3D shape modeling is a crucial component of rapid prototyping systems
that customize shapes of implants and prosthetic devices to a patient’s
anatomy. In this paper, we present a solution to the problem of customized 3D
shape modeling using a statistical shape analysis framework. We design a novel
method to learn the relationship between two classes of shapes, which are related
by certain operations or transformation. The two associated shape classes are
represented in a lower dimensional manifold, and the reduced set of parameters
obtained in this subspace is utilized in an estimation, which is exemplified by a
multivariate regression in this paper.We demonstrate our method with a felicitous
application to estimation of customized hearing aid devices