61,254 research outputs found

    Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach

    Full text link
    Non-orthogonal multiple access (NOMA) has emerged as a promising radio access technique for enabling the performance enhancements promised by the fifth-generation (5G) networks in terms of connectivity, low latency, and high spectrum efficiency. In the NOMA uplink, successive interference cancellation (SIC) based detection with device clustering has been suggested. In the case of multiple receive antennas, SIC can be combined with the minimum mean-squared error (MMSE) beamforming. However, there exists a tradeoff between the NOMA cluster size and the incurred SIC error. Larger clusters lead to larger errors but they are desirable from the spectrum efficiency and connectivity point of view. We propose a novel online learning based detection for the NOMA uplink. In particular, we design an online adaptive filter in the sum space of linear and Gaussian reproducing kernel Hilbert spaces (RKHSs). Such a sum space design is robust against variations of a dynamic wireless network that can deteriorate the performance of a purely nonlinear adaptive filter. We demonstrate by simulations that the proposed method outperforms the MMSE-SIC based detection for large cluster sizes.Comment: Accepted at ICC 201

    Adaptation and learning over networks for nonlinear system modeling

    Full text link
    In this chapter, we analyze nonlinear filtering problems in distributed environments, e.g., sensor networks or peer-to-peer protocols. In these scenarios, the agents in the environment receive measurements in a streaming fashion, and they are required to estimate a common (nonlinear) model by alternating local computations and communications with their neighbors. We focus on the important distinction between single-task problems, where the underlying model is common to all agents, and multitask problems, where each agent might converge to a different model due to, e.g., spatial dependencies or other factors. Currently, most of the literature on distributed learning in the nonlinear case has focused on the single-task case, which may be a strong limitation in real-world scenarios. After introducing the problem and reviewing the existing approaches, we describe a simple kernel-based algorithm tailored for the multitask case. We evaluate the proposal on a simulated benchmark task, and we conclude by detailing currently open problems and lines of research.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018

    Embodied Question Answering

    Full text link
    We present a new AI task -- Embodied Question Answering (EmbodiedQA) -- where an agent is spawned at a random location in a 3D environment and asked a question ("What color is the car?"). In order to answer, the agent must first intelligently navigate to explore the environment, gather information through first-person (egocentric) vision, and then answer the question ("orange"). This challenging task requires a range of AI skills -- active perception, language understanding, goal-driven navigation, commonsense reasoning, and grounding of language into actions. In this work, we develop the environments, end-to-end-trained reinforcement learning agents, and evaluation protocols for EmbodiedQA.Comment: 20 pages, 13 figures, Webpage: https://embodiedqa.org

    Using online linear classifiers to filter spam Emails

    Get PDF
    The performance of two online linear classifiers - the Perceptron and Littlestone’s Winnow – is explored for two anti-spam filtering benchmark corpora - PU1 and Ling-Spam. We study the performance for varying numbers of features, along with three different feature selection methods: Information Gain (IG), Document Frequency (DF) and Odds Ratio. The size of the training set and the number of training iterations are also investigated for both classifiers. The experimental results show that both the Perceptron and Winnow perform much better when using IG or DF than using Odds Ratio. It is further demonstrated that when using IG or DF, the classifiers are insensitive to the number of features and the number of training iterations, and not greatly sensitive to the size of training set. Winnow is shown to slightly outperform the Perceptron. It is also demonstrated that both of these online classifiers perform much better than a standard Naïve Bayes method. The theoretical and implementation computational complexity of these two classifiers are very low, and they are very easily adaptively updated. They outperform most of the published results, while being significantly easier to train and adapt. The analysis and promising experimental results indicate that the Perceptron and Winnow are two very competitive classifiers for anti-spam filtering
    corecore