1,352 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Active Shape Completion Using Tactile Glances

    Get PDF
    One longstanding challenge in the field of robotics has been the robust and reliable grasping of objects of unknown shape. Part of that challenge lies in reconstructing the object's shape using only limited observations. Most approaches use either visual or tactile information to reconstruct the shape, having to face issues resulting from the limitations of the chosen modality. This thesis tries to combine the strengths of visual and tactile observations by taking the result from an existing visual approach and refining that result through sparse tactile glances. The existing approach produces potential shape hypotheses in voxel space which get combined into one final shape. This thesis takes that final shape and determines voxels of interest using either entropy or variance. These voxels will be targeted by the exploration, providing information about these voxels. This information will be used to assign weights to the original hypotheses in order for the combined shape to better fit the observations. All explorations are simulated and evaluated in MATLAB. The resulting shapes are evaluated based on their Jaccard Index with the ground truth model. The algorithm leads to improvements in the Jaccard Index, but not to drastically different looking shapes

    Visuo-Haptic Grasping of Unknown Objects through Exploration and Learning on Humanoid Robots

    Get PDF
    Die vorliegende Arbeit befasst sich mit dem Greifen unbekannter Objekte durch humanoide Roboter. Dazu werden visuelle Informationen mit haptischer Exploration kombiniert, um Greifhypothesen zu erzeugen. Basierend auf simulierten Trainingsdaten wird außerdem eine Greifmetrik gelernt, welche die Erfolgswahrscheinlichkeit der Greifhypothesen bewertet und die mit der größten geschätzten Erfolgswahrscheinlichkeit auswählt. Diese wird verwendet, um Objekte mit Hilfe einer reaktiven Kontrollstrategie zu greifen. Die zwei Kernbeiträge der Arbeit sind zum einen die haptische Exploration von unbekannten Objekten und zum anderen das Greifen von unbekannten Objekten mit Hilfe einer neuartigen datengetriebenen Greifmetrik

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces
    corecore