83,655 research outputs found

    Minimizing Supervision in Multi-label Categorization

    Full text link
    Multiple categories of objects are present in most images. Treating this as a multi-class classification is not justified. We treat this as a multi-label classification problem. In this paper, we further aim to minimize the supervision required for providing supervision in multi-label classification. Specifically, we investigate an effective class of approaches that associate a weak localization with each category either in terms of the bounding box or segmentation mask. Doing so improves the accuracy of multi-label categorization. The approach we adopt is one of active learning, i.e., incrementally selecting a set of samples that need supervision based on the current model, obtaining supervision for these samples, retraining the model with the additional set of supervised samples and proceeding again to select the next set of samples. A crucial concern is the choice of the set of samples. In doing so, we provide a novel insight, and no specific measure succeeds in obtaining a consistently improved selection criterion. We, therefore, provide a selection criterion that consistently improves the overall baseline criterion by choosing the top k set of samples for a varied set of criteria. Using this criterion, we are able to show that we can retain more than 98% of the fully supervised performance with just 20% of samples (and more than 96% using 10%) of the dataset on PASCAL VOC 2007 and 2012. Also, our proposed approach consistently outperforms all other baseline metrics for all benchmark datasets and model combinations.Comment: Accepted in CVPR-W 202

    Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching

    Full text link
    This paper presents a robotic pick-and-place system that is capable of grasping and recognizing both known and novel objects in cluttered environments. The key new feature of the system is that it handles a wide range of object categories without needing any task-specific training data for novel objects. To achieve this, it first uses a category-agnostic affordance prediction algorithm to select and execute among four different grasping primitive behaviors. It then recognizes picked objects with a cross-domain image classification framework that matches observed images to product images. Since product images are readily available for a wide range of objects (e.g., from the web), the system works out-of-the-box for novel objects without requiring any additional training data. Exhaustive experimental results demonstrate that our multi-affordance grasping achieves high success rates for a wide variety of objects in clutter, and our recognition algorithm achieves high accuracy for both known and novel grasped objects. The approach was part of the MIT-Princeton Team system that took 1st place in the stowing task at the 2017 Amazon Robotics Challenge. All code, datasets, and pre-trained models are available online at http://arc.cs.princeton.eduComment: Project webpage: http://arc.cs.princeton.edu Summary video: https://youtu.be/6fG7zwGfIk

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Self-Supervised Vision-Based Detection of the Active Speaker as Support for Socially-Aware Language Acquisition

    Full text link
    This paper presents a self-supervised method for visual detection of the active speaker in a multi-person spoken interaction scenario. Active speaker detection is a fundamental prerequisite for any artificial cognitive system attempting to acquire language in social settings. The proposed method is intended to complement the acoustic detection of the active speaker, thus improving the system robustness in noisy conditions. The method can detect an arbitrary number of possibly overlapping active speakers based exclusively on visual information about their face. Furthermore, the method does not rely on external annotations, thus complying with cognitive development. Instead, the method uses information from the auditory modality to support learning in the visual domain. This paper reports an extensive evaluation of the proposed method using a large multi-person face-to-face interaction dataset. The results show good performance in a speaker dependent setting. However, in a speaker independent setting the proposed method yields a significantly lower performance. We believe that the proposed method represents an essential component of any artificial cognitive system or robotic platform engaging in social interactions.Comment: 10 pages, IEEE Transactions on Cognitive and Developmental System
    • …
    corecore