995 research outputs found

    A statistical shape model for deformable surface

    Get PDF
    This short paper presents a deformable surface registration scheme which is based on the statistical shape modelling technique. The method consists of two major processing stages, model building and model fitting. A statistical shape model is first built using a set of training data. Then the model is deformed and matched to the new data by a modified iterative closest point (ICP) registration process. The proposed method is tested on real 3-D facial data from BU-3DFE database. It is shown that proposed method can achieve a reasonable result on surface registration, and can be used for patient position monitoring in radiation therapy and potentially can be used for monitoring of the radiation therapy progress for head and neck patients by analysis of facial articulation

    Interactive object contour extraction for shape modeling

    Get PDF
    In this paper we present a semi-automatic segmentation approach suitable for extracting object contours as a precursor to 2D shape modeling. The approach is a modified and extended version of an existing state-of-the-art approach based on the concept of a Binary Partition Tree (BPT) [1]. The resulting segmentation tool facilitates quick and easy extraction of an object’s contour via a small amount of user interaction that is easy to perform, even in complicated scenes. Illustrative segmentation results are presented and the usefulness of the approach in generating object shape models is discussed

    Recognition of nonmanual markers in American Sign Language (ASL) using non-parametric adaptive 2D-3D face tracking

    Full text link
    This paper addresses the problem of automatically recognizing linguistically significant nonmanual expressions in American Sign Language from video. We develop a fully automatic system that is able to track facial expressions and head movements, and detect and recognize facial events continuously from video. The main contributions of the proposed framework are the following: (1) We have built a stochastic and adaptive ensemble of face trackers to address factors resulting in lost face track; (2) We combine 2D and 3D deformable face models to warp input frames, thus correcting for any variation in facial appearance resulting from changes in 3D head pose; (3) We use a combination of geometric features and texture features extracted from a canonical frontal representation. The proposed new framework makes it possible to detect grammatically significant nonmanual expressions from continuous signing and to differentiate successfully among linguistically significant expressions that involve subtle differences in appearance. We present results that are based on the use of a dataset containing 330 sentences from videos that were collected and linguistically annotated at Boston University

    Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images

    Full text link
    The automatic segmentation of human knee cartilage from 3D MR images is a useful yet challenging task due to the thin sheet structure of the cartilage with diffuse boundaries and inhomogeneous intensities. In this paper, we present an iterative multi-class learning method to segment the femoral, tibial and patellar cartilage simultaneously, which effectively exploits the spatial contextual constraints between bone and cartilage, and also between different cartilages. First, based on the fact that the cartilage grows in only certain area of the corresponding bone surface, we extract the distance features of not only to the surface of the bone, but more informatively, to the densely registered anatomical landmarks on the bone surface. Second, we introduce a set of iterative discriminative classifiers that at each iteration, probability comparison features are constructed from the class confidence maps derived by previously learned classifiers. These features automatically embed the semantic context information between different cartilages of interest. Validated on a total of 176 volumes from the Osteoarthritis Initiative (OAI) dataset, the proposed approach demonstrates high robustness and accuracy of segmentation in comparison with existing state-of-the-art MR cartilage segmentation methods.Comment: MICCAI 2013: Workshop on Medical Computer Visio
    corecore