572 research outputs found

    Error propagation

    Get PDF

    Web knowledge bases

    Get PDF
    Knowledge is key to natural language understanding. References to specific people, places and things in text are crucial to resolving ambiguity and extracting meaning. Knowledge Bases (KBs) codify this information for automated systems — enabling applications such as entity-based search and question answering. This thesis explores the idea that sites on the web may act as a KB, even if that is not their primary intent. Dedicated kbs like Wikipedia are a rich source of entity information, but are built and maintained at an ongoing cost in human effort. As a result, they are generally limited in terms of the breadth and depth of knowledge they index about entities. Web knowledge bases offer a distributed solution to the problem of aggregating entity knowledge. Social networks aggregate content about people, news sites describe events with tags for organizations and locations, and a diverse assortment of web directories aggregate statistics and summaries for long-tail entities notable within niche movie, musical and sporting domains. We aim to develop the potential of these resources for both web-centric entity Information Extraction (IE) and structured KB population. We first investigate the problem of Named Entity Linking (NEL), where systems must resolve ambiguous mentions of entities in text to their corresponding node in a structured KB. We demonstrate that entity disambiguation models derived from inbound web links to Wikipedia are able to complement and in some cases completely replace the role of resources typically derived from the KB. Building on this work, we observe that any page on the web which reliably disambiguates inbound web links may act as an aggregation point for entity knowledge. To uncover these resources, we formalize the task of Web Knowledge Base Discovery (KBD) and develop a system to automatically infer the existence of KB-like endpoints on the web. While extending our framework to multiple KBs increases the breadth of available entity knowledge, we must still consolidate references to the same entity across different web KBs. We investigate this task of Cross-KB Coreference Resolution (KB-Coref) and develop models for efficiently clustering coreferent endpoints across web-scale document collections. Finally, assessing the gap between unstructured web knowledge resources and those of a typical KB, we develop a neural machine translation approach which transforms entity knowledge between unstructured textual mentions and traditional KB structures. The web has great potential as a source of entity knowledge. In this thesis we aim to first discover, distill and finally transform this knowledge into forms which will ultimately be useful in downstream language understanding tasks

    CDˆ2CR:Co-reference resolution across documents and domains

    Get PDF
    Cross-document co-reference resolution (CDCR) is the task of identifying and linking mentions to entities and concepts across many text documents. Current state-of-the-art models for this task assume that all documents are of the same type (e.g. news articles) or fall under the same theme. However, it is also desirable to perform CDCR across different domains (type or theme). A particular use case we focus on in this paper is the resolution of entities mentioned across scientific work and newspaper articles that discuss them. Identifying the same entities and corresponding concepts in both scientific articles and news can help scientists understand how their work is represented in mainstream media. We propose a new task and English language dataset for cross-document cross-domain co-reference resolution (CD2^2CR). The task aims to identify links between entities across heterogeneous document types. We show that in this cross-domain, cross-document setting, existing CDCR models do not perform well and we provide a baseline model that outperforms current state-of-the-art CDCR models on CD2^2CR. Our data set, annotation tool and guidelines as well as our model for cross-document cross-domain co-reference are all supplied as open access open source resources.Comment: 9 pages, 5 figures, accepted at EACL 202

    Clinical text data in machine learning: Systematic review

    Get PDF
    Background: Clinical narratives represent the main form of communication within healthcare providing a personalized account of patient history and assessments, offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study is to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigate the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multi-faceted interface, to perform a literature search against MEDLINE. We identified a total of 110 relevant studies and extracted information about the text data used to support machine learning, the NLP tasks supported and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation and any relevant statistics. Results: The vast majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable due to sensitive nature of data considered. Beside the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The vast majority of studies focused on the task of text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which does not require data annotation
    • …
    corecore