protocols and

tools, popular Software-Defined Networking architectures are based on open

standards such as the OpenFlow [20] protocol.

• Programmable network. The ability to program the network was one of the

important motivations for Software-Defined Networking. Traditional network

architectures provide limited support to achieve a restricted level of network

programmability.

• Flow-based. In the traditional network architecture, processing traffic is based

on packets. Network routers and switches make forwarding decisions using

address information in data packets, but data usually is sent as a flow from

host to host. Software-Defined Networking uses the flow as the basic unit for

handling traffic.

2.2.4 SDN Benefits

Software-Defined Networking promises many benefits for the next generation of

computer networks. These benefits include [14, 21]:

• Easier management by separating network control logic from the underlying

networking devices (e.g., switches, routers, middleboxes) and providing central

management tools for network administrators.

• Innovation in new network protocols and tools. Using open standard protocols

enables the creation of new innovative products.

• Flexibility and agility of network configurations and applying new changes in

response to traffic requirements.

19

• Testing and deploying new network protocols and algorithms is a lot easier

compared to the traditional network architectures where dedicated

infrastructure is usually required for testing purposes only.

• Network function virtualization. Many network functions that are usually

implemented in dedicated devices (e.g., firewalls, load balancers, intrusion

detection systems, etc.) can be implemented in virtual machines.

2.2.5 OpenFlow

The OpenFlow [20] architecture follows the principle of separation between control

plane and data forwarding plane. Initially, OpenFlow was proposed to enable

researches to develop and test new network protocols and solutions on campus

networks. It is currently the most popular architecture for Software-Defined

Networking. Several commercial products provide support for OpenFlow

architecture. The bottom layer of this architecture, the data forwarding plane,

consists of OpenFlow switches. The OpenFlow switch contains at least three main

components. First, one or more flow tables. Second, a secure communication

channel between the switch and the controller. Third, support for the OpenFlow

protocol.

The flow entries in the flow table determine how a matching packet is processed.

For example, a packet can be forwarded to a specific port, encapsulated and sent to

the controller, or dropped. Each flow entry is typically constructed from the following

fields:

• Match fields: to define the rule packets belonging to the flow. These rules

usually match information found in packet headers or port number.

• Instructions: the action associated with the rule that specifies how the packet

is processed.

20

• Counters: statistics in the form of counters of the flow (e.g., number of

received/transmitted packets and bytes, duration of the flow).

• Priority: to specify the matching precedence of flow entries.

• Timeouts: the switch when the flow entry is expired. There are two types of

timeouts: hard timeout (the total time from installation) and soft timeout (the

idle time).

• Cookie: A data item chosen by the controller. Cookies do not impact processing

packets in the data plane. The controller can use cookies to filter flows based

on different types of tasks or based on which module/application in the control

plane installed them.

• flags: used for managing flow entries. For example, the flag

OFPFF_SEND_FLOW_REM is used for sending a message to the controller when

the corresponding flow entry is removed.

When a packet is received by an OpenFlow-enabled switch, its properties are

matched against a set of attributes stored in records of the flow tables. If a match

is found then the corresponding instructions for the table record are added to the

actions list. If a packet is matched by more than one record, the instructions of

the record with the highest priority are added to the actions list. An OpenFlow

switch can have multiple flow tables which are processed as a pipeline. It is possible

to have an instruction to direct a packet explicitly to another table. If the packet

did not match any flow record it is called a table-miss. The applied actions of the

table-miss depends on the configuration of the table. The packet can be encapsulated

and forwarded to the controller. However, it is possible to process the non-matching

packet using IP forwarding if the switch supports both OpenFlow and non-OpenFlow

forwarding.

21

The OpenFlow protocol defines the communication between the controller and

the OpenFlow switch. It contains a set of protocol messages that are exchanged

between the controller and the switches over a secure communication channel. Using

OpenFlow protocol, the remote controller can install, update, or remove flow records

in flow table inside the OpenFlow switch. It also enables the controller to retrieve

statistics. Many products and tools were developed using OpenFlow architecture.

Most of the early systems of Software-Defined Networking were designed to

operate on a reactive mode (e.g., Ethane). In the reactive mode, the first packet of

the flow is forwarded to the controller that installs new flow entries to control the

remaining packets of that flow. In the proactive mode, systems do not require

sending the first packet to the controller. Instead, the controller changes the flow

entries based on other inputs like topology changes or responding to statistics.

OpenFlow architecture supports both reactive mode and proactive mode. In the

reactive mode there will be a performance delay since the first packet of each flow

will need to go to the controller for further processing. While this performance

penalty can be affordable in small campus networks, it does not provide a realistic

solution for large production networks. It also increase the challenge of scalability

as the controller must process larger number of packets in larger networks.

2.2.6 Open vSwitch

Open vSwitch [22, 23] is a software implementation of network switch that can be

used in a virtualized environment. It provides connectivity between virtual machines

and physical network interfaces within a hypervisor. This software switch provides

support for multiple networking protocols and standards, including OpenFlow. Open

vSwitch can operate like a basic L2 switch or can be integrated into a virtualized

environment. To support virtualized deployment, Open vSwitch exports interfaces

for manipulating forwarding tables and managing configuration states. This allows

22

remote processes to access and modify configurations and forwarding tables directly.

Open vSwitch also exports a local connectivity management interface which allows

the virtualization layer to manipulate its topological configuration. Open vSwitch can

be used in creating a single logical switch across multiple Open vSwitches running

on separate physical servers. It is also helpful in overcoming the limitation of virtual

machine mobility between different IP subnets.

23

Chapter 3

Improving the Quality of Service

for Bandwidth-Demanding Traffic

Flows

3.1 Overview

Communication technology is one of the key enabling components of current and

future applications by providing reliable and efficient two-way communication

capabilities. Different applications generate large volumes of data traffic with

different quality of service requirements. They can be delay sensitive, bandwidth

sensitive or can be served by best-effort service. Real time control in industrial

systems can be easily achieved by using dedicated networks. However, using

dedicated networks is not a feasible solution in more generic network settings. The

packet-switched network architecture serves multiple applications where different

data traffic streams coexist with each other. New challenges faced by the existing

network infrastructure and control protocols include strict time requirement, high

reliability, and flexibility of control.

In this chapter, we develop a framework based on software-defined networking

24

for providing critical communication services. The SDN architecture is generally

considered most applicable to those application domains that an administrator has

complete control. Examples includes data centers, home networking, smart grid

applications, distribution automation and microgrids.

We can divide data traffic into two categories. One is the traffic that does not

have QoS requirements (called best-effort traffic or best-effort flows) and the other

is the traffic that have one or more QoS requirements such as bandwidth, delay,

delay jitter or packet loss ratio (called critical traffic or critical flows). The focus

of this chapter is on providing better service for critical flows that have bandwidth

demand, by dynamically setting up forwarding paths in the data plane. To that end,

the control program will monitor the status of the network and direct critical flows

over a better path by installing OpenFlow rules on the switches. We develop a path

searching algorithm and implement it as a module for the Floodlight controller [24].

The performance evaluations show that our approach can significantly improve the

throughput obtained by the critical flows, compared with the shortest path routing

algorithm used in current networks.

3.2 Related Work

The study of the QoS routing problem for multimedia applications can be dated

back to the work by Wang and Crowcroft [6]. They proved that finding a path

satisfying multiple additive metrics is NP-complete. They then proposed several

path computation algorithms, using either centralized source routing or distributed

hop-by-hop routing.

OpenQoS [25] is a controller design proposed to provide QoS guarantee for

multimedia applications. Network traffic is divided into multimedia flows and data

flows. OpenQoS implements dynamic routing for multimedia traffic to place them

on routes with guaranteed QoS. Data flows are handled using the traditional

25

shortest-path algorithm. The dynamic QoS routing is formed as the Constrained

Shortest Path (CSP) problem. It is formulated as finding a path which minimizes a

cost function subject to the total delay to be less than or equal to a specified value

Dmax (required by the multimedia flow). The cost metric for a link is the delay

measure plus the congestion measure. The congestion measure for each link depends

on the bandwidth utilization. It is set to 0 if the bandwidth utilization is less than

70%. However, in their proposal they used the hop count as the delay measure (i.e.,

the delay measure for all links is set to 1). While OpenFlow does not provide

support for gathering delay measurements, there are methods to achieve this task,

such as using probe packets. Since the CSP problem is NP-Complete, they proposed

using an approximation algorithm called Lagrangian Relaxation Based Aggregated

Cost (LARAC) algorithm [11] to find a good route. They implemented their QoS

routing on top of Floodlight controller.

VSDN (Video over SDN) [26] is another framework that aims at providing QoS

guarantee for multimedia flows in video streaming applications. It exposes some QoS

APIs to be used by both sender and receiver to request QoS for video streaming.

The centralized controller calculates a feasible path based on QoS requirements and

keeps monitoring network resources. However, VSDN requires modifying the existing

OpenFlow switches to support their proposed guaranteed service.

3.3 An SDN-Based Framework for Setting Up Paths for

Bandwidth-Demanding Flows

We represent the network as a directed graph G(V,E), where V is the set of all

OpenFlow switches and end hosts in the data plane and E is the set of all links

between these nodes. Links are represented as ordered pairs. For example, (v1, v2)

represents the single link in the topology where v1 is the source node and v2 is the

destination node. Each link is assigned the attribute of computed available capacity.

26

Note that the attributes can be different for links (v1, v2) and (v2, v1) because of

asymmetric links.

We formulate the problem as finding the shortest path from a source node s to a

destination node d such that the minimum available capacity of path links is larger

than the required capacity for the critical traffic flow.

We develop two modules (Status Monitoring and QoS-based Path Setup) for the

Floodlight controller, as shown in Figure 3.1. Floodlight offers a flexible module

loading system that allows extensions. The basic modules of the floodlight interact

with the OpenFlow switches. The extension modules can use the functionalities

provided by basic modules. The first extension module is Status Monitoring, which

collects network measurements as a basis for the second module. They include usage

information, such as used bandwidth, for each link. The second extension module

is QoS-based Path Setup, which calculates a path using the topology of the network

graph and collected measurements. It finds a path that satisfies a specific bandwidth

requirement and installs OpenFlow rules on the switches in the data plane.

3.3.1 Status Monitoring

The OpenFlow switch specification [27] defines a list of counters that must be

supported by OpenFlow-capable switches. The list includes per-flow counters and

per-port counters. We are interested in the per-port counters, specifically the

transmitted bytes counters. The controller can retrieve the values of these counters

by sending a statistics request message to the switch and getting a reply message

that contains the number of transmitted bytes at the time of the request. It should

be noted that these measurements will not be 100% accurate by the time the

controller receives them, due to the delay of the request-reply messages and the

processing delay at the controller. Nonetheless, they give a good estimate of the

usage of the links being monitored.

27

Figure 3.1: The SDN architecture for providing QoS support

The controller application collects statistics measurements (counters of

transmitted bytes) periodically. Each link in the network topology has a source

switch-port and/or a destination switch-port. The used bandwidth of a link is

obtained by dividing the number of transmitted bytes from the source switch-port

of that link over the time interval 1. The difference between the values of two

consecutive reply messages for the switch-port counter is used to calculate the

consumed bandwidth of the corresponding network link. The OpenFlow

specification does not include timestamps for measurements reply messages. Hence,

the time interval is set at the control plane level as the difference between the

timestamps of sending these requests to the switch. The time interval should be

chosen carefully. It has to be small enough so that the calculated bandwidth is

relatively up-to-date. It also cannot be too small; otherwise the controller and

1Another approach is to use the received bytes counter of the destination switch-port.

28

switches will be burdened by the overhead of processing these messages. An interval

between 5 and 10 seconds is a reasonable choice.

We obtain network topology information from Floodlight module topology

manager. For each link we subtract the calculated bandwidth from its maximum

capacity to get the available capacity used in the routing algorithm. To get the

maximum capacity of the link, the controller can send a request to the switch

asking about the features of a port (or multiple ports) in the switch. The advertised

port capacity is one of the port features.

3.3.2 QoS-based Path Setup

There are many measures to specify different aspects of QoS requirements. In this

chapter, we only consider the traffic flows demanding bandwidth requirement. These

flows, which we call them critical flows, must be placed on network paths that have

sufficient bandwidth capacity, while the non-critical flows are handled as best-effort

and routed using the shortest-path algorithm. The critical traffic can be distinguished

from best-effort traffic by matching packets from the flow against a set of fields.

OpenFlow defines a list of match fields that can be used to differentiate between

flows. The list of required fields that must be supported by OpenFlow switches

include Ingress port, source and destination MAC addresses, MAC type, source and

destination IP addresses, protocol type, and transport layer ports (see Figure 3.2).

There are other fields stated in the OpenFlow specification, but switches are not

required to support all of them. A flow can be identified by setting match rules

against any number of these fields. For example, we can define critical traffic to be

all TCP traffic from a specific IP address, or all TCP traffic within a pre-defined

source port range.

The first packet of each flow is encapsulated inside a PACKET IN OpenFlow

message and forwarded to the controller. This implies that the controller processes

29

Figure 3.2: Match fields in OpenFlow

the first packet and then installs forwarding rules to handle the remaining packets

of the same flow. Our module listens for PACKET IN messages and processes the

packet encapsulated within the received messages. To determine the flow type, the

packet is decapsulated to extract IP addresses, or TCP ports (if it is a TCP packet)

depending on what was defined as critical flows. They are then compared to the pre-

defined addresses or ranges. If it is critical traffic, the route calculation module tries

to place the flow on a route that satisfies the bandwidth requirement. Otherwise,

it is considered non-critical traffic, which is routed as best-effort traffic and handled

by the Floodlight forwarding module that uses Dijkstra’s algorithm to calculate the

shortest path.

The method for finding the QoS path for a flow is described in Algorithm 1. It

traverses the network graph to search for the destination node. Along the way, it

bypasses the links that have available capacity less than the required capacity by the

critical flow. The available capacity is calculated and updated periodically to reflect

the current status of the network. If the destination node is reached, the search stops

and constructs the path for the critical flow. It should be noted that this path is not

necessarily the widest path (with the highest available capacity), but it is the shortest

path with sufficient available capacity. This decision is made with the consideration

of reducing the number of hops along the path, which will reduce the utilization of

30

network switches and (in most cases) reduce latency.

After the path is found, corresponding OpenFlow rules will be generated and

installed by the Floodlight controller to the switches along the path. If the search fails

to find a path that satisfies the required bandwidth capacity it returns null. In this

case, the critical traffic flow cannot be placed on a route that meets its requirement.

Instead, it will be handled like normal traffic and forwarded along the shortest path

using Dijkstra’s algorithm.

We implemented the QoS routing algorithm as a module inside the Floodlight

controller [24]. Floodlight is Java-based controller that was forked from Beacon [28],

one of the first OpenFlow controllers. Floodlight offers a flexible module loading

system that allows extensions. There are two methods for writing applications on

top of Floodlight controller. First, the application can be written in Java as an

embedded module inside Floodlight. It can communicate with other built-in modules

and consumes the provided services directly. Second, an application can be written

in any language and communicate with Floodlight using REST APIs. It can retrieve

information and invoke services by utilizing the exposed Floodlight REST APIs. We

chose to implement the QoS routing algorithm as a Java module inside Floodlight. If

someone wants to develop an application that is large and performs computationally

expensive actions, then it would be more suitable to write it as a separate application

that can run on a different server and communicate with Floodlight using its exposed

REST APIs.

31

Algorithm 1 FindQoSPath(source, destination, reqCapacity)
queue← empty
visited← empty
prevLink ← empty
queue.add(source)
visited.add(source)
dstFound← false
while (queue is not empty) and (dstFound = false) do

node← queue.remove()
for link ← topologyLinks.connectedto(node) do

neighbor ← link.getDestination()
if visited.contains(neighbor) then

continue
end if
if getAvailableCapacity(link) < requiredCapacity then

continue
end if
queue.add(neighbor)
visited.add(neighbor)
prevLink[neighbor]← link
if neighbor = destination then

dstFound← true
break

end if
end for

end while
if dstFound = true then

route← empty
node← destination
while (node 6= source) do

route.addF irst(prevLink[node])
node← prevLink[node].getSource()

end while
return route

else
return null

end if

32

3.4 Evaluation

3.4.1 First Experiment

Experiment Setup

For testing the QoS routing algorithm we used Mininet [29] with the software Open

vSwitch [22]. Mininet is an emulation tool that provides a virtualized environment

for prototyping and evaluating SDN applications. It uses lightweight virtualization

techniques at the operating system level to emulate hosts, links, switches, and

controllers. We wrote Python scripts using Mininet Python APIs to create the

network topology. Mininet can be configured to work with software switches. We

chose Open vSwitch due to its flexibility and good support for OpenFlow switch

specification.

To test our QoS routing module, we created a network topology with 8 switches

(Open vSwitch) and 22 hosts in Mininet. The topology is shown in Figure 3.3. The

bandwidth of the links between switches is set to 25 Mbps and the bandwidth of the

links between switches and hosts is set to 10 Mbps. Mininet uses the traffic control

command in Linux tc to specify the bandwidth. After that, we generated 14 flows

using iperf3 [30]. Five of these flows were critical flows. Table 3.1 shows the list of

flows in this experiment. Using Python script, we started the Mininet topology and

then generated the flows in the order shown in the table. The Floodlight controller

was running on a different machine connected to the Mininet host.

Results

First, we ran this experiment with QoS routing module disabled in Floodlight. Then

we ran the same experiment with QoS routing module enabled. Since the link between

switches and hosts has the capacity of 10 Mbps, the maximum speed a critical flow

can send is 10 Mbps. The measured throughput for each flow in both cases is shown

33

Figure 3.3: First experiment topology in Mininet

Table 3.1: Traffic flows

Flow Source Destination Start time Is Critical Size
1 h31 h42 2 No 150 MB
2 h41 h32 3 No 140 MB
3 h32 h41 4 No 145 MB
4 h42 h31 7 No 135 MB
5 h11 h71 22 Yes 135 MB
6 h71 h61 23 No 140 MB
7 h43 h33 25 No 120 MB
8 h33 h81 41 Yes 130 MB
9 h74 h63 42 No 115 MB
10 h12 h51 57 Yes 125 MB
11 h72 h62 59 No 125 MB
12 h51 h83 76 No 100 MB
13 h13 h82 91 Yes 120 MB
14 h73 h21 106 Yes 110 MB

in Figure 3.4.

The experiment results show that all five critical flows achieved much smaller

throughput when the Floodlight controller was running without the QoS routing

module. The average rates for critical flows were 8046 kbps (flow No. 5), 7248 kbps

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Traffic flows

0

2000

4000

6000

8000

10000

Av
ge

ra
ge

 b
an

dw
id

th
 (k

bp
s)

Avg w QoS

Avg w/o QoS

Without QoS
With QoS: Non critical flow
With QoS: Critical flow

Figure 3.4: Throughputs with five critical flows

(flow No. 8), 7272 kbps (flow No. 10), 6838 kbps (flow No. 13), and 7024 kbps

(flow No. 14). The measurements improved in the case with the QoS routing module

enabled. The throughputs for critical flows were 9408 kbps (flow No. 5), 9374 kbps

(flow No. 8), 9446 kbps (flow No. 10), 9565 kbps (flow No. 13), and 9572 kbps (flow

No. 14).

Figures 3.5 and 3.6 show the measured throughput for each critical flow as reported

by iperf3 with an interval of 10 seconds. The x-axis denotes the lifetime for each flow

(its duration), not the time for the experiment. In the first experiment, flow No.

10 (from h12 to h51) was routed through S1, S3, and S5. Link (S3, S5) already

had 2 flows (No. 5 and No. 8), leaving it with about 5 Mbps capacity. Using this

route caused the link to be congested. When the QoS routing module is enabled, the

throughputs of all these critical flows have been improved, as shown in Figure 3.6.

The QoS routing module placed flow No. 10 on a different route (S1, S2, S4, S6,

35

S5). This placement allowed all three flows to have better throughput. From the

figure, we can see that there is little variation and the throughputs of these critical

flows stay constantly around 9.5 Mbps.

Figure 3.5: Throughputs for critical flows without QoS routing module

36

Figure 3.6: Throughputs for critical flows with QoS routing module

To show the difference of handling a flow based on its type, we conducted the same

experiment after changing flow No. 11 (from h72 to h62) to be a critical flow. In the

two previous experiments, this flow was placed on path (S7, S6) and its throughput

was about 7600 kbps. After this change, the same flow was placed on path (S7,

S8, S6). The measured throughput for this flow was 9571 kbps. This change also

improved the throughput of other flows as shown in Figure 3.7.

The benefits of avoiding congested links include better utilization for network-

wide bandwidth. This is illustrated in Figure 3.8. Results were obtained from three

runs of the experiment, i.e., without the QoS module enabled, with the QoS module

enabled with 5 critical flows, and with the QoS module enabled with 6 critical flows.

It shows that when the QoS module was enabled, the network achieved higher levels

of utilization.

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Traffic flows

0

2000

4000

6000

8000

10000

Av
ge

ra
ge

 b
an

dw
id

th
 (k

bp
s)

Avg w QoS

Avg w/o QoS

Without QoS
With QoS: Non critical flow
With QoS: Critical flow

Figure 3.7: Throughputs with six critical flows

Figure 3.8: Utilization of the whole network

38

3.4.2 Second Experiment

Experiment Setup

In the previous experiment, the QoS routing module was able to find a feasible path

for all critical flows. Which means all critical flows were accepted by the module.

However, this is not always the case. Sometimes the network becomes congested in a

way that prevents finding a path with sufficient capacity. In the second experiment,

we want to measure the overall performance of the network in relation to the number

of accepted flows. We created a different topology of 5 switches and 20 hosts. Each

switch is connected to four hosts. The bandwidth of the links between switches is set

to 15 Mbps and the bandwidth of the links between switches and hosts is set to 10

Mbps. The topology is shown in Figure 3.9. We generated a random list of 20 traffic

flows such that:

• Each host will send and receive only one flow.

• Source and destination switches are different for each flow.

• Start time and duration are random (within a range).

• All flows are critical.

Results

This experiment was repeated 30 times, each time with a different list of flows. For

each time, we measured the total average throughput of all flows and the average

throughput of the accepted flows. Figure 3.10 shows the obtained results. We can

see clearly that as the number of accepted flows increase, the average throughput of

all flows increase. Moreover, the average throughput of accepted flows is more than

that of all flows.

39

Figure 3.9: Second experiment topology in Mininet

3.5 Summary

In this chapter, we proposed an SDN-based framework for providing better service for

critical flows. This framework focus on satisfying the bandwidth demands of critical

flows. It took advantage of the SDN paradigm by developing modules in the controller

to monitor the network and set up QoS paths for bandwidth-demanding flows. The

evaluation results demonstrated that the new modules can improve the performance

for those applications using critical flows.

40

0 5 10 15 20
Number of accepted critical flows

0

2000

4000

6000

8000

10000

A
v
g
e
ra

g
e
 t

h
ro

u
g
h
p
u
t

(K
b
p
s)

Avg throughput for all critical flows
Avg throughput for accepted critical flows

Figure 3.10: Average throughput to the number of accepted flows

41

Chapter 4

Provisioning Quality of Service to

Latency-Sensitive Traffic Flows

4.1 Overview

Modern computer networks accommodate heterogeneous applications that have

different levels of Quality-of-Service requirements. Some of network traffic flows

have tight deadlines where slight increases in latency can affect the overall

performance of the application. Such traffic flows need to be forwarded with higher

priority than other traffic. Planning and designing networked systems that are able

to efficiently provide latency guarantee remains a challenge. In this chapter, we

propose a system designed for provisioning QoS to latency-sensitive traffic flows

using the SDN approach. This system provides convenient mechanisms for defining,

managing, and forwarding different classes of traffic flows with different levels of

priorities.

4.1.1 Motivation

In recent years there has been an increasingly growing interest in cloud computing

and virtualized environments. This is motivated by the need for efficient utilization

42

of computing resources and reducing costs. Such infrastructure usually hosts various

kinds of applications for different clients. Each application/client has its own set of

requirements, typically defined in their Service Level Agreements (SLAs). Quality-of-

Service (QoS) requirements include end-to-end bandwidth and latency among other

attributes, as we discussed in previous chapters. Several efforts have been made

to address the challenges of providing QoS to various types of network applications

on different environments using various protocols and techniques. Provisioning and

monitoring QoS in cloud computing is even more difficult due to the complexity of its

shared infrastructure environment. It is common that many service providers resort

to over-provisioning network resources to meet QoS requirements. However, over-

provisioning is not an optimal solution. Efficient utilization of network resources

requires maximizing obtained performance while reducing operational and capital

costs.

End-to-end latency is an important QoS measure for certain types of network

applications. For example, teleconferencing, voice-over-IP (VoIP), and online Internet

gaming are typically sensitive to high latency. They require that transmitted data

must have end-to-end latency below a specific threshold. If the latency exceeds this

threshold it will degrade the performance and affect Quality-of-Experience (QoE) for

the end user (e.g, interruptions in VoIP calls). Another example, which can have

higher priority, is the control traffic which must be transmitted with least queueing

delay. Different network applications have different levels of priorities which must be

considered by network devices when forwarding packets. Additionally, the maximum

latency requirement varies for different applications. Such network traffic must be

identified and forwarded according to its respective policy. However, other network

traffic (such as FTP traffic) can be more tolerant to higher latency and intermittent

decrease in throughput. Such traffic can be forwarded on best-effort basis without

noticeable performance degradation.

43

QoS requirements for latency-sensitive traffic differ depending on the application

type. The ITU-T 1 recommends that in general network planning, a maximum of

400 ms for one-way latency should not be exceeded [1]. However, they note that

many interactive applications (e.g, voice calls, video conferencing, interactive data

applications) are affected by much lower latency. The experiences of most applications

are generally considered acceptable if the latency is kept below 150 ms. As the

traffic latency increases, the impact on applications’ experiences becomes noticeable.

When the latency exceeds 400 ms, most applications will encounter unsatisfactory

performance.

Figure 4.1: Effects of the total delay on user satisfication (reprinted from [1])

1The ITU-T is the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU) which develops international standards for telecommunications.
(https://www.itu.int/)

44

Several factors affect the end-to-end latency of transmitted data packets. They

include:

• Processing delay. The time taken by network devices to process the packet. In

ideal situations, the processing delay is negligible if packets are processed at

the line rate. However, processing can involve inspecting and modifying some

fields of the packet (e.g., marking DSCP field). Additionally, it can involve even

more expensive tasks like deep packet inspection (DPI). Such computationally

expensive tasks lead to a considerable processing delay.

• Transmission delay. The time needed by the router/switch to push all packet

bits into the network link. Transmission delay is affected by link bandwidth

and packet size.

• Propagation delay. The time taken by a single bit to travel through the link

from the source to the destination. Propagation delay is affected by the link

type and distance.

• Queueing delay. The total waiting time for a packet to stay in queues of routers

and switches. Queueing delay is affected by queue size at the arrival time of

the packet. It is also affected by the differential processing of data packets

(i.e., higher priority traffic will spend less time in the queue compared to lower

priority traffic).

To reduce the latency of traffic flows, service providers can employ techniques like

resources reservations and/or QoS-aware routing. Providing a guaranteed minimum

rate (bandwidth) for a flow ensures that all packets that arrive at the same rate

(or below) will be forwarded without delay. However, if the arrival rate exceeds the

guaranteed minimum rate then packets might have to wait in the queue for a period

of time. Policies can also include a maximum rate to ensure that flows do not exceed

a specific bandwidth.

45

We note that most traffic patterns are bursty in nature. For example, an HTTP

session starts with downloading HTML page and associated multimedia objects (e.g.,

style sheets, images, etc.) then it becomes idle for a period of time until the user

requests another HTML page. The inconsistency in traffic levels is very common

even among established long-running TCP connections. The reason is because TCP

congestion control adjusts the sending rate based on congestion signals to adapt to the

current network conditions. It follows the mechanism additive-increase multiplicative-

decrease (AIMD) which aims to preserve TCP friendliness and fairness to other traffic

flows. From this perspective, we can see that if such traffic flows were assigned a

guaranteed bandwidth (quota) then it is highly likely that there will be unused spare

bandwidth from this quota at a given point in time.

Latency-sensitive traffic patterns can be also bursty. We direct our attention

to traffic flows that do not constitute a significant portion of the total traffic in the

network. Such traffic flows are not transmitted with a consistent high rate all the time.

Therefore, their guaranteed minimum bandwidth (if reserved) is not used during their

idle time. However, when such traffic flows are transmitted they are not tolerant of

high latency. They need to be forwarded with higher priority on paths that guarantee

a maximum latency less than or equal to their specified latency requirement. From

this point, we realize the importance of managing priorities, guaranteed minimum

rate, maximum rate, and utilizing the unused guaranteed rate for different classes of

network traffic flows.

In this chapter, we propose a technique that is designed to provision and

monitor quality of service to latency-sensitive traffic flows using an SDN approach.

The system provides convenient mechanisms for defining and managing traffic

classes in the control plane. Each class has two properties:

• Defining characteristics: which contain a unique class name and a list of all

flows belonging to this class. Each flow is represented with a set of OpenFlow

46

match rules.

• QoS attributes: which contain class priority and optionally the minimum rate,

the maximum rate, and required latency.

4.1.2 Latency Measurements in SDN

Measuring latency in SDN has been discussed in the literature. For example,

OpenNetMon [31] injects probe packets into the source switch of each link and

install rules that make them traverse the link to be measured. The destination

switch is configured to send probe packets back to the control plane. The process

involves also estimating the latency between the controller and each switch by

injecting packets that are returned back immediately to the controller which uses

the round-trip time (RTT) to determine the latency. The monitoring application in

the controller calculates the estimated latency of each monitored link. The link

latency is calculated by subtracting the estimated controller-to-switches latencies

from the difference between departure time and arrival time.

Latency = TimeArrival − TimeSent −
1

2
(RTTsource +RTTdestination)

Floodlight [24], a popular SDN controller, uses a similar mechanism to calculate

an estimated latency value for each link in the topology. The link discovery module

encapsulates timestamps with LLDP packets using the optional type-length-value

(TLV) structure. It periodically sends LLDP packets through all available ports. The

link latency is smoothed by calculating the average of a specific number of latency

measurements. The calculated latency is stored as attribute for each link in the

discovered topology.

47

4.1.3 Queueing Disciplines

Queueing discipline (also known as qdisc) controls how packets are processed while

waiting in the queue. The type of queueing discipline has direct influence on the

latency as it determines how long the packet will have to wait before being served

(transmitted). We limit our discussion to queueing disciplines that are available in

Linux. The simplest type of queueing discipline is the first-in first-out (FIFO)

qdisc. It ensures that the first packet to arrive will be transmitted before

subsequent packets regardless of any other considerations. Although FIFO qdisc

provides a straightforward and fast implementation, it does not enable any

differential treatment for data packets. Therefore, it is not suitable for provisioning

QoS. Additionally, using FIFO qdisc does not provide fair service to multiple traffic

flows. This is because some large flows can fill the queue buffer quickly which will

cause packets dropping of other flows. This unfair service pattern triggered the need

for different queueing disciplines that provide fair service to multiple flows.

The stochastic fair queuing (SFQ) qdisc is an implementation of fair queueing [32].

It aims to serve all traffic flows equally by creating several queues and then, using

hashing, maps packets to queues. A level of fairness is achieved by transmitting from

each queue in a round-robin manner. Both FIFO and SFQ are classless queueing

disciplines. That is, it is not possible to provide different service for different classes

of traffic flows.

The hierarchical token bucket (HTB) [33] is a classful qdisc that was proposed

to replace a previous classful queueing discipline called class-based queueing (CBQ)

qdisc in Linux systems. HTB allows arranging different classes of traffic flows into

a hierarchical structure. While HTB is mostly used for bandwidth guarantee, our

SDN-based system utilizes it for latency-sensitive QoS provisioning. Queues can be

configured by Linux tc command. The software switch Open vSwitch [22] provides

support for HTB qdisc, although it does not cover all its features. Open vSwitch

48

allows configuring HTB queues either by command line interface (CLI) or by OVSDB

protocol. We will discuss HTB qdisc in the next sections.

The hierarchical fair-service curve (HFSC) [34] is another classful qdisc available

in Linux. HFSC also provides the ability to create a hierarchical structure of different

traffic classes. HFSC aims to provide guaranteed service for both bandwidth and

delay parameters by maintaining a service curve for each parameter. Open vSwitch

allows creating queues based on HFSC qdisc. However, the delay parameter is not

supported by Open vSwitch.

4.2 Related Work

Wallner and Cannistra [35] proposed a method for providing QoS in SDN. It involves

using traffic shaping (rate limiting). Network traffic is classified using Differentiated

Services Code Point (DSCP) value in the DiffServ field in the IP header. The QoS

module (implemented in Floodlight) manages classes of traffic and their associated

DSCP values. It handles QoS policies and manipulates flow tables. Based on traffic

class, the module uses enqueue action in OpenFlow 1.0 to forward traffic using the

pre-configured queues in Open vSwitch. The benefits of this solution are limited since

it requires having all queues set up on switches in advance and does not implement

dynamic routing.

QueuePusher [36] is a queue management extension for SDN controller that allows

applications to manipulate queues in Open vSwitch nodes. It is implemented as a

module for Floodlight controller. The QueuePusher module exposes basic queues

operations (create, read, update, and delete) to other programs through northbound

REST APIs. These basic operations can be used as basis for creating SDN-based

QoS applications.

Capa and Soler [37] proposed a similar QoS configuration module for Floodlight

controller. They implemented a subset of OVSDB protocol to manage queues in

49

Open vSwitch. Their APIs can be consumed by other internal Floodlight modules

using JAVA or by external applications using REST APIs.

4.3 An SDN-based Architecture for Supporting Latency-Sensitive Flows

In this section, we present our proposed approach for provisioning QoS to latency-

sensitive traffic. The proposed system focuses on accommodating different classes

of traffic flows. It makes use of SDN architecture and HTB queueing discipline. In

our approach, latency-sensitive flows are grouped into classes. Each class contains

information that specify how its flows are forwarded.

The SDN-based system consists of the following components:

• Admission control module: responsible for handling new QoS requests.

Depending on the nature of the requirements and the available resources, new

requests are either accepted or rejected.

• QoS provisioning module: responsible for configuring queues and installing

OpenFlow rules to provide the required service for accepted QoS requests.

• QoS monitoring module: retrieves and presents statistics about active QoS

classes.

• OVSDB agent module: translates queue setup commands into OVSDB

protocol messages.

4.3.1 Admission Control

The admission control is responsible for handling new QoS requests. It is accessible

through REST APIs for authorized applications. Additionally, system administrators

can access a web interface for adding new requests. The new request is expected to

specify the priority of the traffic class. Priority is expressed as an integer value

50

Figure 4.2: Provisioning QoS architecture to latency-sensitive flows

between 0 (highest priority) and 7 (best-effort). The request can optionally specify

the minimum rate and maximum rate that will be reserved at each node along the

path. These two attributes are not mandatory, and if absent their values will be

assigned from default configurations:

minimum rate = quota ∗ link capacity

maximum rate = link capacity

If the new request contains specific value for required latency (in ms) then the

admission control will retrieve the measured latency for the shortest path between

source and destination hosts and compare it with required latency. It rejects the

request if it cannot be fulfilled (i.e., if the measured latency of the shortest path is

larger than the requested latency). However, it is possible that the request does not

51

contain a specific latency. Rather, it just specifies the class priority. In this case, the

request is accepted and added to the list of active classes if the minimum rate can be

reserved at each node along the path. Otherwise, the request is rejected.

The following is an example of a new QoS request in JSON format:

{ "name": "VoIP",

"min_rate ": "2000000" ,

"max_rate ": "10000000" ,

"latency ": "150",

"priority ": "2",

"flows ": [{" ipv4_src ":"10.0.0.2" ,

"ipv4_dst ":"10.0.0.4" ,

"tcp_src ":"5001"} ,

{" ipv4_src ":"10.0.0.4" ,

"ipv4_dst ":"10.0.0.2" ,

"tcp_dst ":"5001"}]

}

4.3.2 Queues Setup

Each newly accepted QoS request requires setting up appropriate queues in the data

plane. These configurations are carried out by the OVSDB agent that translates

queue setup commands into OVSDB protocol messages. HTB queueing discipline

needs to be configured with root class in advance. This step is performed as soon

as the switch connects to the controller. Each class is configured with a priority,

minimum rate, and maximum rate. The OVSDB module sends a transact RPC

method to each switch in the selected path. The transact method contains a series

of operations to set up the new queue configuration in switch database.

52

4.3.3 Installing OpenFlow Rules

After queues are configured using OVSDB agent, the QoS provisioning module will

install OpenFlow rules at each switch along the path (or paths) for all traffic flows

that belong to this class. The installed OpenFlow rules match each traffic flow and

direct its packets to the queue ID configured for the class. This module consumes the

controller northbound APIs.

4.3.4 Monitoring and Reporting

Monitoring is an important task that complements the installation and configuration

of QoS. The module retrieves statistics from data plane switches periodically. It

presents them to system administrators and authorized applications using REST

APIs. Each report of queue statistics include:

• The number of transmitted bytes.

• The number of transmitted packets.

• The number of dropped packets.

4.4 Provisioning QoS to Latency-Sensitive Flows

The HTB qdisc allows arranging traffic classes in a multi-layered hierarchical tree.

In our system, we use two layers where the root node (in the first layer) represents

the parent class for all kinds of traffic. The root node is configured as soon as a

switch connects to the controller. The maximum rate and minimum rate for the root

class are both equal to the link speed. For each accepted QoS request, the admission

control creates a leaf node linked to the root node with the properties specified in the

request. The two main properties are the minimum rate and priority. Typically, the

maximum rate for the class is equal to the root (link speed) unless explicitly stated

otherwise in the request.

53

The minimum rate is the guaranteed bandwidth given to the class. However, it

is possible for a class to exceed this limit up to its maximum rate (or ceil). This

happens when it is possible for the leaf node to borrow tokens (i.e., consume unused

bandwidth) from its parent class. At any point in time, the leaf node can have one

of three states:

• Throughput reached max-rate. It cannot send packets nor borrow tokens

from its parent. Packets of the class will remain in the queue until tokens

become available.

• Throughput reached min-rate. It can try to borrow tokens from its parent.

If tokens are available then packets will be transmitted in a number matching

the available tokens. Otherwise, packets will remain in the queue until tokens

become available.

• Throughput is less than min-rate. It can send packets as long as there are

enough tokens.

Tokens are added to the class bucket in the specified minimum rate until the

bucket size is reached. Packets belonging to a class are sent only if its corresponding

bucket have available tokens. Otherwise, packets will have to wait in the class queue

until new tokens become available. By default, FIFO queue is attached to each leaf

class. Arriving packets are dropped if their class queue is full. Increasing the size of

the queue buffer reduces the packet loss ratio. However, large buffer size can lead to

an increased latency for lower priority traffic.

For each packet sent, a token is withdrawn from its bucket (for simplicity, we

assume one token represents one packet). If the class bucket is empty and the class

queue has packets, it tries to borrow tokens from the parent class. When multiple

classes try to borrow from the same parent, the classes with highest priority are

served first. If two or more classes have the same priority, the spare bandwidth is

54

split between them. Priority is represented as a number between 0 and 7 where 0 is

the highest priority. The leaf class is allowed to borrow and consume tokens until its

maximum rate is reached.

Figure 4.3: Example of different traffic classes

While OpenFlow protocol can be used to install rules that utilize existing queues,

it cannot be used for creating new queues. Switch configurations, which includes

queues among other attributes, are defined outside the scope of OpenFlow. Using

command-line-interface (CLI) of the switch is not a convenient method, specially

for dynamic configuration of a large number of switches. There are two protocols

proposed for switch configuration. The OpenFlow Management and Configuration

Protocol (OF-CONFIG) [38] and the Open vSwitch Database Management Protocol

(OVSDB) [39]. We chose to implement OVSDB protocol because it is fully supported

by OpenvSwitch.

OVSDB itself is based on JSON-RPC protocol version 1.0 [40]. Switch

configuration are stored in a database with defined schema [41]. Manipulating this

database, using OVSDB, allows applications to dynamically manage the switch and

55

modify its configuration.

The OVSDB module establishes a communication channel with each switch

connected to the SDN controller. Initially, it retrieves database schema and switch

configurations. Then it makes sure each switch port is configured to have an HTB

qdisc root class. After that, it makes it available for other modules to retrieve and

modify the configurations, including creating new queues. The admission control

module consumes this functionality initially to check if there is available capacity

for new request and then subsequently to create new classes for accepted requests.

4.5 Performance Evaluation

To evaluate our SDN-based system, we conducted experiments using the Global

Environment for Network Innovations (GENI) testbed environment [42]. GENI

provides an infrastructure that allows researchers to execute experiments in the field

of networking and distributed systems. In our experiments, the topology is linear

consisting of three switch nodes. We used the software switch OpenvSwitch [22].

The bandwidth is 10Mbps for all links. The topology is shown in Figure 4.4. To

simulate high priority control traffic, we developed a tool that exchange messages

over TCP protocol and measure network performance. We executed the same

experiment twice over a period of 30 seconds, one with our QoS system and the

other one without the QoS system. The high priority control traffic was from VM1

to VM3. In the same time, low priority background traffic was generated between

VM2 and VM4. We used iperf to generate UDP traffic. UDP is suitable for

simulating background traffic because it does not have congestion control that

reduces the sending rate when a network congestion occurs.

Results from running both experiments show a huge difference in the measured

latency of control traffic. Without the QoS system, the latency ranged from 41 ms

to 207 ms (see Figure 4.5). However, with our QoS system, the latency ranged from

56

Figure 4.4: Experiment topology

Figure 4.5: Measured latency of control traffic messages

3.9 ms to 5.1 ms.

The same experiment was repeated with TCP background traffic. Results show

that there was no significant impact on the latency of control traffic even without

running QoS module. The reason is because the congestion control algorithm for

TCP reduces the sending rate when it detects a congestion in the network maintaining

what is called TCP friendliness. Additionally, we were sending a single TCP flow on

57

the same path. This result shows the huge difference between the two transport

protocols.

4.6 Summary

In this chapter, we proposed a system to address the challenge of providing QoS to

latency-sensitive traffic. Queueing delay constitutes a significant part of the total

delay of transmitted packets. Using SDN, the proposed system dynamically

allocates queues for different classes of traffic. It accommodates classes of different

priorities and attributes. Evaluation results show that latency of high priority traffic

is minimized even with the existence of UDP background traffic that saturates the

network path.

58

Chapter 5

Improving Throughput of Large

Flows Using Multipath TCP

5.1 Overview

The recent developments in data center topologies offer high bandwidth capacity

and multiple paths between processing nodes. The increased use of cloud computing

applications imposes challenges on underlying network infrastructure. To meet these

challenges we need efficient traffic management that can maximize the utilization of

multi-path data center networks. Path diversity not only provides the opportunity

of performing load balancing and improves fault tolerance, but also can be exploited

to allocate more bandwidth for large flows and improve the performance of network-

limited applications.

In this chapter, we present an architecture based on Multipath TCP and Software

Defined Networking to provide better bandwidth allocation for large flows. The SDN

controller, which has global knowledge of network topology and traffic measurements,

is capable of making educated routing decisions. The proposed SDN architecture

enables applications to achieve better throughput for large flows by initiating new

MPTCP subflows. To provide this capability, we modify the MPTCP implementation

59

in the Linux kernel to enable applications to create additional MPTCP subflows

on demand. These MPTCP subflows are placed on least-congested paths by the

centralized controller. The evaluation results obtained from running experiments on

the GENI testbed environment show a significant improvement in the throughput of

large flows.

5.1.1 Motivation

Data centers evolved in recent years to provide high bandwidth capacity and

multiple paths between processing nodes. This was driven by increased deployment

of various applications like big data processing and cloud computing. To maximize

the utilization of multiple paths there is a need for efficient routing techniques. The

hash-based Equal Cost Multi-Path (ECMP) can be used for multi-path routing to

distribute traffic flows among equal paths. However, ECMP cannot fully utilize the

available capacity of multiple paths. This is mainly due to hash collision of large

flows which can lead to bottlenecks in the network while other paths are

under-utilized. Figure 5.1 illustrates two examples where ECMP hash collisions

affect the throughput of long-running flows [43]. Two flows shared the same link

because of hash collision at the aggregate layer and the other two flows collided at

the core layer. This path assignment reduces the throughput of all four flows by

50%.

MPTCP can alleviate this problem by creating multiple subflows that can go

through different paths. The congestion control of MPTCP adapts to detected

congested paths and increases traffic of other subflows. It does this while

maintaining TCP friendliness making sure that MPTCP and regular TCP can

coexist in the same environment [44]. However, using ECMP with MPTCP does not

guarantee that subflows of the same connection will go through different paths.

Therefore, relying on ECMP to forward traffic flows can limit the potential

60

Figure 5.1: Two examples of ECMP hash collision

throughput gain of using MPTCP.

While it is beneficial to use MPTCP for large flows, it can have adverse impact

on short flows. Each new MPTCP subflow entails additional overhead and consumes

host resources. Moreover, maintaining multiple MPTCP subflows each going through

a different path can result in increased latency. Short flows are typically sensitive to

latency. Therefore, MPTCP should be used only for large flows.

We propose an architecture based on SDN to improve throughput of large flows

in data centers. In this architecture, applications create new MPTCP subflows for

long running connections. These newly created auxiliary subflows are routed by a

centralized flow scheduler in the SDN controller. It should be noted that the first

subflow of each long-running connection and short flows are not forwarded to the

controller. Thus, there is no scheduling delay for short flows. Also the connection

of a large flow will be not interrupted as the first subflow will be routed using load

balancing OpenFlow rules proactively installed by the SDN controller. The first

subflow will remain on the same path until the data transfer is finished.

61

5.1.2 Data Center Topologies

The design of data center networks focused recently on using cheaper commodity

hardware rather than expensive high-end routers and switches. The motivation of

this trend is to build more cost-efficient networks that meet current computing

requirements. Several designs address issues like bottlenecks and limited bisection

bandwidth of traditional data center networks by inter-connecting multiple

commodity switches.

The k-ary Fat Tree topology [45] is a Clos [46] topology that arranges k-port

switches in a multi-rooted tree structure. The core layer has (k/2)2 switches connected

to k pods. Each pod contains k/2 aggregation layer switches and k/2 edge layer

switches. The topology supports (k3)/4 hosts. Figure 5.9 shows this topology where

k = 6. Other designs include BCube [47], Jellyfish [48], and VL2 [49].

These topologies bring new traffic engineering challenges to data centers. SDN

architecture can play a significant role in solving these challenges. Controller

applications are capable of monitoring the changing traffic conditions and pushing

OpenFlow rules to adapt to the current traffic requirements.

5.2 Multipath TCP

Multipath TCP is an extension to regular TCP protocol that provides the ability for

a single TCP connection to operate on multiple paths [50]. This extension does not

require any modification to the application layer as the transport layer transparently

handles the multiple connections, called subflows, which appear as a single connection

to the application. It is also transparent to the network layer as each subflow appears

as a normal TCP connection. Figure 5.2 depicts MPTCP and TCP in the protocol

stack. Each MPTCP subflow can go through a different path in the network, or

even a different network interface if the host has multiple network interfaces (multi-

homed host). The MPTCP extension provides more resilience to TCP protocol as

62

the connection will not be interrupted if one link goes down as long as there exists

at least one connected subflow. Another benefit is providing applications with more

bandwidth by aggregating multiple paths.

Figure 5.2: TCP and MPTCP protocol

One of the key design features of MPTCP is the fallback to regular TCP if

MPTCP is not supported by either host or any middlebox. A new TCP option kind

is introduced to indicate that the TCP connection supports MPTCP. This option

kind has the decimal value 30. The TCP option also contains MPTCP subtype

which is used to signal MPTCP operations (e.g., MP JOIN is used by new subflows

to request joining an existing MPTCP connection). Table 5.1 lists MPTCP option

subtypes [50].

Table 5.1: Multipath TCP Option subtypes

Symbol Value Name

MP CAPABLE 0x0 Multipath capable

MP JOIN 0x1 Join connection

DSS 0x2 Data sequence signal

ADD ADDR 0x3 Add address

REMOVE ADDR 0x4 Remove address

MP PRIO 0x5 Change subflow priority

MP FAIL 0x6 Fallback

MP FASTCLOSE 0x7 Fast close

63

A Multipath TCP session starts in the similar way to a regular TCP session.

The difference is that SYN, SYN/ACK, and ACK packets carry the MPTCP option

kind (30) with MP CAPABLE option subtype. MP CAPABLE option subtype is

used by the first subflow of MPTCP connection to indicate that the sending host

supports MPTCP. If the sending host receives a SYN/ACK without MP CAPABLE it

assumes that the other host does not support MPTCP. The other possibility, although

highly unlikely, is when a legacy middlebox modify TCP options because it was

configured to remove unrecognized TCP options. In this case, the connection falls

back to regular TCP and the two hosts continue to exchange packets through a single

TCP flow. If both hosts completed the three-way handshake with MP CAPABLE,

then they have established a Multipath TCP connection and either one can initiate

additional subflows. During the initial three-way handshake, the two hosts exchange

keys used to associate subsequent subflows with this connection. The keys are unique

for each connection. Figure 5.3 illustrates the process of establishing a Multipath

TCP connection using MP CAPABLE and then adding one additional subflow using

MP JOIN.

The keys exchanged in MP CAPABLE handshake are used to generate

cryptographic hashes called tokens. After that, the keys are not sent over the

network. Instead, the cryptographic hash of the key, or token, is used to identify the

connection. Tokens are used in MP JOIN to associate the subflow with existing

MPTCP connection. The purpose of using tokens is to make sure that the new

subflow will join the correct MPTCP connection. The Hash-based Message

Authentication Code (HMAC) generated from the key and nonce (random number)

is used for authenticating the other host.

New MPTCP subflows do not need to be between different IP pairs. It is possible

to have multiple subflows from the same IP pair given that they operate on different

TCP ports. Typically, this is beneficial where ECMP is used to forward traffic flows,

64

Figure 5.3: MPTCP subflows initiation

as these subflows can have different paths which will lead to increased throughput for

the application. However, as we discussed earlier, ECMP employs hashing and there

is no guarantee that multiple subflows of the same connection will end up in disjoint

paths.

5.2.1 Congestion Control

In regular TCP, the congestion control plays a pivotal role in avoiding congestion

collapse in network. TCP maintains what is called congestion window to keep the

transmission rate below the level that can cause network congestion. It basically limits

the number of unacknowledged data at the source host. The size of the congestion

window is changed throughout the connection lifetime to adapt to detected congestion

signals. The destination host normally sends an acknowledgement (ACK) to the

65

source host for each received packet. The source host infers that a packet loss has

occurred when it does not receive an ACK before a timeout. TCP calculates this

timeout, called retransmission timeout (RTO), based on smoothed value of estimated

round-trip time (RTT) between source and destination hosts [51]. In addition to

RTO, the duplicate acknowledgements (DupACK) are considered a congestion signal.

When the host receives an out of order packet it sends an ACK for the last in-order

packet it had received so far. Sending a DupACK means that the receiver is still

expecting the next packet. However, since a packet can get delayed or reordered

while in transit, three DupACKs are needed to detect a packet loss.

TCP adjustments for the congestion window follow the approach of additive

increase/multiplicative decrease (AIMD). That means TCP will increase the

transmission rate by adding a value to the congestion window when it receives a

new ACK, and will decrease the transmission rate by a multiplicative factor (e.g.,

divide by 2) when a packet loss is detected. This conservative behavior is essential

in avoiding network congestion. We will leave out the discussion of different TCP

implementations (e.g., Tahoe , Reno, New Reno, etc.) and the other TCP schemes

slow-start, fast retransmit, and fast recovery as they are beyond the scope of this

research.

In MPTCP, the role of congestion control expands to include issues that do not

exist in single path TCP. The main issues are fairness to regular TCP and shifting

traffic from congested paths to other paths that have less traffic. To explain the

issue of fairness, consider that each MPTCP subflow behave like regular TCP. If a

single TCP connection shares a bottleneck with only one MPTCP connection that

has two subflows, this will result in the TCP flow getting half the throughput of

MPTCP connection. This mechanism is known as uncoupled congestion control. In

this mechanism, each MPTCP subflow s maintains its own congestion windows Ws

and the AIMD behavior is as follows:

66

• Each ACK on subflow s will increase the window Ws by 1/Ws.

• Each detected loss of subflow s will decrease Ws by Ws/2.

The aggregated throughput of the MPTCP connection is excessively large.

However, this gain can be on the expense of competing TCP flows on shared

bottlenecks. This behavior is too aggressive against single flow TCP and violates

the design principle “do no harm”. In order for a new protocol to be adopted, it has

to be fair to existing protocols. Therefore, MPTCP subflows should not behave like

regular TCP flows.

The coupled congestion control tries to solve this problem by changing AIMD

parameters. In the coupled congestion control, each MPTCP connection maintains

a congestion window Wtotal which is equal to the sum of all Ws maintained by its

subflows. The Ws is bound to be ≥ 1 . The AIMD behavior is as follows:

• Each ACK on subflow s will increase the window Ws by 1/Wtotal.

• Each detected loss of subflow s will decrease Ws by Wtotal/2.

The coupled congestion control achieves the goal of fairness to regular TCP by

taking into account the total congestion window of all subflows. In addition to that, it

balances traffic between subflows based on encountered congestion signals. By shifting

traffic from subflows on congested links to other subflows on least-congested paths, the

throughput of other flows on congested bottlenecks will increase. Consequently, the

overall network will achieve better resource utilization and load balancing. However,

coupled congestion control have drawbacks that have been discussed in [44]. First,

it favors the paths with less packet loss ratio regardless of their RTT values. Some

routers are configured with large buffers to reduce packet drops which in the same

time can lead to increasing RTT. However, smaller RTT value will result in higher

throughput. The second issue is that because traffic can be shifted entirely from

67

congested paths, there is no way to indicate that such paths are available when they

become less congested. It becomes clear that there need to be sufficient traffic on

each subflow to probe the paths regardless of how congested they are.

The linked increases algorithm (LIA) [52] was proposed to address the drawbacks

of coupled congestion control. LIA aims to achieve the following goals:

1. Improving throughput: MPTCP connection should achieve throughput equal

to or greater than what a single TCP flow would have achieved on the best

path available to MPTCP.

2. Not harming: MPTCP subflows of the same connection sharing a network

resource should not take more capacity than a single flow would have on the

same path.

3. Balancing congestion: MPTCP connection should shift traffic from

most-congested paths to least-congested paths as much as possible.

The AIMD behavior in LIA is as follows:

• Each ACK on subflow s will increase the window Ws by:

min(
α ∗ bytes acked ∗MSSs

Wtotal

,
bytes acked ∗MSSs

Ws

)

The minimum increment value is 1. MSSs is the maximum segment size for

subflow s.

• Each detected loss of subflow s will decrease Ws by Ws/2.

α is a parameter that controls the aggressiveness of MPTCP. It is calculated based

on the estimated RTT as follows:

α = Wtotal

maxs(
Ws

(RTTs)2
)

(
∑

s(
Ws

RTTs
))2

68

The combined throughput for an MPTCP connection in LIA depends on the

values of α, the packet loss ratio, RTT and MSS for each of its subflows. LIA is part

of Linux kernel implementation of MPTCP. We used this congestion control in our

demonstration because it provides better throughput gain while not harming regular

TCP flows. Additionally, shifting traffic between subflows depending on congestion

signals is important to achieve adaptive load balancing.

5.3 Related Work

There has been a significant number of research efforts for improving the performance

of data center networks. The issue of routing large flows was of particular interest

to many proposals. Hedera [43] detects large flows from continuous monitoring of

network measurements by the SDN controller. Traffic flows are initially forwarded

using a hash-based routing method similar to ECMP. If a flow exceeds a certain rate

threshold (a percentage of the host’s link capacity), it is considered a large flow and

the centralized controller starts the process of scheduling it. It begins with estimating

the natural demands for all active large flows in the data center. Then it runs a

centralized flow scheduler to re-assign large flows to paths that suffice the natural

demand. Two algorithms were proposed for scheduling large flows: Global-First-Fit

and Simulated-Annealing [43].

Mahout [53] is another effort that proposes a different approach for detecting

large flows. They argue that Hedera’s method of detecting large flows by monitoring

switches’ statistics results in late detection and poses a huge burden on the controller

which can limit its scalability. Instead, they propose detecting large flows at the end

hosts. To achieve this purpose, they developed a shim layer between TCP/IP stack

and device driver (implemented as a Linux kernel module) to monitor the socket

buffers. When the socket buffer exceeds a specific threshold, the flow is considered a

69

large flow. This approach distinguishes between network-limited flows (the network

is the bottleneck) and application-limited flows (the application sending rate is lower

than what the network is able to accommodate). The application-limited long running

flows will not be determined as large flows regardless of how much data they have

transmitted as long as their socket buffers are below the threshold. However, if the

application is filling the socket buffer in a rate that exceeds what the network can

transmit, then the flow is determined as a network-limited large flow that requires

special management from the SDN controller. The shim layer detects such flows and

mark their DSCP field so that it can be forwarded to the SDN controller by switches.

The controller reroutes large flows through the least-congested paths. Monitoring the

TCP send buffer was also studied in [54]. Instead of classifying flows and marking

their packets, they propose advertising the occupancy of TCP send buffer by encoding

them in each outgoing packet.

The aforementioned efforts did not consider using MPTCP or multipathing in

general. The benefits of using MPTCP in data centers were studied in [55]. They

highlighted that using MPTCP in multi-path data center networks improve the

throughput and achieve better fairness on many topologies. Their experiments led

them to propose a dual-home variant of Fat Tree topology. Using this topology

along with MPTCP resulted in performance enhancements for a wide range of

workloads. However, they relied on ECMP for routing MPTCP subflows. They did

not discuss the use of a centralized flow scheduler or SDN.

The integrated use of SDN and MPTCP was proposed in [56]. The aim of their

proposal is to improve the throughput in shared bottlenecks. Multiple subflows of

the same MPTCP connection are forwarded by the SDN controller. Their

mechanism involves using disjoint paths to route MPTCP subflows instead of using

ECMP. However, disjoint paths are not necessarily the optimal paths as we will

show in this chapter. Additionally, they did not consider differentiated treatment of

70

short flows and large flows. All MPTCP subflows need to be forwarded to the SDN

controller for processing. This reactive approach places a significant burden on the

controller.

Researchers in [57] proposed an MPTCP-aware SDN controller design for data

center networks. The SDN controller uses packet inspection to extract MPTCP

options and use this information to assign different paths to subflows. They

evaluated the routing based on shortest paths and disjoint paths. Their evaluation

results demonstrate better performance compared to ECMP. However, they did

consider forwarding based on network traffic measurements. Moreover, they did not

differentiate between short flows and long flows. Similar to [56], all flows are

processed reactively by the SDN controller.

MMPTCP [58] is another proposal to utilize MPTCP in data centers that

differentiates between short and long flows. They set threshold for transmitted data

to distinguish between short and long flows. Short flows are transmitted using

Packet Scatter (PS). Packet scatter forces ECMP to route each packet of the same

flow as if they are different (using source port randomization which leads to

different 5-tuple hash). After transmitted data exceed switching threshold,

MMPTCP creates new subflows of the same connection and stops sending data in

the first subflow. The remaining of the connection is handled as regular MPTCP.

Packet scatter can cause packet reordering problems. They did not consider using

SDN architecture.

5.4 SDN Based Architecture for Improving Throughput of Large Flows

The proposed architecture aims to improve throughput of large flows while not

affecting short flows in data center networks. It combines SDN architecture and

MPTCP protocol. Transport protocols like MPTCP have no knowledge of network

topology and cannot dictate how packets are routed in the network. SDN controller

71

have global knowledge of network topology and is able to get updated traffic

statistics of each switch port. The controller application starts with setting up

OpenFlow rules to route short flows without being forwarded to the controller.

Then it installs rules to redirect auxiliary subflows to the controller which will be

handled by the path searching module.

Auxiliary subflows of the same connection are not necessarily placed on disjoint

paths. The SDN controller application performs a search based on the current

available capacity of each link. This adaptive search increases the potential

throughput gain of each additional subflow. To illustrate the difference between

disjoint path search and adaptive path search, consider the simplified example

shown in Figure 5.4. The links show the available bandwidth capacity in the current

network conditions. If we have two subflows and assign them to the shortest disjoint

paths, their aggregate capacity would be 4 Mbps. However, the aggregate capacity

is increased to 9 Mbps when using our adaptive SDN forwarding.

The first step in this process is to differentiate between short flows and long flows.

Once a flow is determined to be a long flow, it will be split into multiple subflows

to gain more throughput. For the purpose of demonstration, we decided not to set

hard thresholds and delegate this task to the application layer to have more flexibility

in experimenting with different levels of thresholds. Large flows will be running on

mutiple auxiliary subflows in addition to the first subflow. The auxiliary subflows will

have marked DSCP field which will trigger switches to forward them to the controller.

The main components of this architecture are:

• OpenFlow based load balancing for short flows using group tables.

• Adaptive flow scheduler for routing auxiliary subflows of large flows.

• Extended socket API for the Linux kernel implementation of MPTCP.

72

Figure 5.4: Disjoint paths vs adaptive routing

5.4.1 Load Balancing with OpenFlow Group Tables

The first part of our proposed architecture deals with routing short flows and the

first subflows of large flows. Short flows are usually sensitive to latency and come

in large numbers. Having short flows forwarded to the SDN controller to process

73

Figure 5.5: SDN-based architecture for improving throughput of large flows

them reactively is not practical. It is not a scalable solution because it increases the

number of OpenFlow rules and put a significant burden on the controller. In addition

to that, processing delay at the control plane increases the latency. Therefore, it is

better to handle them in the data plane only. The controller can install forwarding

rules proactively to forward traffic. For the purpose of performing load balancing, we

need to an efficient method to split traffic flows that are not routed reactively by the

controller.

Group tables were introduced in OpenFlow version 1.1 [27]. They provide an

abstraction for representing a set of ports as a single entity. Each OpenFlow group

table contains a set of action buckets. These buckets specify the actions that are going

to be applied to packets from matching flows. There are different types of groups

that can be used for various purposes. Group types include:

74

1. Indirect: contains only one bucket. Typically useful in the case where multiple

flow entries need to point to a single common set of actions.

2. All: contains multiple buckets. All buckets are executed for each matching flow

packet. This is useful for applications like multicasting or broadcasting.

3. Select: Contains multiple buckets. Only one bucket is executed for each

matching matching flow (see Figure 5.6).

4. Fast failover: Contains ordered list of buckets. Each bucket is associated with

a port/group to monitor its status. It executes first bucket whose status is live.

We use OpenFlow group tables to distribute flows between different paths.

Traffic flows that match installed OpenFlow rules will be redirected to group tables.

Each bucket has an associated weight which specifies the probability of selecting the

bucket for each matching flow. The bucket selection algorithm is not defined in

OpenFlow specifications [27] and left to switch implementation. Possible

implementations include weighted round-robin and hashing algorithms.

OpenvSwitch [22], which is used in our evaluation, implements hashing to select the

bucket.

In our design, the controller installs OpenFlow group tables in each switch and

the corresponding matching rules to distribute traffic flows equally among multiple

paths. The matching rules are installed with the lowest priority. While it is possible

that hashing can lead to uneven distribution in the beginning, it converges to even

distribution as the number of flows increases.

5.4.2 Routing Auxiliary Subflows

The auxiliary subflows are distinguished from other traffic flows by their Differentiated

Services (DS) field. The DS field contains a 6-bit Differentiated Services Codepoint

(DSCP) field and a 2-bit Explicit Congestion Notification (ECN) field. The DSCP

75

Figure 5.6: OpenFlow group table

is used originally in Differentiated Services (DiffServ) to classify traffic into different

classes based on their Quality of Service (QoS) requirements. We utilize a pool of

codepoints that are reserved for experimental or local use [59]. This pool has 16

distinct values within the codepoint space xxxx11.

The controller installs OpenFlow rules in the data plane to forward traffic flows

with marked DSCP (auxiliary subflows) to the control plane for processing. These

rules have higher priority than group table rules that handle the forwarding of short

flows and the first subflows of MPTCP connections. Once a PACKET IN message is

received by the controller, it gets processed by our module before any other controller

module (e.g., the built-in forwarding module). We perform packet inspection on the

encapsulated packet inside PACKET IN message to extract DSCP field and TCP

options. If the DSCP value is within our predefined range, we parse TCP options to

76

check whether it is an MPTCP packet (i.e., it belongs to a new auxiliary subflow) or

a regular TCP packet.

TCP segments can have a variable number of optional header fields called TCP

options. Their purpose is to provide the ability to create new extensions that are

not available in the original TCP headers without requiring changing the existing

structure. Each TCP option is identified by a mandatory option kind. The length

of option kind is always one octet. However, the length of TCP options is variable.

These options are maintained by the Internet Assigned Numbers Authority (IANA)

[60]. Two TCP options have no additional information other than their option kind.

The END_OF_LIST option (0x00) which indicates the end of options list, and the

NO_OPERATION option (0x01) which is used for padding. All other options have two

other fields: option length and option data. The option length specifies the length

of all three fields (not only the option data). The option kind of MPTCP option is

30 (0x1e). In the initial SYN MP JOIN packet, the length of MPTCP option is 12.

To extract MPTCP token we need parse TCP options (see algorithm 2). The first

four bits of option data contains MPTCP subType (the list of subTypes are shown

in table 5.1) followed by four bits of flags and one octet for address ID. The next four

octets are the receiver’s token. Figure 5.7 shows the structure of MPTCP option for

MP JOIN SYN packet.

Figure 5.7: MPTCP option for MP JOIN SYN packet

77

Algorithm 2 extractMPTCPToken(packet)

tcpOptions ← getTCPOptions(packet)
i=0
while i < tcpOptions.length do

opKind = tcpOptions[i]
switch opKind do

case 0x00: . End Of List
return null

case 0x01: . No Operation
i += 1
continue

default:
i += 1
opLen ← tcpOptions[i]
if opKind==0x1e then . MPTCP option

i += 1
subType ← tcpOptions[i] & 0xF0 . subType is only 4 bits
if subType==0x10 and opLen==12 then . MP JOIN in SYN

token ← Copy(tcpOptions, i+2, i+6)
return token

else . not MP JOIN
return null

end if
else . other TCP option

i += (opLen -1)
end if

end while
return null

For each new auxiliary subflow, our module executes a search algorithm to find a

list of best paths for this connection (see algorithm 3). In the beginning, it extracts the

MPTCP receiver token associated with this auxiliary subflow. MPTCP connections

are identified by their unique receiver tokens. If it matches a cached flow then its

path is retrieved and installed. Otherwise, it means the auxiliary subflow belongs to

a new MPTCP connection. The best path in our case is the widest path obtained by

a modified version of Dijkstra algorithm (see algorithm 4). The search is based on

the current topology and updated traffic measurements. The controller periodically

collects traffic statistics from each switch.

78

If the incoming PACKET IN message is for the first auxiliary subflow of an

MPTCP connection, the list of paths are cached for subsequent auxiliary subflows

of this connection. So the search algorithm needs to be executed only once for each

connection regardless of the number of its auxiliary subflows. The installed

OpenFlow rules have soft timeout and will be deleted after they become inactive.

The switches notify the controller of expired OpenFlow rules by sending

FLOW REMOVED message which will allow the controller to clear the

corresponding entry in the cached flows. Using this method does not interrupt

traffic that goes through the first subflow, which is routed using OpenFlow group

table rules without going to the controller. It only enables large flows to gain more

throughput and finish faster by utilizing multiple subflows, path diversity and SDN.

The congestion control for MPTCP adapts to changing traffic conditions and shifts

traffic from congested links to other subflows without harming existing TCP

connections.

Algorithm 3 getPath(packet)

token← extractMPTCPToken(packet)
if exists(cachedPaths[token]) then

p← dequeue(cachedPaths[token])
install(p)
return

end if
linkCapacity← topology.getAvailableCapacity()
for i← 0 to maxPaths-1 do

p← dijkstra(flow.src, flow.dst,linkCapacity)
w← width(p)
for l← p.links do

linkCapacity[l]← linkCapacity[l]-w
end for
cachedPaths[token].add(p)

end for
p← dequeue(cachedPaths[token])
install(p))

79

Algorithm 4 Dijkstra(s,v,graph)
q← empty
visited← empty
for node← graph.nodes do

width[node]← 0
previous[node]← null

end for
width[s]←∞
q.add(s)
while q is not empty do

node← q.dequeue()
if visited.contains(node) then

continue
end if
visited.add(node)
for link← graph.connectedTo(node) do

neighbor← link.getDestination()
altWidth← max(width[neighbor],

min(width[node],link.getWidth())
if altWidth > width[neighbor] then

width[neighbor]← altWidth
previous[neighbor]← node
q.add(neighbor)

end if
end for

end while

5.4.3 Socket API for Creating Auxiliary Subflows

In order for applications to exploit our SDN architecture, they need the ability to

create MPTCP subflows and mark DSCP in the same time. The Linux kernel MPTCP

implementation [61] (as of v0.92) does not provide this capability. Researchers in [62]

proposed enhanced socket API for MPTCP that extends Linux kernel implementation

to provide additional features. The enhanced socket API provides applications with

additional features that are not available in the original kernel implementation. The

purpose is to allow application developers to have more control on the operation

of MPTCP. The list of their API features include retrieving subflow information,

creating subflows, terminating subflows, and setting the DSCP field, among other

80

features.

Despite that the enhanced socket API provides more control over MPTCP

operations, they fall short of meeting our requirement. The reason is that setting

the DSCP can happen only after the subflow is initiated, which means it is not

possible to mark DSCP for SYN packets. In our SDN architecture, SYN packets

need to have a specific DSCP value so that it can be forwarded to the controller.

The controller needs to extract the MPTCP receiver tokens from SYN packets. The

tokens are used as unique keys for identifying MPTCP connections. In the current

OpenFlow specfications [27], it is not possible to create OpenFlow match rules

against TCP options. Therefore, we rely on the DSCP field to distinguish between

auxiliary subflows and other flows. The MPTCP token is sent only with MP JOIN

SYN packet during TCP three-way handshake. Maintaining MPTCP tokens allows

the controller to place auxiliary subflows of the same connection on best paths with

highest available capacity. To that end, we have developed new socket API that

allows applications to dynamically create DSCP-marked MPTCP subflows for an

existing MPTCP connection. The DSCP field is set with flow initiation (i.e., SYN

packet).

We describe briefly the enhanced socket API proposed in [62]. New

functionalities were implemented above the system calls getsockopt and

setsockopt. They introduced new socket options for querying kernel-level

information and performing actions on existing MPTCP connections. The socket

options include the following:

• MPTCP_GET_SUB_IDS: retrieve the current list of subflows IDs as viewed by the

kernel.

• MPTCP_GET_SUB_TUPLE: retrieve the IP address and port number of a specfic

subflow.

81

• MPTCP_OPEN_SUB_TUPLE: request to create a new subflow for an existing

MPTCP connection.

• MPTCP_CLOSE_SUB_ID: request to close a specific subflow.

• MPTCP_SUB_GETSOCKOPT: pass the socket option to getsockopt for a specific

subflow and return the result.

• MPTCP_SUB_SETSOCKOPT: pass the socket option to setsockopt for a specific

subflow.

Using MPTCP_SUB_SETSOCKOPT, it is possible to set DSCP value of a specific

subflow. However, as we discussed earlier, this happens only after the subflow has

already been initialized and three-way handshake packets exchanged. We introduce

new socket option MPTCP_OPEN_SUB_WITHTOS that creates a new subflow and marks

DSCP in the same time. That is, SYN packets will have the specified DSCP value.

The application needs to pass mptcp_newsub_withtos struct which is defined as

follows:

struct mptcp_newsub_withtos {

char *tosval; /* DSCP value */

struct mptcp_sub_tuple *sub; /* sub_tuple of the new subflow*/

}

The tosval member sets the value of DSCP field. Note that DSCP field is only 6-

bit length. Along with the two-bit ECN field, they replace what was previously known

as ToS field in the IP packet. The DSCP 6 bits are the most significant bits of tosval.

For example, the DSCP value (000111) is represented with hexadecimal value (0x1C)

because the two least-significant bits are set to zero (00011100). The sub member

holds the tuple information of the new subflow. Figure 5.8 shows an example of using

the new socket option MPTCP_OPEN_SUB_WITHTOS to create one additional subflow

that has the DSCP decimal value 28 (0x1C). The new subflow uses the same IP pair

82

and the same destination port of the existing subflow that has the ID subflow_id.

The subflow ID can be retrieved from the kernel using MPTCP_GET_SUB_IDS which

provides a list of active subflows with their IDs. The current implementation limits the

number of active subflows for a single MPTCP connection to 32 and the subflows are

assigned IDs within the range from 0 to 31 [62]. The source port of the new subflow is

randomly chosen by the kernel but can be specified if needed. The mptcp_sub_tuple

information are retrieved using MPTCP_GET_SUB_TUPLE.

Our modification to the Linux kernel is very minimal. It introduces new socket

API function that allows applications to specify the value of DSCP during subflow

initiation. Our work is based on Linux kernel MPTCP implementation v0.92 [61]. It

also extends the socket API proposed in [62].

The usage scenario for this extended API is that after a certain threshold of

transferred data, the application issues a call to create a new subflow. This should

happen only with large flows that take a lot of time to finish transferring data.

Specifying the threshold and the number of auxiliary subflows is left to the

application.

83

struct mptcp_newsub_withtos *newsub;

struct sockaddr *sin;

struct sockaddr_in *sin4;

unsigned int optlen, newlen;

int DSCPvalue = 28;

newlen = 100;

newsub = malloc(newlen);

if (!newsub) {

fprintf(stderr,"Error: malloc\n");

return 0;

}

newsub->tosval= (char *) &DSCPvalue;

optlen = 100;

newsub->sub = malloc(optlen);

if (!newsub->sub) {

fprintf(stderr,"Error: malloc\n");

return -1;

}

optlen = 100;

newsub->sub->id = subflow_id; // from MPTCP_GET_SUB_IDS

error = getsockopt(sock, IPPROTO_TCP, MPTCP_GET_SUB_TUPLE, newsub->sub

, &optlen);

if (error) {

fprintf(stderr,"MPTCP_GET_SUB_TUPLE error: %d\n", error);

free(newsub->sub);

free(newsub);

return -1;

}

sin = (struct sockaddr*) &newsub->sub->addrs[0];

if(sin->sa_family == AF_INET){

sin4 = (struct sockaddr_in*) &newsub->sub->addrs[0];

sin4->sin_port = htons(0); //source port for new flow

error = getsockopt(sock, IPPROTO_TCP, MPTCP_OPEN_SUB_WITHTOS,newsub

,&optlen);

if (error) {

fprintf(stderr,"MPTCP_OPEN_SUB_WITHTOS error: %d\n", error);

free(newsub->sub);

free(newsub);

return -1;

}

}

Figure 5.8: Creating new subflow with with DSCP

84

5.5 Evaluation

5.5.1 Experiments Setup

To evaluate our SDN architecture, we conducted experiments using the GENI testbed

environment. The network topology used is k-ary Fat Tree [45]. We deployed a 6-port

Fat Tree network that contains 45 switches and 54 hosts. The network topology is

shown in Figure 5.9. All host nodes were running Linux Ubuntu with the modified

MPTCP kernel. For switch nodes we used the software switch OpenvSwitch [22]. All

switch nodes connect to Floodlight controller [24] running our routing and monitoring

modules.

For traffic flows, we note that data center traffic patterns vary in size, arrival time,

and other properties. Researchers in [63] studied traffic traces in ten data centers and

found that approximately 80% of all flows are small in size and finish in less than 11

seconds in most studied data centers. To emulate traffic in data centers we generated

two traffic matrices that follow this observation. In traffic matrix TM1, 80% of flows

are small and in traffic matrix TM2 70% of flows are small. The traffic pattern is

random permutation where each host sends a flow to one random host (in a different

rack). The inter-arrival time is randomly chosen between 500 ms and 1000 ms. Each

traffic matrix contains 540 flows.

We developed a small application to generate traffic for our experiments. This

application can create auxiliary subflows using the new socket API. Auxiliary

subflows are initiated after transmitted traffic exceeds thresholds. The purpose of

this application is to test the new socket API and SDN controller application. The

threshold for creating each additional subflow is 1 MB. Each traffic matrix was

executed five times as follows:

1. Regular TCP and ECMP routing.

2. MPTCP with 2 subflows and ECMP routing.

85

Figure 5.9: Network topology

86

3. MPTCP with 2 subflows and SDN auxiliary routing.

4. MPTCP with 3 subflows and ECMP routing.

5. MPTCP with 3 subflows and SDN auxiliary routing.

5.5.2 Evaluation Results

Results obtained from running these experiments show a significant improvement in

throughput of large flows when using MPTCP. This is expected as multiple subflows

are able to aggregate bandwidth of different paths. Figure 5.10 shows the average

throughput of all large flows in each experiment. In TM1, the average throughput for

TCP was 49.4% of the maximum link capacity. Using MPTCP with ECMP increased

the throughput to 64.4% with 2 subflows and 72.1% with 3 subflows. Whereas in

TM2, TCP average throughput was 36.6%. MPTCP with ECMP improved obtained

throughput to 52.4% with 2 subflows and 56% with 3 subflows. However, for all cases

of MPTCP, our SDN auxiliary routing performed much better than ECMP. In TM1,

the average throughput of MPTCP with SDN routing was 77.8% with 2 subflows

and 78.5% with 3 subflows. In TM2, using MPTCP with SDN routing resulted in

63.8% with 2 subflows and 67.4% with 3 subflows. The improvements of using SDN

auxiliary routing compared to ECMP ranged from 6.4% to 13.4%.

Figures 5.11 and 5.12 show the CDF of large flows’ throughput in TM1 and

TM2, respectively. In both traffic matrices, the SDN auxilary routing with 2

subflows resulted in higher average throughput than ECMP with 3 subflows. This

result signifies the importance of adaptive routing which our SDN architecture

demonstrates. It also shows how hash collision of ECMP can affect the potential

improvements of using MPTCP. Figures 5.13 and 5.14 show the CDF of completion

time of large flows in TM1 and TM2. Higher average throughput leads to reducing

flow completion time.

87

One interesting observation in TM1 is that the improvement of throughput was

less than 1% when using 3 subflows compared to 2 subflows both with SDN routing.

However, the improvement was around 4% in the TM2 case where we have higher

number of large flows. This leads us to conclude that when the network is less

congested it is probably a better trade-off to use fewer subflows.

There are many factors to consider when choosing the number of auxiliary

subflows. These factors include network topology and how many paths that can be

used by large flows. There is also a trade-off between the potential throughput gain

and the overhead of creating additional subflow. Our SDN architecture

demonstrates higher throughput gain with smaller number of subflows compared to

ECMP.

Figure 5.10: Average throughput of large flows

One of the main challenges that face any SDN architecture is the issue of

scalability. SDN controller must be able to process incoming OpenFlow messages in

a timely manner. A key design goal of our SDN architecture is reducing the number

of OpenFlow messages as much as possible. Large flows constitute most of the

transmitted traffic in data centers while the vast majority of flows are short [63]. By

88

Figure 5.11: Throughput of large flows (TM1)

Figure 5.12: Throughput of large flows (TM2)

forwarding only the auxiliary subflows of large flows to the SDN controller, we

reduce the number of OpenFlow messages. Hence, the load on SDN controller is

minimized.

89

Figure 5.13: Completion time of large flows (TM1)

Figure 5.14: Completion time of large flows (TM2)

5.6 Summary

In this chapter, we proposed an SDN-based architecture for using MPTCP in data

centers. In this architecture, additional MPTCP subflows are created on demand

using the modified Linux kernel. Experiments were conducted on the GENI testbed

90

environment to evaluate the use of MPTCP and OpenFlow. We show that using a

centralized controller can improve throughput of large flows, which leads to better

utilization of network resources.

91

Chapter 6

Conclusion

In this dissertation, we have studied various mechanisms that aim to improve the

quality of service provided to selected traffic flows. The main focus of this research

is to develop convenient methods and systems that have the ability to provide

various network applications with guaranteed quality of service. Our study focuses

on certain types of network traffic flows that have different aspects of QoS

requirements. Utilizing the software-defined networking architecture, we have

developed and evaluated three mechanisms. In the following, we summarize the

main contributions introduced in this research:

• An SDN-based QoS routing approach to improve the provisioning of quality of

service to bandwidth-demanding traffic flows. By having a centralized controller

that performs continuous monitoring of network measurements, the QoS routing

application places traffic flows on paths that have sufficient available capacity.

The evaluation results show that this approach can significantly improve the

throughput of bandwidth-demanding flows, compared with the shortest path

routing algorithm used in existing networks.

• A flexible framework for providing quality of service to latency-sensitive traffic.

Latency, an important QoS measurement for various network applications, is

92

affected by the queueing delay of network devices and also by the current state

of traversed path. Our SDN-based framework enables the timely delivery of

data packets belonging to latency-sensitive traffic. This framework provides

QoS to latency-sensitive traffic with the focus on defining priorities for different

traffic classes and the assigning mechanism of unused network capacity.

• An SDN-based architecture for maximizing the throughput of large flows by

using Multipath TCP. Traffic engineering in modern data center networks

should leverage available multi-path topologies. By using Multipath TCP and

SDN, we have developed a solution that maximizes throughput gain of large

flows. Our approach enables applications to achieve higher throughput for

large flows by dynamically creating multiple MPTCP subflows. These

MPTCP subflows are routed through least-congested paths by the centralized

SDN controller.

6.1 Future Work

There are several directions to extend the research presented in this dissertation. We

list the following:

• Defining additional traffic flows with different characteristics. This can include

traffic flows that have more than one parameter in their QoS requirements.

• Investigating the relationship between different QoS metrics. The

inter-dependency of QoS metrics is an interesting topic for composite

parameter QoS applications.

• Exploring different methods to gather network measurements. Instead of

querying the data plane periodically for statistics, we could use a push model

that exports such information. For example, we can use IPFIX protocol to

93

export statistics to a collector and then analyze them and perform actions

related to QoS provisioning and monitoring.

• Adaptive SDN-based load balancing using OpenFlow group tables. In chapter

5, we used OpenFlow group tables for load balancing with fixed weights. This

can be extended to employ an adaptive approach that adjusts the weights based

on the current network measurements.

94

Appendix

Lists of traffic flows used in the second experiment in Chapter 3.

Start, duration: in seconds

BW: iperf3 reported bandwidth in Kbps

Src Dst Start Duration Accepted BW
h1 h18 14 200 Yes 9063
h15 h2 26 178 Yes 8784
h7 h17 41 189 Yes 6456
h11 h4 55 182 Yes 9473
h9 h13 69 197 No 6137
h20 h16 83 179 Yes 9516
h4 h5 95 160 Yes 7727
h19 h10 110 197 Yes 7590
h14 h19 122 176 No 9036
h16 h7 135 179 No 7974
h5 h1 148 162 No 8286
h3 h8 160 203 No 8530
h2 h9 171 203 No 8959
h6 h15 183 163 No 5891
h10 h20 197 209 No 9456
h12 h14 208 181 No 6238
h17 h11 222 188 No 7501
h13 h3 236 151 No 6920
h8 h12 248 159 Yes 9447
h18 h6 261 169 No 6224

Src Dst Start Duration Accepted BW
h1 h14 14 150 Yes 9411
h14 h8 26 176 Yes 9159
h5 h12 39 123 Yes 9610
h13 h7 54 163 Yes 6681
h6 h16 68 139 Yes 6313
h4 h9 83 161 No 8188
h9 h6 98 180 No 6804
h19 h2 110 122 No 8209
h12 h20 124 165 No 7658
h10 h13 135 134 No 4629
h8 h15 147 137 No 7311
h16 h10 158 178 No 6757
h2 h18 169 135 No 3792
h15 h3 184 159 No 5033
h20 h4 197 168 No 4859
h7 h1 209 179 No 8980
h17 h11 223 155 No 4223
h11 h19 236 175 No 5080
h18 h5 250 124 No 3201
h3 h17 262 166 No 5798

Src Dst Start Duration Accepted BW
h15 h5 13 135 Yes 9471
h20 h16 25 144 Yes 9566
h12 h18 40 166 Yes 9546
h7 h11 55 128 Yes 9315
h10 h7 67 139 Yes 9437
h2 h15 79 164 Yes 7060
h19 h1 93 137 Yes 7744
h1 h13 107 166 No 6257
h4 h12 122 162 Yes 9471
h18 h3 134 155 No 7918
h3 h6 146 95 No 3299
h14 h9 161 128 No 5371
h6 h19 175 91 No 3045
h8 h10 187 112 No 5568
h16 h2 198 149 No 5807
h5 h20 212 113 No 4656
h11 h17 223 65 Yes 8961
h9 h4 234 94 Yes 8491
h13 h8 245 105 No 7349
h17 h14 256 170 Yes 9355

Src Dst Start Duration Accepted BW
h8 h2 11 147 Yes 9563
h18 h7 25 176 Yes 8783
h7 h13 38 154 Yes 7731
h16 h17 52 136 Yes 9144
h10 h15 66 116 Yes 9569
h14 h11 78 108 Yes 9527
h11 h6 89 168 Yes 8292
h5 h14 102 174 No 6829
h9 h16 113 70 No 3954
h15 h18 125 147 No 7911
h19 h12 140 155 No 7327
h12 h3 151 86 No 6647
h1 h19 166 141 No 5694
h6 h4 179 157 Yes 8589
h2 h5 191 76 No 6601
h13 h1 204 62 No 6225
h4 h20 215 119 Yes 4620
h17 h9 230 148 No 6069
h20 h8 244 151 No 6339
h3 h10 257 162 No 7441

95

Src Dst Start Duration Accepted BW
h7 h3 14 150 Yes 8897
h6 h12 29 80 Yes 9566
h5 h16 41 138 Yes 9297
h19 h7 55 128 Yes 9223
h10 h6 69 102 Yes 9488
h14 h4 82 60 No 6591
h11 h19 97 118 Yes 7574
h13 h5 108 133 No 8856
h2 h18 120 81 No 6812
h17 h14 133 115 Yes 9519
h3 h13 148 67 No 7855
h20 h9 160 93 No 6631
h18 h1 172 108 No 6161
h12 h17 184 152 No 8145
h4 h10 197 78 No 9544
h16 h11 212 74 No 8072
h1 h8 227 120 No 9475
h8 h20 240 85 Yes 6251
h9 h15 253 101 Yes 7948
h15 h2 264 90 No 8256

Src Dst Start Duration Accepted BW
h9 h16 11 79 Yes 8190
h16 h9 25 62 Yes 9546
h5 h11 37 102 Yes 8435
h8 h15 52 70 No 8474
h3 h18 63 102 No 6978
h11 h8 77 96 Yes 7623
h10 h2 89 103 No 6103
h12 h5 101 70 No 9574
h20 h7 114 91 Yes 8760
h19 h3 126 68 No 3570
h1 h6 139 72 No 8765
h4 h17 151 113 No 8747
h18 h13 165 71 No 7820
h2 h14 179 91 No 8418
h13 h19 194 93 Yes 7297
h17 h1 207 77 No 9076
h7 h4 222 87 Yes 7584
h14 h12 234 120 No 4755
h6 h10 249 113 No 5638
h15 h20 262 76 No 8108

Src Dst Start Duration Accepted BW
h13 h11 14 110 Yes 9481
h17 h13 29 82 Yes 9485
h8 h19 43 69 Yes 6674
h15 h18 56 104 No 8765
h11 h15 67 101 No 8269
h4 h14 78 91 No 4179
h9 h7 91 81 Yes 7550
h20 h12 102 109 Yes 9544
h3 h9 113 78 Yes 9439
h2 h8 124 79 No 5718
h7 h16 135 92 Yes 9280
h12 h2 150 101 No 8579
h14 h4 162 102 Yes 7801
h1 h10 173 81 No 7928
h10 h1 188 100 No 6683
h16 h5 199 84 No 6577
h18 h3 211 70 No 3574
h6 h20 222 79 Yes 9490
h5 h17 237 72 Yes 9452
h19 h6 249 69 No 9292

Src Dst Start Duration Accepted BW
h15 h17 15 70 Yes 9571
h3 h19 29 73 Yes 9174
h16 h3 43 89 Yes 9512
h9 h13 54 73 Yes 8912
h19 h2 69 72 Yes 9353
h5 h18 81 70 No 7991
h12 h16 96 82 No 6351
h1 h11 108 79 No 9581
h6 h15 123 76 No 7826
h13 h10 134 75 No 7339
h8 h4 148 68 Yes 9631
h11 h5 160 62 Yes 9035
h4 h12 173 87 No 8834
h17 h9 185 77 Yes 8231
h2 h8 197 85 No 8449
h18 h6 211 62 No 7229
h10 h14 223 85 Yes 9467
h14 h1 235 86 Yes 9401
h20 h7 250 63 No 7590
h7 h20 265 77 Yes 8201

Src Dst Start Duration Accepted BW
h6 h13 13 68 Yes 9572
h1 h18 24 84 Yes 7840
h10 h19 38 64 No 6725
h2 h8 53 70 Yes 9569
h12 h4 66 60 Yes 9577
h19 h2 80 86 Yes 8110
h7 h14 93 81 Yes 9574
h16 h11 105 61 Yes 8758
h4 h10 120 86 Yes 9556
h14 h3 134 68 No 7030
h5 h20 148 63 No 8760
h17 h9 163 87 No 6828
h20 h12 174 79 No 7412
h15 h17 189 88 Yes 9446
h9 h15 204 62 Yes 9431
h13 h6 216 73 Yes 9577
h8 h1 231 75 Yes 9647
h11 h5 243 80 Yes 8177
h18 h16 257 73 Yes 9574
h3 h7 271 65 No 7394

Src Dst Start Duration Accepted BW
h15 h5 24 62 Yes 9571
h5 h13 47 62 Yes 9450
h13 h11 62 75 Yes 9472
h19 h16 77 67 Yes 9566
h11 h4 100 88 Yes 9509
h16 h1 124 86 Yes 9520
h18 h10 146 86 No 9572
h3 h8 161 70 Yes 9565
h9 h20 185 89 Yes 9561
h1 h19 203 83 Yes 7818
h12 h3 216 84 Yes 9562
h10 h14 231 66 No 7850
h6 h18 255 89 No 7666
h2 h7 270 74 Yes 9572
h7 h9 285 67 No 5855
h8 h17 307 62 Yes 9568
h14 h12 332 89 Yes 9573
h17 h2 348 86 Yes 8218
h20 h6 371 84 No 7315
h4 h15 392 83 Yes 9570

Src Dst Start Duration Accepted BW
h6 h15 22 88 Yes 9306
h17 h7 41 82 Yes 9553
h4 h5 57 89 Yes 9317
h3 h20 75 72 Yes 9553
h5 h14 93 88 No 7185
h15 h17 107 78 Yes 9560
h2 h13 124 69 No 7686
h8 h19 145 66 No 9459
h11 h2 169 62 Yes 9578
h18 h9 191 75 Yes 9582
h1 h8 216 68 Yes 9576
h9 h4 240 69 Yes 9263
h12 h16 256 63 Yes 9609
h14 h11 274 75 Yes 8940
h20 h6 291 77 No 8776
h16 h10 316 84 No 7106
h13 h12 341 82 No 7080
h19 h3 359 74 No 8968
h10 h18 374 82 Yes 9195
h7 h1 387 69 Yes 9579

Src Dst Start Duration Accepted BW
h12 h3 19 86 Yes 9573
h11 h5 40 77 Yes 9562
h2 h16 55 76 Yes 9568
h6 h20 75 88 Yes 9338
h14 h11 95 73 Yes 9562
h3 h12 118 75 Yes 9575
h7 h17 143 90 No 8705
h20 h10 157 69 No 8478
h17 h9 174 87 No 6805
h4 h15 191 80 Yes 9576
h10 h2 211 85 Yes 9533
h8 h1 235 88 Yes 9575
h19 h13 249 79 Yes 9574
h16 h6 265 75 Yes 9577
h13 h18 290 82 Yes 9470
h18 h7 312 82 Yes 9481
h9 h19 332 79 Yes 9575
h1 h14 353 67 Yes 9572
h5 h4 375 89 Yes 9574
h15 h8 393 67 Yes 9576

96

Src Dst Start Duration Accepted BW
h9 h16 25 63 Yes 9565
h4 h9 48 88 Yes 9564
h5 h2 63 86 Yes 9037
h3 h12 78 83 Yes 9504
h15 h10 98 88 Yes 9571
h8 h3 115 61 No 7619
h13 h5 140 86 Yes 9570
h6 h14 165 89 Yes 9434
h18 h6 186 64 No 8474
h19 h4 201 82 No 6954
h16 h20 222 61 Yes 9566
h20 h15 237 72 Yes 9443
h17 h8 254 85 No 7828
h10 h1 276 89 No 9484
h12 h7 295 63 No 7437
h1 h17 317 69 Yes 7465
h11 h18 332 64 No 7152
h7 h11 351 72 Yes 9072
h14 h19 374 83 Yes 9573
h2 h13 388 88 Yes 9577

Src Dst Start Duration Accepted BW
h10 h6 22 73 Yes 9576
h11 h5 47 72 Yes 9571
h2 h7 65 69 Yes 7348
h3 h19 88 63 No 8615
h13 h17 111 76 Yes 9573
h6 h14 131 84 Yes 9570
h5 h20 149 80 No 9302
h4 h10 174 67 Yes 9573
h20 h3 194 68 Yes 9361
h8 h11 219 72 No 8987
h17 h15 239 77 Yes 9569
h15 h12 257 90 Yes 9436
h16 h4 282 74 Yes 8201
h18 h9 303 78 No 7594
h1 h18 324 79 Yes 7683
h14 h1 345 85 No 9442
h12 h13 366 86 Yes 8581
h19 h16 391 74 Yes 9580
h9 h8 411 71 No 7772
h7 h2 429 70 Yes 9579

Src Dst Start Duration Accepted BW
h5 h3 22 79 Yes 9573
h10 h6 47 78 Yes 9570
h11 h2 67 76 Yes 9573
h1 h15 85 70 Yes 9572
h8 h9 103 77 Yes 9574
h2 h5 121 74 Yes 8920
h16 h17 141 68 Yes 9280
h3 h12 164 68 No 8122
h15 h19 184 79 No 8270
h20 h16 205 61 Yes 9203
h14 h18 229 80 Yes 9586
h18 h10 250 62 Yes 9451
h19 h14 270 72 No 9343
h6 h13 295 78 Yes 9567
h17 h8 319 73 No 9573
h9 h20 344 71 Yes 9575
h13 h11 364 71 Yes 9552
h12 h4 386 75 Yes 9563
h4 h7 408 66 Yes 9416
h7 h1 430 71 Yes 9477

Src Dst Start Duration Accepted BW
h14 h4 22 77 Yes 9570
h17 h1 43 62 Yes 9565
h3 h15 68 68 Yes 9567
h5 h10 91 64 Yes 9570
h8 h3 111 70 Yes 9560
h2 h17 134 67 Yes 9572
h16 h5 158 70 Yes 9575
h13 h8 182 73 Yes 9574
h1 h18 206 68 Yes 9579
h15 h9 231 77 No 8236
h7 h12 256 73 No 7622
h19 h16 279 63 Yes 9562
h18 h6 301 79 Yes 9119
h9 h19 326 62 Yes 9571
h11 h20 345 62 Yes 8693
h10 h14 370 70 No 8012
h12 h2 393 66 No 9242
h4 h13 413 78 Yes 9569
h20 h7 436 80 No 9222
h6 h11 459 71 Yes 9569

Src Dst Start Duration Accepted BW
h13 h18 16 185 Yes 9418
h18 h15 32 203 Yes 9408
h8 h17 51 192 Yes 6632
h3 h13 67 169 Yes 9091
h1 h9 85 203 Yes 9333
h6 h12 101 201 No 6361
h5 h11 119 160 No 4489
h7 h2 137 197 Yes 8241
h9 h19 157 201 No 8958
h4 h5 176 150 No 7804
h16 h3 193 210 No 6407
h11 h14 209 189 No 7663
h14 h4 227 154 Yes 6564
h2 h20 244 179 No 6762
h12 h1 262 168 No 8597
h15 h8 280 160 No 7669
h19 h10 297 166 No 8080
h17 h6 316 179 No 3509
h10 h7 332 185 No 7610
h20 h16 350 194 Yes 9518

Src Dst Start Duration Accepted BW
h5 h2 20 165 Yes 9565
h18 h10 39 205 Yes 7168
h8 h19 57 191 Yes 7996
h4 h14 75 203 Yes 7913
h20 h11 94 187 No 5164
h11 h18 111 186 No 5952
h19 h1 131 201 No 5828
h16 h20 148 168 No 8524
h14 h3 167 171 Yes 6929
h15 h5 186 209 No 6833
h2 h13 202 199 No 8579
h9 h16 221 183 No 3420
h3 h17 239 172 No 5273
h10 h7 255 161 Yes 6791
h13 h4 275 157 No 5530
h7 h9 292 154 Yes 4566
h17 h8 310 163 No 5337
h1 h12 326 166 No 6778
h12 h6 345 160 No 5585
h6 h15 365 164 No 7967

Src Dst Start Duration Accepted BW
h7 h1 20 128 Yes 9493
h8 h13 39 125 Yes 9485
h19 h7 57 126 Yes 9282
h14 h6 76 179 Yes 9524
h1 h8 92 128 Yes 9252
h12 h2 109 165 Yes 8975
h15 h17 128 175 Yes 7249
h17 h11 145 143 No 7418
h10 h14 163 126 Yes 9506
h16 h19 179 133 No 8038
h3 h15 196 152 No 8016
h18 h5 215 168 No 6726
h11 h4 232 162 No 8969
h2 h18 248 178 No 6888
h20 h10 265 126 No 6427
h6 h16 285 149 No 8603
h5 h3 302 162 Yes 9484
h13 h12 319 161 Yes 8909
h9 h20 335 167 No 7648
h4 h9 354 160 No 8540

Src Dst Start Duration Accepted BW
h10 h18 20 136 Yes 9402
h8 h10 38 135 Yes 9346
h13 h7 56 126 Yes 7966
h17 h5 72 145 Yes 9576
h14 h1 90 174 No 7391
h15 h19 107 122 Yes 9551
h4 h12 127 141 Yes 8960
h6 h11 144 125 No 8568
h16 h2 162 167 No 7392
h19 h16 179 124 Yes 8867
h2 h15 195 179 Yes 6963
h3 h9 215 176 No 8563
h18 h4 232 158 Yes 7739
h20 h14 249 167 No 8340
h12 h20 266 138 Yes 8601
h7 h13 283 168 No 8682
h9 h3 301 156 No 7530
h11 h6 319 162 Yes 9570
h1 h8 336 156 No 9372
h5 h17 353 134 No 8686

97

Src Dst Start Duration Accepted BW
h17 h12 18 129 Yes 9427
h7 h17 38 171 Yes 7305
h11 h14 54 121 Yes 9372
h13 h20 74 129 No 7592
h1 h10 92 168 Yes 8626
h16 h6 110 144 Yes 7945
h15 h5 128 160 No 7245
h4 h19 148 122 No 6291
h20 h1 168 138 Yes 7506
h8 h4 185 142 Yes 8252
h5 h2 202 135 No 6416
h19 h9 218 170 No 7830
h12 h13 237 121 Yes 5933
h10 h8 255 155 Yes 6269
h9 h16 275 128 No 3793
h18 h15 295 136 Yes 9469
h6 h18 311 138 Yes 6048
h14 h3 329 152 Yes 7875
h3 h11 346 158 Yes 9404
h2 h7 363 130 Yes 9571

Src Dst Start Duration Accepted BW
h13 h20 20 125 Yes 9567
h1 h5 38 124 Yes 8124
h17 h14 57 129 Yes 9568
h4 h6 77 140 Yes 9218
h3 h7 97 112 No 8495
h18 h2 114 134 Yes 7829
h15 h9 130 115 Yes 8818
h19 h12 148 106 No 7300
h7 h18 166 135 Yes 6778
h10 h8 182 113 No 8233
h16 h10 201 104 No 8137
h2 h11 220 116 No 9480
h5 h4 238 108 Yes 9572
h11 h13 257 110 Yes 9327
h12 h16 277 137 No 6176
h6 h15 297 106 No 6556
h20 h3 317 157 Yes 7179
h9 h1 333 148 No 7561
h8 h19 349 116 No 8934
h14 h17 365 159 Yes 9566

Src Dst Start Duration Accepted BW
h4 h8 16 158 Yes 9405
h20 h3 34 113 Yes 9465
h12 h1 52 111 Yes 9367
h14 h7 71 119 Yes 8430
h17 h13 90 109 Yes 9566
h15 h9 109 157 No 6840
h11 h16 126 136 No 3447
h6 h18 144 160 Yes 8103
h5 h15 163 151 No 3661
h13 h6 180 159 No 7768
h18 h2 197 123 Yes 9476
h9 h20 216 117 Yes 7743
h10 h17 233 149 No 6880
h7 h12 250 100 Yes 9107
h1 h5 266 141 Yes 9037
h16 h4 283 117 No 7012
h8 h11 303 114 Yes 9574
h2 h19 323 121 No 7923
h19 h10 339 158 Yes 8807
h3 h14 356 123 No 8201

Src Dst Start Duration Accepted BW
h11 h16 17 159 Yes 7325
h17 h15 36 122 Yes 9564
h14 h9 54 101 Yes 9536
h9 h18 72 121 No 5343
h6 h20 90 133 No 5771
h19 h13 109 102 No 9441
h10 h4 127 119 Yes 9460
h4 h6 146 111 Yes 8524
h3 h11 165 116 Yes 9565
h15 h1 184 145 Yes 9567
h2 h5 204 125 No 8241
h12 h7 221 123 Yes 9563
h8 h19 239 110 Yes 9572
h5 h2 259 118 Yes 6880
h18 h14 278 128 Yes 9570
h7 h12 297 130 No 5782
h13 h10 314 138 No 5750
h1 h17 330 153 Yes 9603
h20 h8 346 137 No 5782
h16 h3 363 123 Yes 7961

Src Dst Start Duration Accepted BW
h20 h11 17 160 Yes 9568
h7 h3 34 158 Yes 9545
h13 h18 50 132 Yes 9567
h1 h8 66 147 Yes 8265
h19 h14 83 139 Yes 9570
h4 h7 100 158 Yes 9229
h8 h17 117 155 Yes 7293
h2 h5 136 124 No 8049
h6 h9 155 108 No 7641
h11 h6 172 141 No 6367
h16 h10 190 101 No 8886
h5 h1 209 115 Yes 7036
h10 h19 227 156 No 7389
h9 h20 243 117 No 6255
h15 h2 263 149 No 6913
h12 h16 281 111 Yes 8258
h18 h15 299 147 Yes 9495
h17 h12 316 123 Yes 8942
h3 h13 334 121 No 8153
h14 h4 353 102 No 7813

Src Dst Start Duration Accepted BW
h6 h15 16 90 Yes 9403
h4 h10 34 100 Yes 8918
h1 h13 52 82 Yes 7630
h2 h11 68 89 No 6807
h3 h14 84 105 No 8418
h8 h17 102 85 No 9101
h12 h6 122 104 Yes 8735
h10 h4 139 112 Yes 8559
h19 h8 156 114 Yes 7955
h9 h1 176 102 No 6376
h16 h3 195 113 No 7766
h18 h2 215 82 No 4754
h5 h20 234 114 Yes 8453
h11 h7 252 85 Yes 9575
h14 h12 270 80 No 7550
h15 h19 288 116 No 8148
h17 h16 308 113 Yes 8179
h13 h5 326 83 No 8460
h7 h18 342 110 Yes 9572
h20 h9 362 103 Yes 9570

Src Dst Start Duration Accepted BW
h8 h13 20 71 Yes 9561
h2 h5 44 91 Yes 9576
h9 h8 69 88 Yes 9570
h11 h4 93 85 Yes 9574
h10 h3 114 79 Yes 8788
h18 h15 138 71 No 6781
h5 h11 161 99 Yes 9570
h16 h17 184 95 Yes 7719
h13 h9 204 83 Yes 6541
h17 h12 225 96 Yes 9187
h3 h7 248 100 Yes 9503
h7 h19 272 97 Yes 9102
h19 h16 297 74 No 8223
h4 h18 319 70 No 6482
h6 h14 344 76 Yes 9562
h20 h1 364 86 Yes 9394
h12 h20 389 71 No 9366
h14 h2 410 92 Yes 8111
h15 h10 435 94 No 7352
h1 h6 458 81 Yes 9561

Src Dst Start Duration Accepted BW
h3 h6 22 79 Yes 9568
h20 h14 47 85 Yes 9564
1h4 h10 70 93 Yes 9569
h16 h18 91 89 Yes 9572
h17 h13 115 80 Yes 9511
h2 h20 136 85 Yes 8229
h7 h17 160 90 No 7450
h12 h8 185 96 No 6413
h19 h5 208 89 Yes 6613
h15 h9 228 77 Yes 6595
h14 h7 253 71 Yes 7524
h5 h3 276 79 Yes 7920
h11 h2 301 98 No 7525
h8 h19 323 96 Yes 9572
h9 h4 347 83 Yes 8966
h10 h15 372 77 Yes 9575
h6 h1 397 72 No 7974
h1 h11 420 84 Yes 9437
h18 h16 441 91 Yes 9574
h13 h12 463 88 Yes 9568

98

Src Dst Start Duration Accepted BW
h14 h3 23 87 Yes 9074
h16 h19 47 96 Yes 9573
h15 h1 67 70 No 7184
h2 h16 92 92 Yes 8522
h11 h8 112 82 Yes 9575
h1 h9 137 95 Yes 9567
h7 h11 162 73 Yes 8515
h5 h18 184 81 No 7544
h13 h2 206 74 Yes 9577
h18 h7 231 78 Yes 7163
h19 h4 255 86 Yes 6013
h17 h10 276 84 No 5232
h8 h12 298 96 Yes 9484
h12 h13 319 75 Yes 9441
h20 h6 341 72 No 8357
h4 h20 364 93 Yes 6805
h3 h5 385 70 Yes 7519
h6 h15 405 98 No 7171
h10 h17 429 81 No 7374
h9 h14 453 91 No 9296

Src Dst Start Duration Accepted BW
h11 h19 22 77 Yes 9568
h3 h7 42 72 Yes 9561
h17 h8 62 95 Yes 8362
h14 h12 83 91 Yes 9564
h18 h2 108 90 No 8231
h2 h13 131 93 Yes 9168
h7 h10 156 95 Yes 9196
h5 h15 180 82 No 7374
h19 h9 200 98 Yes 9575
h6 h4 220 100 No 8312
h15 h11 243 86 Yes 7585
h1 h17 265 88 Yes 9573
h13 h20 287 96 No 8107
h20 h14 310 93 Yes 7728
h8 h3 330 77 Yes 9578
h16 h18 354 92 No 8191
h10 h1 379 86 Yes 9575
h4 h16 401 89 Yes 9563
h12 h5 423 88 Yes 9571
h9 h6 448 82 Yes 9571

99

Bibliography

[1] ITU-T, “One way transmission time, itu-t recommendation g. 114,” 2003.
Available at https://www.itu.int/rec/T-REC-G.114-200305-I.

[2] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture: an overview. rfc 1633,” 1994.

[3] L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reservation protocol
(rsvp)–version 1 functional specification. rfc 2205,” 1997.

[4] X. Xiao and L. M. Ni, “Internet qos: A big picture,” IEEE network, vol. 13,
no. 2, pp. 8–18, 1999.

[5] K. Nichols, D. L. Black, S. Blake, and F. Baker, “Definition of the differentiated
services field (ds field) in the ipv4 and ipv6 headers. rfc 2474,” 1998.

[6] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia
applications,” IEEE Journal on selected areas in communications, vol. 14, no. 7,
pp. 1228–1234, 1996.

[7] S. Chen and K. Nahrstedt, “An overview of quality of service routing for next-
generation high-speed networks: problems and solutions,” IEEE network, vol. 12,
no. 6, pp. 64–79, 1998.

[8] M. Curado and E. Monteiro, “A survey of qos routing algorithms,” in
Proceedings of the International Conference on Information Technology (ICIT
2004), Istanbul, Turkey, 2004.

[9] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz, “An overview
of constraint-based path selection algorithms for qos routing,” IEEE
Communications Magazine, vol. 40, no. 12, pp. 50–55, 2002.

[10] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” in IEEE
INFOCOM, vol. 2, pp. 834–843, Citeseer, 2001.

[11] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the qos routing problem,” in INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, pp. 859–868, IEEE, 2001.

100

https://www.itu.int/rec/T-REC-G.114-200305-I

[12] X. Masip-Bruin, M. Yannuzzi, J. Domingo-Pascual, A. Fonte, M. Curado,
E. Monteiro, F. Kuipers, P. Van Mieghem, S. Avallone, G. Ventre, et al.,
“Research challenges in qos routing,” Computer communications, vol. 29, no. 5,
pp. 563–581, 2006.

[13] S. Chen, M. Song, and S. Sahni, “Two techniques for fast computation of
constrained shortest paths,” IEEE/ACM Transactions on Networking (TON),
vol. 16, no. 1, pp. 105–115, 2008.

[14] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[15] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual history
of programmable networks,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 2, pp. 87–98, 2014.

[16] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der
Merwe, “Design and implementation of a routing control platform,” in
Proceedings of the 2Nd Conference on Symposium on Networked Systems Design
and Implementation-Volume 2, pp. 15–28, USENIX Association, 2005.

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach to network control
and management,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 5, pp. 41–54, 2005.

[18] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
“Ethane: Taking control of the enterprise,” in ACM SIGCOMM Computer
Communication Review, vol. 37, pp. 1–12, ACM, 2007.

[19] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown,
and S. Shenker, “Sane: A protection architecture for enterprise networks.,” in
USENIX Security Symposium, vol. 49, pp. 137–151, 2006.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[21] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” IEEE Communications Surveys & Tutorials, vol. 16,
no. 3, pp. 1617–1634, 2014.

[22] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, et al., “The design and implementation of open
vswitch.,” in NSDI, pp. 117–130, 2015.

101

[23] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.,” in Hotnets, 2009.

[24] “Floodlight,” 2017. Available at http://www.projectfloodlight.org.

[25] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Openqos: An
openflow controller design for multimedia delivery with end-to-end quality of
service over software-defined networks,” in Signal & Information processing
association annual summit and conference (APSIPA ASC), 2012 Asia-Pacific,
pp. 1–8, IEEE, 2012.

[26] H. Owens II and A. Durresi, “Video over software-defined networking (vsdn),”
Computer Networks, vol. 92, pp. 341–356, 2015.

[27] O. N. F. (ONF), “Openflow switch specification 1.5.1,” 2015. Available
at https://www.opennetworking.org/wp-content/uploads/2014/10/

openflow-switch-v1.5.1.pdf.

[28] D. Erickson, “The beacon openflow controller,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pp. 13–18,
ACM, 2013.

[29] “Mininet,” 2017. Available at http://mininet.org/.

[30] “iperf3,” 2017. Available at https://iperf.fr/.

[31] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network
monitoring in openflow software-defined networks,” in Network Operations and
Management Symposium (NOMS), 2014 IEEE, pp. 1–8, IEEE, 2014.

[32] P. E. McKenney, “Stochastic fairness queueing,” in INFOCOM’90, Ninth Annual
Joint Conference of the IEEE Computer and Communication Societies. The
Multiple Facets of Integration. Proceedings, IEEE, pp. 733–740, IEEE, 1990.

[33] “Htb,” 2017. Available at http://luxik.cdi.cz/~devik/qos/htb/index.htm.

[34] I. Stoica, H. Zhang, and T. Ng, A hierarchical fair service curve algorithm for
link-sharing, real-time and priority services, vol. 27. ACM, 1997.

[35] R. Wallner and R. Cannistra, “An sdn approach: quality of service using
big switchs floodlight open-source controller,” Proceedings of the Asia-Pacific
Advanced Network, vol. 35, pp. 14–19, 2013.

[36] D. Palma, J. Gonçalves, B. Sousa, L. Cordeiro, P. Simoes, S. Sharma, and
D. Staessens, “The queuepusher: Enabling queue management in openflow,”
in Software Defined Networks (EWSDN), 2014 Third European Workshop on,
pp. 125–126, IEEE, 2014.

102

http://www.projectfloodlight.org
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://mininet.org/
https://iperf.fr/
http://luxik.cdi.cz/~devik/qos/htb/index.htm

[37] C. Caba and J. Soler, “Apis for qos configuration in software defined networks,”
in Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pp. 1–5,
IEEE, 2015.

[38] O. N. Foundation, “Openflow management and configuration protocol,”
2014. Available at https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/openflow-config/

of-config-1.2.pdf.

[39] B. Pfaff and B. Davie, “The open vswitch database management protocol. rfc
7047.,” 2013.

[40] “Json-rpc 1.0 specification,” 2005. Available at http://www.jsonrpc.org/

specification_v1.

[41] “Open vswitch database schema,” 2017. Available at http://www.

openvswitch.org/ovs-vswitchd.conf.db.5.pdf.

[42] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri,
R. Ricci, and I. Seskar, “Geni: A federated testbed for innovative network
experiments,” Computer Networks, vol. 61, pp. 5–23, 2014.

[43] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.,” in NSDI, vol. 10,
pp. 19–19, 2010.

[44] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation
and evaluation of congestion control for multipath tcp.,” in NSDI, vol. 11, pp. 8–
8, 2011.

[45] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center
network architecture,” in ACM SIGCOMM Computer Communication Review,
vol. 38, pp. 63–74, ACM, 2008.

[46] C. Clos, “A study of non-blocking switching networks,” Bell Labs Technical
Journal, vol. 32, no. 2, pp. 406–424, 1953.

[47] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,
“Bcube: a high performance, server-centric network architecture for modular
data centers,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 4, pp. 63–74, 2009.

[48] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data
centers randomly.,” in NSDI, vol. 12, pp. 17–17, 2012.

[49] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data center
network,” in ACM SIGCOMM computer communication review, vol. 39, pp. 51–
62, ACM, 2009.

103

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
http://www.jsonrpc.org/specification_v1
http://www.jsonrpc.org/specification_v1
http://www.openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://www.openvswitch.org/ovs-vswitchd.conf.db.5.pdf

[50] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions for
multipath operation with multiple addresses. rfc 6824,” 2013.

[51] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing tcp’s retransmission
timer. rfc 6298,” 2011.

[52] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control for
multipath transport protocols. rfc 6356,” 2011.

[53] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead datacenter
traffic management using end-host-based elephant detection,” in INFOCOM,
2011 Proceedings IEEE, pp. 1629–1637, IEEE, 2011.

[54] A. Agache and C. Raiciu, “Oh flow, are thou happy? tcp sendbuffer advertising
for make benefit of clouds and tenants.,” in HotCloud, 2015.

[55] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley,
“Improving datacenter performance and robustness with multipath tcp,” in ACM
SIGCOMM Computer Communication Review, vol. 41, pp. 266–277, ACM, 2011.

[56] M. Sandri, A. Silva, L. A. Rocha, and F. L. Verdi, “On the benefits of using
multipath tcp and openflow in shared bottlenecks,” in Advanced Information
Networking and Applications (AINA), 2015 IEEE 29th International Conference
on, pp. 9–16, IEEE, 2015.

[57] S. Zannettou, M. Sirivianos, and F. Papadopoulos, “Exploiting path diversity in
datacenters using mptcp-aware sdn,” in Computers and Communication (ISCC),
2016 IEEE Symposium on, pp. 539–546, IEEE, 2016.

[58] M. Kheirkhah, I. Wakeman, and G. Parisis, “Mmptcp: A multipath transport
protocol for data centers,” in Computer Communications, IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on, pp. 1–9, IEEE, 2016.

[59] IANA, “Differentiated services field codepoints (dscp),” 2017. Available
at https://www.iana.org/assignments/dscp-registry/dscp-registry.

xhtml.

[60] IANA, “Transmission control protocol (tcp) parameters,” 2017. Available
at https://www.iana.org/assignments/tcp-parameters/tcp-parameters.

xhtml.

[61] C. Paasch, S. Barre, et al., “Multipath tcp in the linux kernel,” 2013. Available
at https://www.multipath-tcp.org.

[62] B. Hesmans and O. Bonaventure, “An enhanced socket api for multipath tcp.,”
in ANRW, pp. 1–6, 2016.

[63] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data
centers in the wild,” in Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pp. 267–280, ACM, 2010.

104

https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml
https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml
https://www.multipath-tcp.org

Vita

• Education

– B.Sc., King Saud University, 2003

– M.Sc., King Saud University, 2006

– Ph.D., University of Kentucky, 2018

• Publications

– F. Alharbi, and Z. Fei, “Improving the Quality of Service for Critical Flows
In Smart Grid Using Software-Defined Networking”, IEEE International
Conference on Smart Grid Communications (SmartGridComm), 2016.

– F. Alharbi, and Z. Fei, “An SDN Architecture for Improving Throughput
of Large Flows Using Multipath TCP”, The 5th IEEE International
Conference on Cyber Security and Cloud Computing (IEEE CSCloud),
2018.

105

	SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO SELECTED NETWORK FLOWS
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Organization

	2 Background
	2.1 Quality of Service
	2.1.1 IntServ
	2.1.2 DiffServ
	2.1.3 QoS Metrics
	2.1.4 QoS Routing

	2.2 Software-Defined Networking (SDN)
	2.2.1 Early Efforts Prior to SDN
	Routing Control Platform
	The 4D project
	Ethane

	2.2.2 SDN Model
	2.2.3 SDN Characteristics
	2.2.4 SDN Benefits
	2.2.5 OpenFlow
	2.2.6 Open vSwitch

	3 Improving the Quality of Service for Bandwidth-Demanding Traffic Flows
	3.1 Overview
	3.2 Related Work
	3.3 An SDN-Based Framework for Setting Up Paths for Bandwidth-Demanding Flows
	3.3.1 Status Monitoring
	3.3.2 QoS-based Path Setup

	3.4 Evaluation
	3.4.1 First Experiment
	Experiment Setup
	Results

	3.4.2 Second Experiment
	Experiment Setup
	Results

	3.5 Summary

	4 Provisioning Quality of Service to Latency-Sensitive Traffic Flows
	4.1 Overview
	4.1.1 Motivation
	4.1.2 Latency Measurements in SDN
	4.1.3 Queueing Disciplines

	4.2 Related Work
	4.3 An SDN-based Architecture for Supporting Latency-Sensitive Flows
	4.3.1 Admission Control
	4.3.2 Queues Setup
	4.3.3 Installing OpenFlow Rules
	4.3.4 Monitoring and Reporting

	4.4 Provisioning QoS to Latency-Sensitive Flows
	4.5 Performance Evaluation
	4.6 Summary

	5 Improving Throughput of Large Flows Using Multipath TCP
	5.1 Overview
	5.1.1 Motivation
	5.1.2 Data Center Topologies

	5.2 Multipath TCP
	5.2.1 Congestion Control

	5.3 Related Work
	5.4 SDN Based Architecture for Improving Throughput of Large Flows
	5.4.1 Load Balancing with OpenFlow Group Tables
	5.4.2 Routing Auxiliary Subflows
	5.4.3 Socket API for Creating Auxiliary Subflows

	5.5 Evaluation
	5.5.1 Experiments Setup
	5.5.2 Evaluation Results

	5.6 Summary

	6 Conclusion
	6.1 Future Work

	Appendix
	Bibliography
	Vita

