132,351 research outputs found

    SUBIC: A supervised, structured binary code for image search

    Full text link
    For large-scale visual search, highly compressed yet meaningful representations of images are essential. Structured vector quantizers based on product quantization and its variants are usually employed to achieve such compression while minimizing the loss of accuracy. Yet, unlike binary hashing schemes, these unsupervised methods have not yet benefited from the supervision, end-to-end learning and novel architectures ushered in by the deep learning revolution. We hence propose herein a novel method to make deep convolutional neural networks produce supervised, compact, structured binary codes for visual search. Our method makes use of a novel block-softmax non-linearity and of batch-based entropy losses that together induce structure in the learned encodings. We show that our method outperforms state-of-the-art compact representations based on deep hashing or structured quantization in single and cross-domain category retrieval, instance retrieval and classification. We make our code and models publicly available online.Comment: Accepted at ICCV 2017 (Spotlight

    Eye movement patterns during the recognition of three-dimensional objects: Preferential fixation of concave surface curvature minima

    Get PDF
    This study used eye movement patterns to examine how high-level shape information is used during 3D object recognition. Eye movements were recorded while observers either actively memorized or passively viewed sets of novel objects, and then during a subsequent recognition memory task. Fixation data were contrasted against different algorithmically generated models of shape analysis based on: (1) regions of internal concave or (2) convex surface curvature discontinuity or (3) external bounding contour. The results showed a preference for fixation at regions of internal local features during both active memorization and passive viewing but also for regions of concave surface curvature during the recognition task. These findings provide new evidence supporting the special functional status of local concave discontinuities in recognition and show how studies of eye movement patterns can elucidate shape information processing in human vision
    • …
    corecore