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Foreword

“Would you tell me, please, which way I
ought to go from here?”
“That depends a good deal on where you
want to get to,” said the Cat.
“I don’t much care where—” said Alice.
“Then it doesn’t matter which way you go,”
said the Cat.
“—so long as I get somewhere,” Alice
added as an explanation.
“Oh, you’re sure to do that,” said the Cat,
“if you only walk long enough.”

Alice in Wonderland (Lewis Carroll)

When I started my PhD seven years ago, Natural Language Pro-
cessing (NLP) was very different from what it is now. Pipelines
still ruled leader boards, end-to-end was the new kid on the block,
and Bert was just a character in Sesame Street. Despite their
popularity, pipelines were known to have a big weakness: error
propagation, i.e. the chain reaction of errors causing more errors
after each step of processing. Having just finished two years of
cognitive sciences for my master’s degree, I was convinced that
NLP needs non-pipeline architectures – not just because the brain
does not resemble a directed acyclic graph of modules, but also
because feedback loops allow it to use rich, high-level informa-
tion to detect and correct errors and hence, enable accurate and
robust language comprehension.

In an unexpected way, recent developments have vindicated
my belief in non-pipeline architectures: pipelines have given way
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to deep learning end-to-end systems that work directly on raw
text. In syntactic parsing, semantic role labeling, natural language
inference, sentiment analysis, and more, records previously held
by pipelines were surpassed by significant margins by end-to-end
systems, especially when combined with pretrained models such
as BERT. The meaning of the word pipeline itself has drifted: in
Spacy, a popular modern NLP library, a pipeline is a collection of
modules, without any dependency, that are run sequentially out
of convenience.1

Yet, the problem of error propagation persists in two ways.
First, end-to-end architectures themselves involve the step-by-step
construction of representations whose distributed nature makes
them less error-prone but certainly not error-free. Second, systems
that make sequential decisions, as commonly found in syntac-
tic parsing and coreference resolution, are always vulnerable to
cascading errors regardless of what machine learning model is
employed. Shortening the decision chain is good to reduce error
propagation but to solve it, I believe, we need to capture progres-
sively richer knowledge to enable error detection and correction.
Around the time I started, Cambria and White (2014) envisioned a
new wave of semantics-focused NLP that dwells in “information
commonly associated with real-world objects, actions, events,
and people” including “common sense and common knowledge”.
They posit that it will take more than 30 years to achieve this
milestone.

If only I could say that tardy progress and unexpected devel-
opments were new to me. Since following Curiosity to NLP-land,
between three and five seemingly brilliant ideas have turned out
wrong for every paper I published. If the chapters in this thesis
appear only loosely connected to each other, it is because I had
a clearer idea about where to go away from than where to go to.

1See question “Does the order of pipeline components matter?” at https:
//spacy.io/usage/processing-pipelines

https://spacy.io/usage/processing-pipelines
https://spacy.io/usage/processing-pipelines
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As will become apparent in the next chapters, error propagation
is pervasive in the vast and ever-changing landscape of NLP and
my desire to find not just a solution but the solution, not just
remedies but the cure, often leads me to paths too long and windy.
However difficult it was, I am grateful for the journey of the last
seven years. It has certainly gotten me somewhere and, more
importantly, made me a better researcher.

I could not have finished this PhD without the help of a lot of
people. First and foremost, I want to thank my supervisors. Piek
and Antske’s generosity and support have allowed me to pursue
the research directions closest to my heart. They are the best
teachers I ever had: knowledgeable, articulate, dedicated, and
sympathetic. From the very beginning of the project, they have
become big friends that I counted on when I was most vulnerable.
Other big friends without whom I would not have started the
PhD in the first place are my parents. Since I was a small boy,
they have always provided me with a stable launchpad for my
endeavors and granted me the freedom to follow my curiosity. I
was also fortunate to find a soulmate in Huong Pham who has
not only walked by my side for the last fifteen years but also
challenged me to move forward.

Through the course of the PhD, my colleagues have taught
me a great deal about research and collaboration. Marten Postma,
whose great collaboration made possible one of the papers in this
book, has taught me intricate details of word sense disambigua-
tion and inspired me to become more organized and professional.
During the same project, Jacopo Urbani has given me valuable
tips on experimentation and writing which I am still using today.
I have shared countless intellectually stimulating discussions with
my CLTL colleagues who are also unfailingly kind and gener-
ous: Rubén Izquierdo Beviá, Tommaso Caselli, Filip Ilievski, Isa
Maks, Emiel van Miltenburg, Pia Sommerauer, Chantal van Son,
Roxane Segers, Roser Morante Vallejo, and Hennie van der Vliet.
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My gratitude also goes to my Elsevier colleagues: Finne Boonen,
Chinh Bui, Maya Hristakeva, Deep Kayal, Elaine van Ommen
Kloeke, Tuhin Mitra, and Reinder Verlinde, who have broad-
ened my mind to the real-world opportunities and challenges
of machine learning, but also to the quirks of various cultures,
medieval fashion and culinary, European geography, Indian gods,
and more. Our joyful chats have proven therapeutic whenever I
was in despair.

The last words of this chapter are dedicated to my beloved
maternal grandfather who has passed away before I could finish
this PhD. He was a very special grandpa, not least because he
allowed 6-year-old me to play with hammers and metal scraps,
and told 15-year-old me to always work on two projects at the
same time. Many years ago, somewhere between his overflowed
bookshelves and his workshop full of tools, materials, and ma-
chine parts, he has kindled in me a love of science, engineering,
and invention. Now that his flame no longer burns, it is my task
to carry on our love and share it with others.

Utrecht, 2021



1. Introduction

Human language and the cognitive processes that enable it are
complex, multifaceted phenomena. As you read this thesis, your
brain will be busy performing a lot of subconscious calculations
to figure out the meaning of words, how they are organized into
structures, how they refer to entities in the world, etc. As a
scientific endeavor to process and understand human language
with the mechanistic processes of the computer, Natural Language
Processing (NLP) necessarily deals with this complexity.

Over the decades that NLP exists, divide-and-conquer has
been the main strategy. A recent survey has listed more than 40
main tasks and many more exist in the literature.1 A traditional
NLP system is constructed from modules, each performing one of
those tasks, assembled in a “pipeline” structure where the output
of one becomes the input of another. A fundamental problem
with this approach is error propagation. Like a game of “Chinese
whispers”, as one module passes its interpretation to the next, it
also passes on mistakes. The errors pile up until, at the end of
the line, one can hardly understand the original message. Until
today NLP still lacks a way of integrating and cross-checking
information, therefore layers of interpretation produced by error-
prone modules are simply juxtaposed and fed to the next module
as-is.

The chain needs not be long for a snowball effect to take
place. It has been reported that half of the errors in one step of
shallow semantic parsing is due to errors in syntactic parsing

1See https://github.com/Kyubyong/nlp_tasks.

https://github.com/Kyubyong/nlp_tasks
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(Pradhan et al., 2005). It is even more problematic when modules
are omitted altogether because the rate of errors is deemed too
high. This is the case for word sense disambiguation, a task
that tries to pinpoint a particular meaning of a word given the
context it appears in. Even though it is intuitive that one should
differentiate between different senses of a word, practical systems
of syntactic and semantic analysis do not make use of word sense
analysis because it is too noisy. NLP itself, in turn, can become
a module that is omitted from downstream applications due to
quality concerns. Digital humanities literature reports cases where
researchers resort to manual annotation (Strange et al., 2014) and,
in information retrieval, researchers have found that applying NLP
technologies brings improvements “too small” or “discouraging”
(Baeza-Yates, 2004). Even when an NLP system performs well
on canonical test sets, it is crippled by errors in the digitization
process (Jiang, 2008; Plank, 2016; Walker et al., 2010; Kumar
et al., 2015), limiting its scope of application.

Recently, advances in deep learning have enabled alterna-
tives to pipelines in the form of end-to-end architectures (e.g.
Vaswani et al. 2017; Raffel et al. 2019; Li et al. 2020b). In this
paradigm, tasks are performed by independent modules that work
directly on raw text. Intermediate results are no longer discrete
predictions of NLP modules but real-valued vectors generated by
deep neural networks trained on vast amounts of data. Although
end-to-end models reduce error propagation to some extent, they
have some of the same vulnerabilities as their pipeline counter-
parts. First, the new systems suffer from the same types of error
propagation whenever they attempt to make sequential decisions.
This has been demonstrated in language modeling (Ranzato et al.,
2016) and coreference resolution (Fei et al., 2019). Second, er-
ror propagation can also occur along the layers of deep neural
networks. Though harder to quantify than traditional systems,
special cases have been described such as reconstruction errors
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in pruned networks (Dong et al., 2017), quantization error in
quantized networks (Wang et al., 2018), and the perturbation of
latent representations in regular networks in response to adversar-
ial perturbation (e.g. Cissé et al. 2017). The above observations
suggest that being end-to-end is not a silver bullet against error
propagation.

The high prevalence and serious consequences of error prop-
agation justify a systematic study dedicated to the phenomenon.
To the best of my knowledge, such a study has not been done
before. Although the topic is too expansive to be covered by a
single doctoral thesis, I will try here to cover as much ground as
possible in a systematic way. It is my hope that the synthesis of
the problem and its remedies into a self-contained document will
serve as a stepping stone and a source of motivation for future
research.

1.1 Research Questions

An informal definition of error propagation is when “one error
leads to another”. This definition captures human intuition well
but leaves many questions unanswered: What is an error? What
concept of causation applies in our context? What are the types
of errors and how do their effects differ? Seeking the answers to
these questions, I discovered that the seemingly simple concept of
error propagation is a complex of various phenomena. Therefore,
the first research question this thesis will address is:

Q1: What types of error propagation are there?

With a clear understanding of the problem, we will investigate
how to reduce the chance of error propagation with the ultimate
aim of improving the performance of NLP systems. The second
research question, therefore, is:

Q2: How can we avoid error propagation?
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Given the boundless creativity of language and the vast com-
plexity of the world it refers to, some amount of errors might be
inevitable. There is also a limit to reducing error propagation
as we cannot make everything independent of each other. It is
likely that we will need a way to actively look out for errors and
fix them as they arrive. Effectively fixing errors would curb er-
ror propagation and bring NLP closer to human language ability.
Hence, the third research question is:

Q3: How can we detect and correct errors?

1.2 Contributions

As part of my Ph.D., I have published four first-authored papers
at medium- to high-ranking conferences, with one more under
review (Table 1.1, p. 11). The papers are accompanied by publicly
available source code and datasets. The contributions of the thesis
are the following:

1. I have reviewed the literature around error propagation.
Reports of error propagation in different tasks are tabular-
ized; approaches scattered in the literature are categorized,
and their relationship, strength, and weakness discussed.

2. Remedies for error propagation were described and cate-
gorized into five strategies and three broad categories. The
scope of their effects were discussed.

3. NLP modules were evaluated with respect to their contri-
butions to error propagation. Word embeddings models,
the first component to be executed in many pipelines and
neural networks, were evaluated because the quality of their
output is important for later processes. At the other end of
pipelines, the use of contextual information in coreference
resolution systems was examined. To be robust against
errors passed on by upstream processes, it is essential for a
coreference resolution system to integrate multiple views
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of the text. I found that this is not the case for various
high-performing systems. For both investigations, new
evaluation methods were proposed.

4. I have proposed models for a type of world knowledge
potentially useful in error detection and correction. Exper-
iments show that the models can capture the dependency
between semantic roles. In the future, this capability might
be used to detect inconsistency in semantic analysis.

5. I have designed a new reinforcement learning algorithm to
reduce error propagation in syntactic parsing. I showed that
the algorithm improved the accuracy of studied systems of
incremental syntactic parsing and, moreover, the improve-
ment is partly due to a reduction of error propagation.

1.3 The Organization of this Thesis

The bulk of this thesis is contained in five papers. As readers will
soon find out, the motivation of the papers and the interpretation
of their results are sometimes different from that of other parts
of the thesis. This is mostly because the research reported in this
thesis spans six years during which NLP was revolutionized by
deep learning language models. Likewise, my understanding of
the thesis topic (and the topic itself) has changed in important
ways. Together with time, the task of rewriting the papers has
grown so large that it is impractical given my circumstances.

Instead, I decided to reproduce the papers exactly as they
are published except some presentation details. To provide con-
text and situate the results in a common theme, summaries and
discussions will be provided. It is also essential to provide a
conceptual framework about error propagation and a review of
existing literature. A chapter will be dedicated to this task.

The thesis is organized as follows: Chapter 2 presents back-
ground concepts in error propagation and provides an overview of
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the literature and the current research. The next chapters follow
three broad responses to error: mitigation (Chapter 3), adapta-
tion (Chapter 4), and correction (Chapter 5). Each of the three
chapters contains an introduction and one or two papers. Finally,
conclusions are given in Chapter 6.
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2. Error Propagation

The inevitability of error propagation is demonstrated by language
comprehension in humans. Given the garden-path sentence: The
girl told the story cried, a reader typically tumbles on the first
error by considering told the main verb of the sentence. This
leads to a situation where the second verb, cried, is unresolvable.
Research in neurolinguistics has shown that people invariably
make this type of errors and then revise their analysis to reach a
satisfying solution (Rayner and Frazier, 1982).

This is not just a quirk of a wetware implementation but
reflects a fundamental issue in any system of language compre-
hension. All languages consist of progressively larger structures:
letters, words, sentences, paragraphs, and documents. Due to
combinatorial explosion, the number of interpretations is so large
that no system can consider a whole document or even a whole
sentence at once. As they make sequential decisions to build up
an interpretation, errors occur and cascade.

Pipelines, a long tradition in NLP, are particularly vulnerable
to error accumulation. The high-level semantic and pragmatic
knowledge that only becomes available later in a pipeline cannot
be fed back to lower-level modules, forcing them to make deci-
sions based on very little and localized information. Recently
end-to-end neural networks have alleviated the issue by allowing
under-specified representations but they are still one-directional.
The flow of information is always from small to large (i.e. tokens
to phrases, clauses, and sentences) and from simple to complex
(i.e. morphology to syntax and semantic) (Tenney et al., 2019).
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This is in stark contrast to the brain which fashions frequent
integration and reconciliation of high-level interpretation and
world knowledge with the lowest levels of processing (Kutas and
Federmeier, 2011).

Given this background, it should not come as a surprise that
error propagation is widespread in NLP. The issue is well-known
and has been mentioned many times with different names: error
propagation (Dell’Orletta, 2009), cascading errors (Finkel et al.,
2006; Guu et al., 2015), compounding errors (Li et al., 2016b;
Chu-Carroll et al., 2003), and accumulation of errors (McCallum,
2009; Zhikov et al., 2013). What the field is still lacking is a
systematic study of the phenomenon. This thesis is intended to
fill in this void.

I set out to understand what error propagation is and how
to deal with it. In this chapter, we will learn that it can occur
not only at task boundaries in a pipeline but also within a task.
Considering the type of causality involved, we can divide it into
three types: discrete-deterministic, discrete-probabilistic, and
continuous. We will learn about five strategies to reduce error
propagation: reducing upstream errors, reordering, making steps
independent, increasing robustness, and correction. These strate-
gies can be grouped into mitigation (the first three), adaptation
(the forth strategy), and correction (the last). This categorization
provides a backbone based on which we will review existing lit-
erature on reducing error propagation and summarize the papers
in this thesis.

2.1 Types of Error Propagation

I have begun our discussion with NLP pipelines because error
propagation in pipelines is the archetype of the phenomenon. It is
easy to picture in your mind the influence of one module on the
next and, indeed, most documented cases of error propagation
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in the literature have been of this sort (see Table 2.1, p. 42).
However, this is not the only scenario: error propagation can also
occur within one task and, regardless of locality, can take different
forms. This section will study the types of error propagation in
three contrasting pairs: within v. across tasks, hard (deterministic)
v. soft (probabilistic), and discrete v. continuous.

2.1.1 Error Propagation Within and Across Tasks

Dridan and Oepen (2013) demonstrated that even the simplest
tasks cause error propagation: incorrect tokenization and sentence
segmentation leads to 0.6% to 4.5% decrease in syntactic parsing
performance which, they remarked, is larger than incremental
improvements frequently reported in the literature. Syntactic
analyses are, in turn, the input to many other NLP modules so
syntactic errors similarly cause performance degradation there.

However, errors can already accumulate within a task in the
consecutive steps taken to accomplish it. Let us consider the
following syntactic analysis:1

(1) (GOLD-STANDARD) (((ABC ’s) (Bob Woodruff)) (is (in Bel-
grade) tonight) .)

The short sentence above is parsed with six nesting pairs of paren-
theses plus corresponding labels of grammatical roles (not written
here for readability). Given the complexity of the structure, it is
natural to attempt to build it up piece-by-piece from words to the
whole sentence. Along this incremental process, there is plenty
of chance for error propagation to throw the parser off balance.

McDonald and Nivre (2007); Kummerfeld et al. (2012) and
Clark (2015) argued that syntactic parsing and coreference reso-
lution systems that work incrementally suffer from error propaga-

1The sentence can be found in LDC’s OntoNotes distribution (Weischedel
et al., 2013a), in the file data/files/data/english/annotations/bn/
abc/00/abc_0003.onf.
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tion. Ng and Curran (2015a) went a step further by quantifying
the propagated errors caused by incorrect NP and punctuation
attachment in dependency parsing (among other types of errors).
Ranzato et al. (2016) showed that error propagation occurs in
language modeling using recurrent neural networks.

2.1.2 Hard and Soft Error Propagation

Error propagation can be categorized by not only where but also
how they occur. In some cases, an error distorts the very frame-
work on which later processing takes place, making it impossible
to obtain a correct analysis. In other cases, an error introduces
misleading information that increases the chance of further errors.
I will call the former hard (or deterministic) error propagation
and the latter soft (or probabilistic) error propagation.

To illustrate the concepts above, let us return to Example (1).
A correct semantic analysis would assign to is the first sense of
to be as prescribed by PropBank (Palmer et al., 2005) with three
arguments: ABC’s Bob Woodruff as a “topic”, in Belgrade – a
“comment” about the “topic”, and tonight – auxiliary information
about time. The analysis can be compactly expressed as follows:

(2) (GOLD-STANDARD) [ARG1 ABC’s Bob Woodruff] [be.01 is]
[ARG2 in Belgrade] [ARGM-TMP tonight].

In a typical pipeline, a syntactic parser is executed and then
the result is used as input for semantic analysis, therefore a correct
semantic analysis requires correct chunks. However, sometimes
parsers err. The following incorrect analysis is produced by a
high-performance parser (the gold standard is repeated right after
for comparison):2

2The parser is an implementation of Chen and Manning (2014) and achieves
90% accuracy on financial news. The dependency tree is greatly simplified and
converted into chunks for presentation purposes.
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(3) (SYSTEM-OUTPUT) *(((ABC ’s) (Bob Woodruff)) (is) (in
(Belgrade tonight)).)

(4) (GOLD-STANDARD) (((ABC ’s) (Bob Woodruff)) (is (in Bel-
grade) tonight).)

The faulty chunks mean the semantic parser cannot get the right
solution for ARG2 and ARGM-TMP roles. This is a case of hard
error propagation.

In the same document, I also find this excerpt:

(5) (GOLD-STANDARD) ... tonight he [go.02 went] [ARG1 on
national television] [ARGM-PRP to take direct questions
from the viewers] – [ARGM-PRD something Milosevic never
dared to do].

For a correct semantic analysis of the ARGM-PRD argument
(in italic), the correct span must be identified as a chunk by a
syntactic parser. The parser mentioned above correctly identifies
this chunk but introduces a more subtle error (an underline is used
to mark the head of a chunk):

(6) (SYSTEM-OUTPUT) *... tonight he went (on national televi-
sion) (to take direct questions from (the viewers – (some-
thing Milosevic never dared to do))).

(7) (GOLD-STANDARD) ... tonight he went (on national televi-
sion) (to take direct questions from the viewers) – (something
Milosevic never dared to do).

Although the parser correctly identifies the span that would be-
come ARGM-PRD, the annotation shown in Example (6) is wrong
in two ways. First, the head of the span switches to a verb instead
of the pronoun. Second, the span becomes a modifier of the view-
ers instead of the main verb. These errors might be picked up by
a semantic parser and lead to the wrong prediction, which would
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become a case of soft error propagation.

2.1.3 Error Propagation in Discrete and Continuous Repre-
sentations

For the most part of the history of NLP, discrete representations,
in the form of labels and graphs, have been in charge. This has
changed in recent years when word embeddings and, later, end-
to-end neural networks have used distributed representations to
vastly increase performance. Models such as BERT (Devlin et al.,
2019) and GPT (Radford et al., 2019) associate each token in
a sentence with real-valued vectors (one for each layer) which
encode diverse information about the token and the surrounding
context (Tenney et al., 2019).

If we have a predicted vector representation v ∈ Rn and the
desired representation v̂ ∈ Rn, error can be calculated using, for
example, Euclidean distance d(v, v̂) or cosine distance (1−cosθ)

where θ is the angle between v and v̂. However, different from
discrete annotations, what distributed representations stand for is
largely unknown and, therefore, no gold standard can be offered
for error calculation. Future research might shed light into this
question. For now, we must content with some special cases
where it is possible to define an ideal vector and, hence, the cal-
culation of error. One such case is neural networks on adversarial
perturbation.

Szegedy et al. (2014) reported a phenomenon known as adver-
sarial examples: by adding an imperceptibly small perturbation
to an image, they could change the prediction of a model to any
other class (see Figure 2.1a-c, p. 43 for some examples). Since
the discovery, a growing literature has documented the instability
of neural networks in computer vision (e.g. Carlini and Wagner,
2017; Akhtar and Mian, 2018; Ghiasi et al., 2020) and later NLP
(e.g. Ribeiro et al., 2018; Zhang et al., 2020).

Whereas most of the research in adversarial examples has
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focused on the output, the internal representations might be more
interesting. Ideally, we would like a model to be resilient in
the face of noise, i.e. error, defined as the difference between
activation v on noisy input and activation v̂ on natural input,
should be as small as possible. If each layer of a neural network
is robust, we can expect that the magnitude of error decreases
as activation propagates through layers. In other words, deeper
networks should be more robust. In reality, the opposite happens.

As neural networks grow deeper, they seem to sacrifice robust-
ness for accuracy. When Goodfellow et al. (2015) and Tanay and
Griffin (2016) plot adversarial examples of shallow linear models
(making a model predict “3” for “7” and vice versa), the required
perturbation is conspicuous to human eyes and displays similarity
to the target class. This is in stark contrast with numerous reports
of imperceptible attacks on deep models such as ε-bounded at-
tacks (Kurakin et al., 2017; Carlini and Wagner, 2017, among
many others) and shadow attack (Ghiasi et al., 2020); and ones
that are visible but small such as sticker attack (Eykholt et al.,
2018).

One possible explanation is that perturbation is propagated
and amplified through the many layers of deep neural networks
in a way analogous to error propagation in a pipeline. Figure 2.1d
(p. 43) illustrates this mechanism at work. Starting at a small
change in the input, the error gets bigger through the layers
(statistically significant) until it seems to reach an upper bound at
an advanced layer when it is already big enough to cause a wrong
but highly confident prediction.

Deep learning research in NLP imports many aspects of its
vision counterpart, including adversarial examples. It has been
shown that NLP models based on neural networks change their
prediction in unexpected ways in response to small or irrelevant
changes in input (see Zhang et al. (2020) for a review). It is also
possible that naturally occurring imperfection of embeddings (for
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example, due to the small number of training examples for low-
frequency words) can distort the representations of later layers
and negatively affect predictions.

2.2 Responding to Errors

A reason for the inevitability and prevalence of error propagation
is its simple anatomy: wherever two or more dependent decisions
are made, error propagation becomes a possibility and the longer
the chain of decisions is, the more likely error propagation oc-
curs. This initial analysis hints at a few strategies to alleviate the
problem (see Figure 2.2, p. 43 for a schematic illustration):

S1: improve the accuracy of individual steps, especially near the
beginning of the chain because they are likely the biggest
source of propagated errors,

S2: reorder the steps such that decisions with a higher chance of
being correct are executed first,

S3: reduce the length of the decision chain, for example by
making some steps independent of others or removing some
steps,

S4: enhance robustness of individual steps, i.e. increase the
chance of correct analysis in the presence of errors, and

S5: detect and fix errors as they arise.

Accepting the inevitability of errors also changes one’s per-
spective to NLP. While research on how to reduce independent
errors still plays an important role, it is no longer enough. More
emphasis should be placed on managing the impact of errors and
responding to their occurrence. Seen from this perspective, the
strategies can be grouped into three main ideas:

Mitigation: reduce the error load prior to a decision (S1,2,3)
Adaptation: ready a system to operate in the presence of errors

(S4), and
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Correction: iteratively fix errors, hoping that the output will
eventually become error-free (S5).

2.3 Existing Approaches

To understand response strategies better, I will use this section
to enumerate relevant approaches reported in the literature. Re-
search that potentially has implications on error propagation is
numerous, but not always reported as such. For example, all re-
ported improvements in upstream tasks such as word embeddings,
tokenization, and part-of-speech tagging can be classified into S1
even though authors do not always mention error propagation and
rarely analyze the effect on downstream tasks. Therefore, I select
papers based on their expected, rather than reported, effect and
classify them into one or more of the strategies. Due to the vast
number of publications on this topic, I selected a few papers per
approach that illustrate the main ideas clearly.

2.3.1 Distributed Representations (S1)

If citation count is any indication of impact, Word2vec (Mikolov
et al., 2013a) has been a huge success. Published 7 years ago, the
reference paper has been cited more than 14,000 times according
to Google Scholar. Vector space models, for which word2vec
is a representative, improve upon symbolic representations by
means of generalization power (Goldberg, 2016) and coverage.
Whereas symbolic lexical representations need to be curated by
experts or trained on annotated corpora, embeddings can be “har-
vested” from vastly larger unlabelled data. The set of pretrained
Word2vec embeddings released by Google contains 3 million
unique tokens and phrases whereas an annotated corpus of 1
million non-unique tokens is already rather rare and expensive.3

Word embeddings also allow arbitrary combinations of words to
be represented and their meaning inferred (if somewhat fuzzily),
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whereas in symbolic representations, storing larger and larger n-
grams quickly becomes infeasible due to combinatorial explosion.
The end result is improvements in tasks as varied as dependency
parsing (Bansal et al., 2014), named-entity recognition (Cherry
and Guo, 2015), and discourse relation classification (Braud and
Denis, 2015).

Whereas the first wave of vector space models improves recall
in terms of tokens and n-grams, the second wave targets senses.
Word embeddings models are look-up tables that always return
the same vector for a given word. They do not distinguish between
different meanings a word can take, for example, bank the mone-
tary institution and bank the side of a river. Camacho-Collados
and Pilehvar (2018) call this issue meaning conflation deficiency.
As a remedy, recent contextualized word vector models use pow-
erful neural network-based language models to generate word
vectors on the fly. Peters et al. (2018) show that concatenating
static embeddings with context-dependent vectors generated by a
bi-directional LSTM improves downstream performance. Simi-
larly, models such as ULMFiT (Howard and Ruder, 2018), and
BERT (Devlin et al., 2019) have improved the performance of nat-
ural language inference (Devlin et al., 2019), question answering
and sentiment analysis (Peters et al., 2018), dependency parsing
(Li et al., 2019), coreference resolution (Joshi et al., 2020), among
other tasks.

Together, the two generations of word vector models prove
that Strategy S1 can drastically improve the performance of NLP
pipelines.

3The newest version of the popular PENN Treebank, for example, con-
tains 1.2 million non-unique tokens. See https://catalog.ldc.upenn.
edu/LDC2015T13.

https://catalog.ldc.upenn.edu/LDC2015T13
https://catalog.ldc.upenn.edu/LDC2015T13
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2.3.2 Easy-first (S2)

In a sense, all pipelines operate under an easy-first premise: we
first perform part-of-speech tagging (with an accuracy around
97%) then syntactic parsing (accuracy around 90%) but not the
other way around. Within a task, however, which step is easier
is less clear. In dependency parsing, a non-directional parser
attaches words to a head in a particular order and the most nat-
ural way – working from left to right – might not be the most
optimal. Goldberg and Elhadad (2010) showed that teaching a
non-directional system to determine the order of target words
leads to results competitive to other paradigms such as graph-
based and transition-based parsing. Later work has refined this
approach and improves its performance (Tratz and Hovy, 2011;
Ma et al., 2012, 2013; Kiperwasser and Goldberg, 2016a).

In a similar vein, a strong baseline for coreference resolution
is a rule-based system called multi-sieve (Raghunathan et al.,
2010). The algorithm works as follows: the first “sieve” passes
through the document once, linking all repeating references; the
second “sieve” looks at constructs that are known to indicate
coreference such as appositive (e.g. the head of the department,
Dr. Kristal); followed by five other passes in the order of de-
creasing precision and increasing recall. Stoyanov and Eisner
(2012) and Xie et al. (2015) added a machine learning component
and showed that an easy-first approach can achieve competitive
performance in coreference resolution.

2.3.3 Joint Processing (S2/S3)

In joint processing (also known as joint inference), two or more
modules are fused together and one structure that encompasses
all pertinent tasks is optimized and predicted. In this thesis, I
only consider a method joint processing if two or more tasks
are performed in a meaningfully inter-dependent manner. Thus,
multi-task neural networks whose outputs are independent given
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the internal representations are excluded. Joint processing can
be preceded by joint training (such as in probabilistic approach)
or not (such as in approaches using integer linear programming).
It has been argued that joint inference can reduce or avoid error
propagation by enabling across-task bi-directional communica-
tion and predicting many variables at once (Singh et al., 2009).

Joint processing is a well-known approach in NLP. A quick
pass through the literature reveals innumerable papers with differ-
ent combinations of tasks: multi-word expression recognition and
syntactic parsing (Constant and Nivre, 2016), part-of-speech tag-
ging and syntactic parsing (Bohnet and Nivre, 2012), word sense
disambiguation and semantic role labeling (Che and Liu, 2010),
coreference resolution and named-entity linking (Hajishirzi et al.,
2013), among others. Work on joint processing that was explicitly
motivated by error propagation includes Finkel (2010), Zhikov
et al. (2013), Li et al. (2016b), and Singh et al. (2009).

To understand how joint processing helps reduce error propa-
gation, it is necessary to differentiate two paradigms in structure
prediction (borrowing from the terminology of syntactic parsing):
graph-based and transition-based.

In graph-based processing, one learns a scoring function that
returns a scalar value for each pair of input-output: s(x,y). Here,
y ∈ Y is a complex structure that is generally represented by a
graph (hence the name). To parse a new input is to find a structure
that maximizes the scoring function.

Obviously, the size of the output space Y is huge due to com-
binatorial explosion. To keep inference tractable, it is therefore
required that graphs are split (or factorized) into smaller com-
ponents. Various formulations exist to define graphs and their
optimization: Markov logic network (Poon and Domingos, 2007),
imperatively-defined factor graphs (Singh et al., 2009), condi-
tional random fields (Toutanova et al., 2008), and many others. A
close examination of graph-based joint processing methods is be-
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yond the scope of the current thesis. For demonstration purpose,
consider a simple factorization method based on McDonald et al.
(2005a):

y∗ = argmax
y∈Y

s(x,y) = argmax
{yi}

∑
i

s(x,yi) (2.1)

In the formula above, a complex structure y is defined as the
totality of atomic structures {yi}. For example, in dependency
parsing, y is a parse tree and {yi} can be edges. The restriction
put on {yi} limits the types of possible features but enables spe-
cialized algorithms to find the globally optimum structure. For
example, in projective dependency parsing, Eisner (1996)’s algo-
rithm allows us to find the globally optimum graph with respect
to a scoring function that is defined on individual edges.

While graph-based processing trades feature complexity for
globally optimal inference, transition-based processing embraces
local inexact inference for the sake of rich non-local features.
In this paradigm, the output is built up gradually via a series of
actions {at ∈A }: { /0 = y0,y1,y2, . . . ,yn = y}, yt+1 = at(yt)∀t =
0, . . . ,n−1. These actions are chosen to maximize a scoring func-
tion φ that operates on the rich partial structure that is available
at each time step:

at = argmax
a∈A

φ(x,yt ,a) (2.2)

Integrating two individual modules into one graph-based sys-
tem is essentially converting a two-step process into a single
decision, therefore eliminating error propagation (Strategy S3).
On the other hand, joining two transition-based systems into one
is analogous to rearranging a multi-step process (Strategy S2).
Although the decision sequence is just as long, we can hope that
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each step will be more accurate because of the rich multi-task
feature representations that it enables.

Building a joint-processing system is a complex, labor-intensive
endeavor. Take Constant and Nivre (2016) as an example: the
authors adapt transition-based syntactic parser by adding new
operations that annotate multi-word expressions. To build this
new system, they need to modify the code for data representation,
data preprocessing, model representation/training/serialization,
and post-processing. In short, converting a pipeline into joint-
processing implies a complete overhaul of the system. Adding to
that, in the case of graph-based processing, one might also need
to find an inference algorithm that works on the combined graph.

Yet, an even more formidable challenge is data availabil-
ity. Constant and Nivre (2016) can only train their system on
datasets that annotate both syntactic structures and multi-word
expressions but this type of datasets is not always available for all
combinations of tasks. Table 2.2 (p. 44) summarizes what types
of annotations are available for a few well-known corpora. At a
glance, it is clear that the table is very sparse. The most heavily
annotated corpora (Wall Street Journal and OntoNotes) are not
annotated for all the tasks listed.

For joint-learning to replace pipeline architectures, we need
a generic framework that enables efficient definition and con-
struction of joint systems and a way to bootstrap from existing
annotated data. Between the two paradigms described in this
section, the transition-based paradigm is more suitable for this
goal because a generic inference procedure is already widely
used and it is rather easy to define new actions. Human language
processing is arguably also transition-based and researchers has
been investigating and improving the cognitive plausibility of
transition-based approaches (Nivre, 2004; Boston et al., 2008).



2.3 Existing Approaches 27

2.3.4 Global Inference (S3)

In the context of transition-based processing, global inference
is a method turns a system that makes a sequence of decisions
iteratively into one that optimizes complex structures as a whole
and makes a single final decision.

Andor et al. (2016) proposed global normalization for de-
pendency parsing and showed via a mathematical proof that it is
better than local normalization. Their implementation surpasses
the previous state-of-the-art in performance and is later applied
for many different languages (Alberti et al., 2017). Similar to
joint processing, upgrading a local normalization system to a
global one requires substantial engineering effort.

2.3.5 End-to-end Learning (S3)

To some extent, neural network-based end-to-end models avoid
the trade-off between feature richness and robustness by replacing
discrete, explicit features by distributed, under-specified ones.
Like joint processing, end-to-end models are trained on multiple
tasks simultaneously. At test time, however, the model might
solve tasks jointly or individually with exactly the same behavior.

Traditionally, part-of-speech tagging and syntactic parsing
are necessary inputs for many tasks. With the advent of deep
neural networks, it is suddenly possible to bypass those steps.
SENNA (Collobert and Weston, 2008) is an influential model that
uses neural networks to replace discrete words and syntactic struc-
tures with distributed representations. One single model based
on convolutional neural networks is trained to simultaneously
perform four tasks: part-of-speech tagging, chunking, semantic
role labeling, and language modeling. More importantly, the
predictions of each task is conditionally independent to others’
given the latent representation in the neural network’s hidden
layers. This setting effectively turns one 4-stage pipeline into four
independent systems, eliminating the chance of cascading errors.
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An end-to-end design can also be used to construct single-task
systems that do away with preprocessing pipelines. In coreference
resolution, for example, the system of Lee et al. (2017) predicts
co-referring spans based on distributed representations computed
directly on raw input. This idea has been successfully applied
to many tasks such as named-entity recognition (Ma and Hovy,
2016), dependency parsing (Kiperwasser and Goldberg, 2016b),
semantic role labeling (Zhou and Xu, 2015; Marcheggiani et al.,
2017), semantic parsing (Foland and Martin, 2016).

Despite their successes, end-to-end models share some weak-
nesses with all NLP so far. They are vulnerable to error propaga-
tion when making consecutive decisions and so far lack a notion
of reference, episodic memory, and a situation model (Van Dijk
et al., 1983). As noted by Lee et al. (2017), their coreference
resolution system tends to “conflate paraphrasing with relatedness
and similarity” and does little in modeling common sense knowl-
edge. Indeed, harmonizing end-to-end learning and multi-step
reasoning is a challenge that only recently starts to gain research
interest (Dua et al., 2019).

2.3.6 Training for Shorter Transition Sequences (S3)

A remarkable demonstration of Strategy S3 is Nivre et al. (2009).
The paper concerns with transition-based dependency parsing, in
which a parser builds up a dependency tree by executing actions
one by one: an action might be “create a link to the word in the
left” or “create a link to the word in the right”, but there are also
actions to shift the focus of the system to another word or to move
words around. Observing that a parser performs an excessive
number of an operation called SWAP, the authors proposed a new
training procedure that cuts down on SWAPs by up to 80%. The
result is shorter transition sequences and improved performance
across five languages without changing the architecture of the
model.
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2.3.7 Training on Automatic Annotations (S4)

It has long been observed that modules trained on gold labels of
upstream tasks perform poorly in a realistic scenario when only
predicted labels are available. For this reason, shared tasks often
provide both gold and predicted annotations (e.g. Hajič et al.
2009).

Given a pipeline with a part-of-speech tagger and a syntactic
parsing, jackknifing is a technique that generates automatic POS
tags for the purpose of training a syntactic parser despite gold
POS tags being available. First, the training set is divided into,
for example, 10 folds. A POS tagger is then trained on 9 folds
and then used to predict the POS in the remaining part. The
process is repeated until automatic POS tags are generated for the
whole corpus. The method improves parsing score as much as
3% on Chinese Tree Bank (Che et al., 2012) and has become the
de-facto standard in syntactic parsing experiments (Zhang and
Nivre, 2011; Li et al., 2014a; Chen and Manning, 2014; Pei et al.,
2015).

In the same spirit, a remedy can be defined for within-task
error propagation. In stacked sequential learning (Cohen and
Carvalho, 2005), a base classifier is trained and applied using
K-fold cross-validation to generate predictions which are fed,
together with the original input, into a second classifier. The
composite architecture is shown to outperform the base classifier
in various sequential partitioning tasks (Cohen and Carvalho,
2005) because of a reduced mismatch between training and test.

2.3.8 Multiple Outputs (S4)

Knowing that the output of a step might contain errors that neg-
atively affect the next ones in the pipeline, it is natural to ask
What if we pass on more than one solution? The hope is that
one of those alternatives ends up being correct and picked up by
downstream modules.
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An early attempt along this line is Charniak et al. (1996)
which shows that returning multiple parts-of-speech per token
leads to improvement in a downstream syntactic parser. Cor-
roborating on this result, Watson (2006), Yoshida et al. (2007),
Bunescu (2008), and Henestroza Anguiano and Candito (2012)
all found improvement in syntactic parsing and named-entity
recognition, especially when the probability distribution of POS
tags is incorporated (Venugopal et al., 2008).

Finkel et al. (2006) take this idea one step further by proposing
to model the whole pipeline as a Bayesian network. The approach
is conceptually simple enough to apply to long pipelines but
empirical results have been lacking. To the best of my knowledge,
the longest pipeline that it was evaluated on has a length of three
(Raman et al., 2013).

2.3.9 Error Detection and Correction (S5)

I did not find any paper exploring the possibility of detecting
and correcting errors in multi-module NLP pipelines. From a
single-task perspective, syntactic parsing and machine transla-
tion have received the most attention. Hall and Novák (2005);
Attardi and Ciaramita (2007); Hall and Novák (2011); Delecraz
et al. (2017) proposed corrective procedures to improve syntactic
parsing. With the purpose of improving the semi-automatic con-
struction of treebanks, Dickinson (2010); Dickinson and Smith
(2011) propose procedures to help annotators detect and correct
errors of a parser. In machine translation, automatic post-editing
is an active research topic (e.g. Simard et al. 2007; Béchara et al.
2011; Pal et al. 2017). The purpose is to modify the output of a
“first stage” machine translation system to increase quality (Pal
et al., 2017).

Hollingshead and Roark (2007) described a method in which
a parsing pipeline is run twice but not for error correction. Related
ideas that I found in the literature is detecting human annotators’
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errors (Ambati et al., 2011; Ng et al., 2013); and calibrating the
probability of a system which might facilitate error detection
(Nguyen and O’Connor, 2015; Guo et al., 2017).

2.3.10 Reranking (S5)

In cases where we do not know how to detect errors, can we at
least refine the outputs such that the number of errors are statis-
tically reduced? Reranking falls in to this category of statistical
error “correction”. Instead of one interpretation for each sentence,
multiple candidates are proposed. The aim is to reorder them such
that those that have more errors are demoted (pushed to lower
ranks) whereas better outputs are promoted (pushed towards the
top of the list).

Reranking was studied in Charniak and Johnson (2005) and
Ge and Mooney (2006). An n-best list of parses is first produced
by a local parser. Given the rich information in the parses, a
reranker is trained to exploit global features to pick the best parse.

So far, only incremental improvements were found using
reranking. A fundamental difficulty with the approach is that
the number of possible annotations grows exponentially with
respect to sentence or document length. In contrast, the number
of candidate outputs has to be small to maintain a reasonable
speed, e.g. n = 50 (Charniak and Johnson, 2005). Therefore, no
guarantee can be made about the quality of the top n outputs.

2.4 The Importance of World Knowledge

As argued at the beginning of this chapter, error propagation is
inevitable and requires correction. On what basis do we decide
what part of an output is an error and how to correct it? One
possible strategy is to use knowledge about the same task to detect
and correct errors. Related ideas have been tried out in the context
of dependency parsing: Zhang and Clark (2008) combined graph-
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based and transition-based parsers to improve performance and
Andor et al. (2016) showed that a globally normalizing model
is strictly more accurate than a local one. Although papers like
these show that improvement is possible, they also demonstrate
that what can be achieved within a given level of abstraction is
far from human-level performance.

Research in neurolinguistics points at another solution: inte-
gration of world knowledge – a type of open-ended knowledge
that is shared among the majority of human adults (Allen, 1995,
p. 10). When talking to a normal adult English speaker, we can
safely assume they know that open is the opposite of closed;
and that certain things are (im)plausible, for example, inanimate
objects do not have emotions and things fall down, not up. For
decades, countless papers have documented complex integration
of meaning as early as 400 milliseconds after reading a word,
reflected in a change in electroencephalographic signal known
as N400 effect (see Kutas and Federmeier (2011) for a review).
Hagoort et al. (2004) have shown that N400 occurs when a reader
detects violations of linguistic constraints and world knowledge.
Nieuwland and van Berkum (2006) extended the purview of
N400 by showing that it responds to the preceding narration such
that new knowledge can be introduced to override pre-existing
knowledge. Although N400 is normally observed for implausible
sentences such as The peanut is in love; in their experiments, the
effect disappears when preceded by a story about the same peanut
behaving like a human.

The following example illustrates how world knowledge can
help resolve errors in a natural language processing task. Corefer-
ence resolution is the task of collecting referring expressions (also
called mentions) into groups, each one is about the same person,
thing, or event. After decades of active research, it remains a
challenging task.

To demonstrate the difficulty faced by coreference resolution
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systems, I took a random news article,4 and ran a highly optimized
neural network-based model to obtained the analysis depicted in
Figure 2.3 (p. 45).5 A quick scan reveals two errors (marked by
red letters in a circle): Bro is mistakenly marked as coreferring
with I, and Brady’s production is put into the same bucket with it.
Cases like these are difficult for models that consider expressions
in isolation but should be obvious to one that takes into account
the interaction between entities and events. In the first case, Bro,
and the latter word you, refers to Evans’s listener and therefore
cannot be coreferring with Evans himself. In the second case,
the expressions it and Brady’s production stand in a cause-effect
relationship and therefore cannot co-refer. A correct solution
would point it to a lack of talent around him a few lines above.

Li et al. (2016b) made a similar observation in information
extraction. Among 200 randomly selected errors that his state-of-
the-art system made, it was found that 38.82% is due to the lack
of world knowledge, 11.18% “requires sophisticated semantic
inference”, and another 23.53% is caused by out-of-vocabulary
words which can be partly explained by an inability to infer lexical
meaning from context.

As the examples above make clear, the ability to encode world
knowledge and reason with it is beneficial for NLP. There has
been some work on establishing benchmarks (Levesque et al.,
2011), collecting data (Speer and Havasi, 2012), and developing
models (Ostermann et al., 2018), but big challenges remain and
a solution appears far away. One big inspiration of the research
described in this thesis is to demonstrate the necessity of and
make progress towards effective modeling and application of

4From www.cbssports.com/nfl/news/mike-evans-reacts-to-tom-brady-
signing-with-the-buccaneers-and-its-safe-to-say-hes-very-very-excited,
retrieved on 23 March 2020.

5I used the demo at demo.allennlp.org/coreference-resolution, accessed on
23 March 2020. As described on the website, the underlying model is the end-
to-end neural network by Lee et al. (2017) modified to use BERT embeddings.

https://www.cbssports.com/nfl/news/mike-evans-reacts-to-tom-brady-signing-with-the-buccaneers-and-its-safe-to-say-hes-very-very-excited/
https://www.cbssports.com/nfl/news/mike-evans-reacts-to-tom-brady-signing-with-the-buccaneers-and-its-safe-to-say-hes-very-very-excited/
https://demo.allennlp.org/coreference-resolution
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world knowledge.

2.5 Overview of Papers

In previous sections, the groundwork has been laid covering the
definition and classification of error propagation, the categoriza-
tion of alleviation strategies and existing approaches, and the
singular importance of world knowledge. In this section, I will
give an overview of my research. Because the papers are spread
across various tasks in NLP, I will also provide in this section the
necessary background to understand them.

I chose tasks to study according to three criteria. First, they
should be well-established so that impact can be measured quan-
titatively and relevance can be established with respect to the
broader NLP ecosystem. Second, the tasks need to have big po-
tential impact on other tasks such that its error propagation effect
is worth studying. And last but not least, it is desirable to choose
tasks that span the interpretive spectrum: from token-bound, su-
perficial tasks to document-wide, deep understanding ones. The
chosen tasks are summarized in Figure 2.4 and described in more
detail in the rest of this section.

2.5.1 Errors in Distributed Representations (Q1, S1)

Some NLP tasks make a bigger contribution towards the overall
performance than others and perhaps the best example is word
representation learning. As described in Section 2.3.1, word
embeddings have been shown to drastically improve performance
of many NLP tasks over discrete representations. To understand
how word embeddings work, let us consider the task of predicting
fillers for the semantic roles of the word pay in the following
sentence:6

6Taken from document nw/wsj/15/wsj_1556.onf in OntoNotes 5.0.
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(8) Mr. Morrissey, the Kentucky Fried Chicken franchisee,
notes that most franchise owners must absorb increases
in expenses without any cut in the royalties, or portion of
sales, that they must pay franchisers.

Let us further assume that the token royalties (or any inflection
of the word) does not appear in training data. Instead of treating
it as a wild card, a model could consult its embeddings table
and, because such a table is harvested from vast unlabeled data, a
match is returned with high likelihood. More importantly, word
embeddings are trained in such a way that neighbors of the word
royalties in the vector space tend to have a similar meaning such
as fee, toll, etc., one of which the model has observed in its
training set. Because the seen and unseen words are similar, the
model can draw on its experience to predict that royalties fills the
role ARG1 of pay.

Or at least that is the theory. In practice, embeddings are
noisy and exhibit structural biases. It has been shown that, for
example, various vector space models capture similarity only
poorly while being good at relatedness (for example, royalties is
related to artist, music, and license) (Hill et al., 2015).

One of the main evaluations of embeddings models is via
a lexical similarity dataset: a set of word pairs with manually
sourced similarity scores. The correlation (e.g. Spearman’s ρ)
between the scores a model predicts and those from humans is
then calculated, allowing us to gauge the overall quality of a
model. Using such a dataset, my first paper, Taxonomy beats
corpus in similarity identification, but does it matter?, shows
that word vector models underperform taxonomy-based models.
We proposed two ways to break down the dataset into different
granularities and showed that word vector models are consistently
less accurate across sub-datasets. For this thesis, I additionally
examined erroneous word pairs and classify them into three types
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of errors: wrong cluster, bad cluster, and wrong word sense.
Overall, the results show that although word vector models have
good coverage and positive impact on downstream models, they
can be improved by reducing noise in their clusters, improving
cluster placement, and dealing with word senses.

2.5.2 Conceptualized Word Embeddings and (Q1/Q2, S1)

As discussed in Section 2.3.1, the second wave of word vector
space models replaces lookup tables with neural networks that
compute embeddings on-the-fly, allowing models to take into
account variation of word meaning.

A direct application of contextualized word embeddings is
Word Sense Disambiguation (WSD). A sense is a meaning, among
possibly many meanings, of a word. Senses are documented in
sense inventories such as WordNet (Fellbaum, 1998). In WSD,
a system assigns senses to words in a document according to a
certain inventory. This information is rarely used in later pro-
cessing due to error propagation concerns but the performance
of WSD systems has been steadily improving. During the time
of my research, the state-of-the-art is achieved by Yuan et al.
(2016a), a model that builds contextualized word embeddings
using an LSTM and compares them to memorized embeddings to
disambiguate.

My second paper, A Deep Dive into Word Sense Disam-
biguation with LSTM, focuses on the reproduction of Yuan et
al.’s results. In the context of this thesis, the paper serves two pur-
poses: first, WSD can be considered a probing task of the ability
of contextualized word embeddings to model senses. Second, I
sought to understand how far we can reduce errors by scaling up
this model and what the limiting factors are. The results show
that although the model performs better than a most-frequent
sense baseline, the improvement is small. On the second research
question, increasing the amount of (unlabeled) data and model
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size quickly leads to diminishing returns. Taken together, the
results indicate that alternative architectures are needed to model
word senses properly. As part of that research, I reimplemented
Yuan et al. (2016a)’s algorithm and made it publicly available.

2.5.3 Reinforced Transition-based Dependency Parsing (Q2,
S4)

As discussed in Section 2.1.1 and Section 2.2, one of the alle-
viation strategies is to improve the performance of a system at
the presence of errors (S4) and we can validate this idea using
within-task error propagation, assuming that any learned lesson
will be applicable for the across-task variety too.

Dependency grammars analyze a sentence through identi-
fying dependency relations between its words. As an example,
Figure 2.5 shows a part of the dependency analysis for Excerpt (8)
in p. 35. Transition-based parsing is a paradigm in dependency
parsing in which a system builds up an analysis via many se-
quential steps. It is therefore ideal to study within-task error
propagation.

Previous work has shown that when there is a discrepancy
between training and testing, the performance of a dependency
parser suffers. Zhang and Nivre (2012) shown that when the beam
size of a parser (the number of parses attempted per sentence)
at testing is different from the beam size used during training,
performance decreases. Similarly, a train-test discrepancy also
occurs during error propagation because parsers are trained on
all-correct input while, at test time, errors inevitably occur.

Reinforcement learning is useful in combating this problem.
Instead of training a system by a gold-standard set of situations
paired with expected behaviors, reinforcement learning lets a
system execute actions, gather experiences, and improve itself
based on feedback signals (Simeone, 2018). In our case, the
agent is a parser which, at any time step, can choose between
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creating a dependency link or changing its internal state. The
parser receives a numerical reward proportional to how close
its output resembles the correct analyses. Because the training
examples originate from the parser’s own actions, the train-test
discrepancy is minimized.

The paper Tackling Error Propagation through Reinforce-
ment Learning: A Case of Greedy Dependency Parsing is de-
voted to investigating the effect of reinforcement learning for a
greedy transition-based dependency parser. We show that our
reinforcement learning algorithm succeeds in increasing the per-
formance of different parser formulations fed with English and
German texts. Moreover, we show that the effect is partially due
to a reduced rate of error propagation.

2.5.4 The Value of Context in Coreference Resolution (Q3,
S5)

We have taken a glimpse at coreference resolution in Section 2.4.
In the paper An Input Ablation Analysis of Coreference Reso-
lution, I investigate in more detail the source of performance in
coreference resolution systems and point out potential improve-
ment by incorporating world knowledge.

Coreference resolution is a high-level semantic task that is
often treated by low-level methods. It is long known that a strong
baseline of the task is string matching: putting all mentions with
the same surface form to the same cluster. Durrett and Klein
(2013) drive this point home by demonstrating that a simple sys-
tem using only surface features can outperform existing systems
that use rich syntactico-semantic features and carefully crafted
heuristics. The obvious mismatch proves hard to bridge. Ef-
forts to incorporate semantic roles, external knowledge sources,
and event information lead to incremental improvement and a
big gap remains between the state-of-the-art results and human
performance (Peng and Roth, 2016; Ponzetto and Strube, 2006).
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I hope to show that, despite well-recognized difficulties, mod-
eling world knowledge is essential to reach human-level perfor-
mance in coreference resolution. By modifying the input docu-
ments to control the layers of information that they expose, we
show that a representative sample of existing methods does not
make use of context. Furthermore, by observing human annota-
tors working on the same modulated documents, we illustrate that
humans use world knowledge and complex reasoning to retain
high accuracy on challenging documents.

2.5.5 Modeling Selectional Preference for Implicit Semantic
Role Labeling (Q3, S5)

In Section 2.4, I have argued that an effective model of world
knowledge is essential to solve error propagation. To perform
reasoning over the content of a document, we first need to be
able to connect pieces of the text into a coherent story. Implicit
semantic role labeling (Ruppenhofer et al., 2009) is one of a few
tasks that meet this need.

Roughly speaking, Semantic Role Labeling (SRL) is the task
of answering the question Who does what when where and how?.
A frame is a linguistic structure akin to schema, script, or sce-
nario, which, once evoked, elicits a fixed set of elements (Fill-
more, 1982). A frame consists of a predicate and multiple roles
where the predicate is typically an action or attribute and the roles
describe its various aspects. Based on an inventory of frames
(Palmer et al., 2005; Fillmore et al., 2003), one can identify in-
stantiations of predicates in a document and expressions that fill
their roles (also called fillers). As defined in the NLP literature,
SRL only considers expressions that reside in the same sentence
as the predicate. Implicit semantic role labeling (iSRL) focuses
on finding the missing fillers: ones that are in other sentences.
Consider the following example:7

7Taken from “The divided house”, a novel by Mary Raymond, accessed via
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(9) “Tell me about it,” Sara said. Jenny put her head in her
pillow again. Her voice came muffled, “I don’t want to
talk about it.”

For the underlined word, following PropBank (Palmer et al.,
2005) formulation, an SRL system would annotate the following
predicates and arguments:

(10) Predicate: talk.01, ARG0: I, ARG1-PPT: it

An iSRL system, on the other hand, will look beyond sentence
boundary to identify fillers for the roles that are not already filled:

(11) Predicate: talk.01, ARG1-GOL: Sara

Implicit semantic role labeling is both interesting and chal-
lenging because it deprives us of traditional features coming from
local syntactic structures, forcing us to model global coherence
and develop a deeper understanding of the series of events in a
document. This is an area where NLP has typically struggled
with.

Selectional preference is a type of world knowledge that cap-
tures the plausibility of expressions to be the filler of a semantic
role. The predicate talk.01 expects an animate object as a filler
of the role ARG2-GOL (hearer). This makes Sara a more likely
filler than her pillow. Exceptions do occur and selectional prefer-
ence is meant to be combined with other signals, but it has been
shown that a model of selectional preference can contribute to the
performance of semantic role labeling (Zapirain et al., 2013). A
natural extension is modeling the constraints between roles.

My last paper, Neural Models of Selectional Preferences
for Implicit Semantic Role Labeling, investigates how we can
train a selectional preference model to capture not only the inter-

the British National Corpus (BNC, 2007).
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action between predicates and roles and between roles themselves
with the aim to improve implicit semantic role labeling. We did
not find an improvement over the baselines, probably because of
a misalignment between training and test data. We release our
implementation of existing methods and an evaluation framework
to support further development of the area.
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Ck. Syn. SRL CR SA OM TE MT
Sent. 1
Tok 1, 2, 3
POS 4 5, 6, 7 24 10
NER 20, 24
Syn. 25, 26,

27, 28,
31

8, 13,
15, 16,
17, 29,
32

18, 20 19 10,
11,
12

SRL 9
CR 21, 22,

23
9

OM 14
MT 11,

30

Table 2.1: Overview of reports about error propagation from one task
to another. Source tasks are written in the leftmost column while target
tasks are in the first row. Entries that have the same header on the row
and the column (e.g. CR-CR) are error propagation from one subtask to
another within a bigger task or that between steps in the same task. For
brevity, I do not list all subtasks (i.e. mention identification and men-
tion clustering are two steps in coreference resolution). Abbreviations:
Ck. = Chunking, Syn. = Syntax parsing, Sent. = Sentence boundary
detection, POS = Part-of-speech tagging, NER = Named-Entity Recog-
nition, Syntax = Syntactic Parsing, SRL = Semantic Role Labeling, CR
= Coreference Resolution, SA = Sentiment analysis, OM = Opinion
mining, TE = Timeline extraction, MT = Machine Translation. List of
references: 1. Dridan and Oepen (2013), 2. Forst and Kaplan (2006), 3.
Foster (2010), 4. Song et al. (2012), 5. Foster et al. (2011), 6. Lease
and Charniak (2005), 7. Kong and Smith (2014), 8. Pradhan et al.
(2005), 9. Caselli et al. (2015), 10. Han et al. (2012), 11. Han et al.
(2013), 12. Quirk and Corston-Oliver (2006), 13. Gildea and Palmer
(2002), 14. Yang and Cardie (2013), 15. Carreras and Màrquez (2004),
16. Favre et al. (2010), 17. He et al. (2017), 18. Lee et al. (2013), 19.
Gómez-Rodríguez et al. (2017), 20. Lee et al. (2013), 21. Peng et al.
(2015), 22. Bengtson and Roth (2008), 23. Ng and Cardie (2002a), 24.
Soon et al. (2001), 25. Nivre et al. (2009), 26. Ng and Curran (2015a),
27. McDonald and Nivre (2007), 28. Kummerfeld et al. (2012), 29.
Sagae (2010), 30. Venugopal et al. (2008), 31. Zhang and Nivre (2012),
32. Haghighi et al. (2005).



2.5 Overview of Papers 43

(a) Original

+ 0.1×

(b) Perturbation

=

(c) Adversarial

(d) Change in activation

Figure 2.1: Error propagation in layers of a VGG-16 deep neural
network (Simonyan and Zisserman, 2015). Images are from CIFAR-
10 (Krizhevsky, 2009), perturbation is generated by FGSM (εL2 = 2)
(Goodfellow et al., 2015). The change in the input and layer activation
is computed as ‖v−v̂‖2

‖v̂‖2
, averaged across 2,000 images, with v̂ is the input

or layer activation in the case of natural images and v is the input and
activation in the case of perturbed images. Error bars represent standard
deviation.

Figure 2.2: A schematic representation of five strategies to reduce error
propagation. Given a minimal pipeline of two steps: A and B, Strat-
egy S1 improves a step individually, S2 reorder the steps, S3 reduces
the length of the decision chain (by breaking it into two independent
chains of length one in this case), S4 makes the latter step more robust
to errors, and S5 applies error correction.
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Representation
Learning  

(Word Embeddings)

Word Sence
Disambiguation

Dependency Parsing

Implicit Semantic
Role Labeling

Coreference
Resolution

low-level

high-level

Figure 2.4: Natural language processing tasks studied in the current
thesis.

Figure 2.5: Part of a dependency analysis of Excerpt (8). Arrows point
from a head to its dependents and the type of dependency is noted on
edge labels.



3. Mitigation

As is the case with any kind of negative events, prevention is
pivotal. The previous chapter has discussed Strategy S1 (reducing
errors in earlier steps). In the context of pipelines, this means
getting the highest possible accuracy on foundational tasks while
in end-to-end models based on neural networks, we would want to
have the best representations of words in the first hidden layer. To
facilitate the preventation of error propagation, this chapter will
analyze errors in lexical representations that have become popular
in recent years: static and contextualized word embeddings.

Word embeddings are often evaluated at the vocabulary level,
either intrinsically with similarity datasets or extrinsically via
downstream tasks. While useful, those methods do not accom-
modate the interpretation of individual decisions made by an
NLP system. On the other hand, evaluating individual vectors
is challenging because of their unsupervised nature – there is no
gold-standard set of embeddings. It might not be obvious what
a vector error even means. To get a sense of what a vector error
looks like, consider the case of the word royalties previously men-
tioned in Section 2.5.1. The vector for royalties as depicted in
Figure 3.1 is an error because it is far away from the most similar
words (fee, toll, bill), relative to less similar one such as singer
and license.

In the first paper, Taxonomy beats corpus in similarity
identification, but does it matter?, we propose an evaluation
method based on similarity score comparison that allow the iden-
tification of vectors that might be an error. The method is called
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singer

song writer
author

royalties

fee
toll

bill

dog cat

license contract

hamster

rabbit

Figure 3.1: An error in vector space: the word royalties is placed in
the wrong cluster.

ordering accuracy and works as follows. Two gold-standard sim-
ilarity scores are compared. Without loss of generality, let us
assume they are sim(A) > sim(B) where A,B are two pairs of
words. Given a word vector model M and similarity function
f , e.g. the popular cosine similarity, the model is said to make
an error if fM(A) < fM(B). The method also allows us to dif-
ferentiate between fine-grained errors, in which a model fails to
make subtle distinctions that are sometimes hard for even hu-
mans, and coarse-grained errors in which the model is clearly
at fault. In the current discussion, we will use exclusively the
dataset SimLex-999 (Hill et al., 2015) which has scores in a 0-10
scale. Let us define coarse-grained errors to be erroneous cases
that have |sim(A)− sim(B)| ≥ 6. For example, two word pairs
found in SimLex-999 are mouse-management (score: 0.48) and
journey-trip (score: 8.88). If a model rates the first pair higher
than the latter, it has made a coarse-grained error.

Applying this method on a set of pretrained word2vec embed-
dings (Mikolov et al., 2013a) allows me to pinpoint the following
vectors that seem out of place:

reality: closest vectors are Reality, realities, Emblematic_examples,
Jaap_Amesz_Dutch, Germany_Dieter_Wiefelspuetz, raj_.........._i,
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saucier_Miracle_Jones, Pennsylvania_prophetic_rodent,
Wife_Swap_Larimer, Octo_mum

sense: nearest neighbors are humor_Jena_Elayan, deceiving_Hondurans,
feel, feeling, Dr._Valerie_Voon, Prosecutor_Ann_Swegle,
sensibility, stunner_Afleet_Alex, groundedness, sence

zone: nearest neighbors are zones, Adjust_tuning, Zone, #.###_Chal-
cocite_covellite, toxic_gook, lofting_fade, endzone, insis-
tence_Arata, grade_La_Mascota, BRUSSELS_AFX_Euro

suds: instead of semantically similar words such as foam and
bubbles, its closest neighbors are beer-related words: beer,
brewskies, brewski, brewskis, Yuengling_Lager, Natty_Light,
microbrew, Brooklyn_Lager, beers, craft_brews

bread: except an inflection and a few types of bread, all nearest
neighbors are words related to the making or consumption
of bread: butter, rye_sourdough, breads, loaf, flour, bal-
adi_bread, loaves, raisin_bread, stale_bread, wheaten_flour

Extracting words from coarse-grained errors generates a whoop-
ing 449 words in a total of 751. Upon closer examination though,
most of the errors are due to systematic discrepancy between
human annotators and systems in the treatment of antonyms (e.g.
north-south), relational antonyms (e.g. husband-wife), and alter-
natives (e.g. top-side). Human annotators consistently give low
scores for those cases whereas word embeddings models tend to
give high scores. While conceptually dissimilar, it makes sense
that the nearest neighbors of north, for example, include south,
west, and east because all of them are geographical directions.

Another reason for ordering errors is what might be called
cluster displacement: when all the words involved are correctly
placed next to their most similar words but the distance between
those clusters is wrong. We will not deal with this problem to
focus on individual vectors which can be classified into:

Correct: Considering up to 20 of nearest neighbors, the word is
placed in the right cluster.
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Wrong sense: Nearest neighbors can be considered semantically
similar to the target word but only if it is read in a sense
different from what a human would pick given the context
of the dataset.

Bad cluster: The word is placed in a cluster that includes some
similar words and some unrelated words with roughly equal
proportions.

Wrong cluster: The word is placed next to mostly unrelated
words.

I examined 50 words picked randomly from the 449 words
that are involved in coarse-grained errors. Assuming that the
remaining 302 words are all correct, the distribution of errors can
be estimated as follows: 3.6% of words are represented in the
wrong sense, 8.4% have to settle with a bad cluster, and 7.2% are
assigned to the wrong cluster. Given that the quality of embed-
dings correlates with the amount of training data (Herbelot and
Baroni, 2017) and most words in SimLex-999 are relatively fre-
quent, it can be expected that the true error rates are higher. This
result corroborates with the observation in our paper that word
embeddings are worse than taxonomies at capturing similarity (as
of 2015) and suggests that bad vectors might have a noticeable
effect in increasing downstream errors.

Among the cases that I have examined, a word pair that re-
ceives lower-than-expected score is wisdom-intelligence. The
Word2vec vector for intelligence counts among its nearest neigh-
bors intel, counterintelligence, counterterrorism, and humint (in-
tel gathered through interpersonal means). The model happens
to encode a sense of intelligence that, though valid, is not what
humans tend to think given the context. Contextualized word em-
beddings promise to resolve this problem by generating dynamic
word vectors that vary depending on the surrounding words. In
the second paper, A Deep Dive into Word Sense Disambigua-
tion with LSTM, my colleagues and I explore how well such
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models work and how much their performance depends on the
amount of training data.

The existence of sense annotated datasets allows the direct
evaluation of individual contextualized vectors. Given a dataset
consisting of sentences annotated with word senses, a contextu-
alized word embeddings model E , and a simple classification
model M that takes a word vector and predicts the sense of the
given word, the accuracy of the classifier M can be thought of
as reflecting the amount of sense information in the embeddings
model E . In other words, word sense disambiguation can be used
as a probing task (Conneau et al., 2018) to evaluate contextualized
word embedding models.

At one extreme, if E always predicts the same vector (as
an embeddings lookup table does), the accuracy will be upper-
bounded by the prevalence of the most frequent sense. At the
other extreme, if E always return vectors that reflect the right
sense in context, the accuracy is 100%. It is important that the
classifier M is simple so that any gain in accuracy is explained by
E only. For this reason, I will focus on a model called averaging
which computes a prototype vector for each sense by taking
the average of relevant vectors on a training set and uses such
prototypes and simple cosine similarity for prediction.

The results show that the disambiguating ability of LSTM
models (a type of recurrent neural networks) improve upon the
most frequent sense baseline (MFS) but leaves much room for
improvement. On senseval2 (an all-word dataset with 2,282 test
instances), the model scores between 67.5% and 72.0% com-
pared to 66.8% of MFS. On semeval2013 (a noun-only dataset
with 1,644 annotations), its performance ranges from 64.7% to
65.6% compared to 63.0% of MFS. As expected, performance
is dependent on the amount of unannotated data used for train-
ing. However, in the range that we test (18 million to 1.8 billion
words), the improvement is small and the amount of data needed
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for 1% improvement increases exponentially.
All in all, the research in this chapter suggests that a lot of

work still needs to be done to improve the ability of embedding
models in representing lexical similarity and polysemy, and doing
so will reduce error propagation downstream. Since my research
was concluded, more complex and performant models have been
devised but they are also mostly evaluated at vocabulary- or task-
level only. To open the blackboxes that NLP systems are today, it
will be beneficial to continue the study of individual vector errors
and how they affect downstream decisions.
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Abstract

We present extensive evaluations comparing the perfor-
mance of taxonomy-based and corpus-based approaches
on SimLex-999. The results confirm our hypothesis that
taxonomy-based approaches are more suitable to identify
similarity. We introduce two new measures of evaluation
that show that all measures perform well on a coarse-
grained evaluation and that it is not always clear which
approach is most suitable when a similarity score is used
as a threshold. This leads us to conclude that the infe-
rior performance of corpus-based approaches may not
(always) matter.

1. Introduction

Similarity measures are used in a wide variety of Natural Lan-
guage Processing (NLP) tasks (see Pilehvar et al. (2013), among
others for examples). They may be used, e.g. to increase cover-
age of an approach by using information from similar words for
unseen data, or to establish average similarity between a question
and a potential answer.

Due to its importance, similarity measures have received
steady attention in computational linguistics. There are two
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widely followed, but different, schools: taxonomy-based ap-
proaches and distributional, or corpus-based, approaches. Apart
from a few exceptions, these approaches have mostly been studied
separately.

Our main goal is to examine how the approaches perform
when identifying true similarity, in contrast to the more general
relatedness, which also includes association, between word-pairs.
We evaluate the approaches on the new gold-standard SimLex-999
(Hill et al., 2014b). We compare taxonomy-based approaches that
use WordNet (Fellbaum, 1998) to the corpus-based approaches
that performed best on SimLex-999 in Hill et al. (2014a). We
hypothesize that taxonomy-based approaches outperform corpus-
based approaches on a true similarity set, because corpus-based
approaches tend to mix-up similarity and association.

We carry out several evaluations which investigate (i) the
difference in performance on pure similarity sets and sets that
combine similarity and association, (ii) the influence of asso-
ciative pairs while identifying true similarity, and (iii) various
evaluation metrics that compare similarity measures to the gold
standard of SimLex-999.

We perform more than one evaluation metric for two reasons.
First, different ranking coefficients can lead to a completely dif-
ferent outcome when evaluating similarity scores (Fokkens et al.,
2013a). Second, we want to gain more insight into the differences
between individual measures. To do so, we introduced two new,
more flexible, evaluation methods which reveal high results for
all similarity measures. We argue that these new evaluations
provide a better insight into how suitable similarity measures are
to be used in NLP tasks than the commonly used Spearman’s
correlation (henceforth Spearman ρ).

Our results show that most of the evaluations confirm our
hypothesis. The few cases where corpus-based methods outper-
formed taxonomy-based approaches reveal much smaller differ-
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ences than the many cases where taxonomy-based approaches
have higher results. However, all similarity measures perform
very well when they are evaluated on the relative ranking of word-
pairs that are further apart in the gold-standard. We therefore
conclude that, even though taxonomy-based are better at iden-
tifying similarity than corpus-based approaches, this may not
(always) matter.

The rest of this paper is structured as follows. In Section 2,
we motivate our approach and address related work. Section 3
describes the similarity measures we investigate. In Section 4, we
outline our experimental methodology, including used datasets
and evaluation methods. The results are presented in Section 5,
and our conclusions and future work in Section 6.

2. Background and Motivation

Several gold-standards have been created that rank word-pairs
based on their similarity. Agirre et al. (2009) point out that associ-
ation and similarity are mixed up in these sets, where associated
pairs such as coffee and cup rank higher than truly similar pairs
such as car and train. The confusion directly influences the per-
formance of corpus-based approaches, which also tend to have
difficulties distinguishing association from similarity (Hill et al.,
2014a).

Hill et al. (2014b) introduce a new gold standard dataset that
is annotated with pure semantic similarity and larger than previ-
ously created similarity sets, such as Rubenstein and Goodenough
(1965) and Agirre et al. (2009)’s sets. Hill et al. (2014a) evaluate
corpus-based approaches and show that they indeed have trouble
identifying similarity, performing well-below the upperbound of
agreement between human annotators.

It is not surprising that corpus-based approaches confuse sim-
ilarity and association: semantically related words tend to occur
close to each other and hence in similar contexts. Approaches
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that make use of a relatively narrow context window perform
slightly better, because they can capture more subtle differences
in context to some extend.

Taxonomies represent word meanings in hypernym and hy-
ponym hierarchies, directly capturing their similarity. The closer
two terms are in the hierarchy, the more similar they are. Simi-
larity measures that make use of this structure are less likely to
confuse whether two terms are similar or related in some other
way.

These well-known properties of corpus-based and taxonomy-
based approaches led to the following hypothesis:

Taxonomy-based approaches are better suited to iden-
tify similarity than corpus-based approaches

Agirre et al. (2009) seem to contradict this hypothesis show-
ing that corpus-based approaches can be as good at identifying
similarity (when the right model is based on enough data). How-
ever, Hill et al. (2014b) point out that Agirre et al.’s evaluation
set does not form a representative set for measuring similarity,
even after they made an alternative set that separates association
and similarity. We therefore expected that the hypothesis would
nevertheless hold on SimLex-999.

The outcome of our experiments confirmed our hypothesis,
thus contradicting Agirre et al. (2009)’s results and being, to our
knowledge, the first to show this on such a large and reliable
benchmark. Banjade et al. (2015) also applies WordNet-based
and corpus-based similarity measures to SimLex-999, but do not
examine or discuss the difference between taxonomy-based ap-
proaches and corpus-based approaches in detail. Instead, they
focus on the strength of combining several approaches to yield
better results.1 We investigate the difference between the ap-
proaches in various evaluations showing that taxonomy-based

1We independently confirmed this result in our own experiments, but decided
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approaches outperform corpus-based approaches, a conclusion
that cannot be drawn (clearly) from Banjade et al. (2015)’s results.
It should be noted that our conclusions only apply to the task
of identifying pure similarity. Markert and Nissim (2005) show,
for instance, that a corpus-based approach with sufficiently large
corpus works better than WordNet for anaphora resolution.

The next step in our investigation was to determine the strengths
and weaknesses of each approach. The original idea was to inves-
tigate pairs that are ranked more or less correctly by one approach,
but are far off in the other to identify patterns of errors in each
approach. We did not find such patterns, partially because the
examples that have large differences in ranking compared to the
gold are relatively rare.

We therefore developed two alternative evaluation methods
that are less sensitive to minor differences in ranking. The first
evaluation directly tests the comparison of pairs and, more im-
portantly, allows us to study the contribution of partitions of the
dataset. The second evaluation revolves around thresholds for
similarity. In this evaluation, we set thresholds to establish a
binary distinction between highly similar pairs and other pairs.
The pairs above the similarity threshold are compared to those
falling above the threshold in the gold (see Section 2).

Many studies compare similarity measures (see Baroni et al.
(2014) and Pedersen (2010), among others) but, to our knowledge,
Agirre et al. (2009) and Banjade et al. (2015) are the only ones
that look at both taxonomy-based approaches and distributional
approaches. As mentioned above, they do not dive into the details
of the differences between the two. Furthermore, apart from
Fokkens et al. (2013a), who do not propose new rankings, we
are not aware of studies applying multiple evaluation metrics for

to leave it out of this paper because our results did not add much to Banjade
et al. (2015).



58 Chapter 3. Mitigation

similarity-based rankings.

3. Similarity Measures

This section describes the similarity measures compared in this
paper.

3.1. Taxonomy-based Similarity Measures

WordNet (Fellbaum, 1998) organizes nouns and verbs in hier-
archies of hypernym-hyponym relations. We selected WordNet
for our taxonomy-based experiments, because it is widely used
and probably the most popular taxonomy when it comes to de-
termining word similarity. Many measures of similarity based
on WordNet have been proposed over the years. Early work
(Rada et al., 1989) advocates the use of is-a hierarchy and later
approaches continue to use it heavily. In order to make a clean
comparison between WordNet and distributional models, we do
not include in our study measures that make use of a corpus such
as Resnik (1995) and Jiang and Conrath (1997).

Path length similarity takes the inverse of the path length (i.e.
the distance in number of nodes) from s1 to s2 plus one.

PL =
1

d(s1,s2)+1

Wu and Palmer’s similarity (Wu and Palmer, 1994) takes the
fact into account that senses deeper in the hierarchy tend to be
more specific than those high up. It therefore incorporates the
depth of the hierarchy in their similarity calculation:

WUP =
2depth(lcs)

d(s1, lcs)+d(s2, lcs)+2depth(lcs)

Leacock and Chodorow’s similarity (Leacock and Chodorow,
1998) normalizes path-based scores by the maximum depth D of
the hierarchy. This corrects for the difference in the depth of verb
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and noun hierarchy:

LCH =− log
d(s1,s2)+1

2D

3.2. Distributional Semantic Models

We selected two representative models from the large and growing
literature on corpus-based models of lexical semantics: Word2vec
(Mikolov et al., 2013b, W2V) and dependency-based word em-
beddings (Levy and Goldberg, 2014a, DEPS).

Word2vec is the first model to use a Skip-Gram with Negative
Sampling (SGNN) algorithm for constructing semantic models
and performed best on SimLex-999 in Hill et al. (2014a). Levy
and Goldberg (2014b) argue that SGNN implicitly factorizes a
shifted positive mutual information word-context matrix, not un-
like traditional distributional semantic models. The use of a small
window size and the weighting scheme that favors nearby contexts
are supported by a systematic study of Kiela and Clark (2014)
that shows the superiority of small windows. Moreover, Sahlgren
(2006) presents empirical evidence that smaller windows lead to
a cleaner distinction between syntagmatic and paradigmatic rela-
tions (which can be considered the linguistic version of similarity
and association).

Levy and Goldberg (2014a) extend SGNN to work with arbi-
trary contexts and experiment with dependency structures. It is
generally believed that dependency structures are better at captur-
ing similarity (Padó and Lapata, 2007) although Kiela and Clark
(2014) found mixed results.

The Skip-gram model captures the distribution p(c|t) of a
context word c within a certain window around a target word t.
For a vocabulary of millions, computing normalized probabili-
ties (i.e. summing to one) for each example can be prohibitively
expensive. Negative sampling was used to avoid the cost.



60 Chapter 3. Mitigation

For each context-target pair (c, t) taken from training data, we
replace the context by random words drawn from the vocabulary
to obtain new pairs {(c′, t)}. We call D 3 (c, t) positive distribu-
tion and N 3 (c′, t) negative distribution. The task of the model is
to identify which pairs come from D and which from N. Formally.
that is to maximize the negative log likelihood:

`=−
(
∑ log p(D|c, t)+∑ log p(N|c′, t)

)
The probability is calculated using target embeddings et ∈Rd

and context embeddings êc ∈ Rd such that:

p(D|c, t) = σ(et · êc),

where σ(x) = 1/(1+ e−x) is a monotonic function that maps any
value in (−∞,+∞) to a valid probability.

The training objective encourages to increase p(D|c, t) which
can be achieved by aligning et and êc in similar directions. On the
other hand, the objective also encourages a small p(N|c, t), creat-
ing an uniform “repelling force” between all pairs of words. After
a lot of updating iterations, similar words come close together
while dissimilar words are pulled apart.

We used the trained embeddings from Mikolov et al. (2013b)
and Levy and Goldberg (2014a).2 Word2vec embeddings are 300-
dimensional vectors obtained by training on 100 billion words
of Google News dataset. Dependency-based embeddings were
harvested from English Wikipedia automatically annotated with
dependency structures. Although the dependency-based model
was trained on a significantly smaller corpus, it achieves compa-

2The models are available at: https://code.google.com/p/
word2vec/ and https://levyomer.wordpress.com/2014/04/25/
dependency-based-word-embeddings

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings
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rable results as we will show in Section 5.

4. Experimental Setup

In this section, we describe the experimental setup used in our
evaluations. We first describe the datasets and then the evaluation
metrics we use.

4.1. Gold-standard Datasets

We evaluate the approaches on three datasets. WordSim-353
and MEN allow us to compare performance on sets that mix
association and similarity. SimLex-999’s ranking is based on
similarity only.

WordSim-353 (Finkelstein et al., 2001) includes 353 word pairs
scored for relatedness on a scale from 0 to 10 by 13 or 16 subjects.
The inter-annotator agreement is 0.611 defined as the average
pairwise Spearman’s correlation. Researchers have reported cor-
relation as high as 0.81 (Yih and Qazvinian, 2012). Agirre et al.
(2009) later divided WordSim-353 into a “similarity” and “re-
latedness” set. However, Hill et al. (2014b) rightly point out
that both remain relatedness datasets, because this is what the
annotators rated.

MEN (Bruni et al., 2012) is composed of 3,000 word pairs, sam-
pled to include a balanced range of relatedness. Annotators were
asked to choose which of two pairs of words is more related, an
arguably more intuitive task than assigning a score.

SimLex-999 (Hill et al., 2014b) carefully distinguishes between
similarity and association and provides a balanced range of sim-
ilarity, concreteness and parts-of-speech. The authors sampled
900 associated pairs from the University of South Florida Free
Association Database (Nelson et al., 2004) and randomly coupled
them to create 999 unassociated pairs. Subjects were asked to
judge the similarity of word pairs on a 0-6 scale. Their answers
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were averaged to produce the final score.

All three datasets are lemma-based. The way two words can
be compared, however, is more likely via their senses (e.g. queen
is not similar to princess when referring to a chess piece). We
follow Resnik (1995) in using maximally similar senses in our
taxonomy-based approaches.

4.2. Evaluation Metrics

The first evaluation measure we use compares between the gold
ranking and a measurement’s ranking using Spearman’s ρ , the
most widely used evaluation metric for similarity score.

Hill et al. (2014b) report performance on a subset of highly
associated word pairs, but its contribution to the overall per-
formance is unclear. We wish to gain deeper insight into how
different subsets in the data contribute to the overall score. This
is not possible with Spearman’s ρ due to its holistic nature. We
overcome this by using ordering accuracy following Agirre et al.
(2009). The scale is defined as:

a = aG,G =
1
|G|2 ∑

(u,v)∈G
∑

(x,y)∈G
ms,G(u,v,x,y)

where G stands for the gold standard and ms,G(·) is a matching
function that returns 1 for those two word-pairs whose relative
ranking is the same in the gold standard and in the ranking of the
similarity measure and 0 otherwise. We also experiment with a
variation of m where ties get half score. As shown in Figure 3.2,
ordering accuracy highly correlates with Spearman’s ρ .

If G can be partitioned into n subsets gi (i.e.
⋂

gi = /0 and⋃
gi = G) then a can be decomposed as the weighted sum of the

accuracy on different subsets. The weights are proportional to
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Figure 3.2: Ordering accuracy and Spearman’s ρ on a synthesized
dataset of 100 word pairs.

their size:

a =
1
|G|2 ∑

i
∑

j
|gi||g j|agi,g j

The final evaluation measure is based on the observation that
many approaches use a threshold to determine which words are
similar enough to be used for contributing features or approxi-
mations, or to be candidates for lexical substitution (McCarthy
and Navigli, 2009; Biran et al., 2011, e.g.). Threshold accuracy
sets a similarity threshold and determines how many of the n-
highest ranking word pairs in a given measurement are also in the
top-n pairs of the gold standard. In other words, this evaluation
determines whether the right word-pairs would end up above the
threshold of being similar.

5. Results

We calculated the similarity scores of all noun and verb pairs in
SimLex-999 (a set of 888 pairs), MEN (2,034 pairs), and all pairs
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Model SL-999nv MENnv WS-353
WUP 0.47 0.39 0.35
PL 0.52 0.39 0.30
LCH 0.55 0.39 0.31
W2V 0.42 0.77 0.70
DEPS 0.45 0.61 0.63

Table 3.1: Spearman’s correlation of models to similarity benchmarks.

in WordSim-353 using the measures outlined in Section 3 and
ranked the word pairs according to the outcome.

5.1. Spearman’s Rank Correlation

Table 3.1 shows the performance of models on all three bench-
marks. Taxonomy based approaches perform higher on SimLex-
999, whereas corpus-based approaches reveal high performance
on MEN and WordSim-353 and score significantly lower on
SimLex-999. This result confirms that taxonomy-based approaches
capture similarity rather than association, whereas corpus-based
approaches do not clearly distinguish the two.

5.2. Ordering Accuracy

Table 3.2 presents the evaluation of our metrics using ordering
accuracy. The first column indicates the standard score. The
scores in the second and third column are calculated while giving
partial credits to ties. Note that this only affects the performance
of taxonomy-based approaches, where it is common for word
pairs to have identical scores.

Without correction for ties, scores for taxonomy-based and
corpus-based measures are highly similar, with the corpus-based
DEPS leading to the highest results. Taxonomy-based approaches
uniformly beat corpus-based approaches again when we do cor-
rect for ties, confirming the outcome of our Spearman ρ evalua-
tion.

We also evaluate on a subset of highly-associated words. The
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Model SL-999 SL-999 SL-999 Diff.
nv nv nv,assoc assoc

Using tie corrections
WUP 64.9 66.6 67.3 +0.7
PL 61.1 68.0 68.2 +0.2
LCH 65.1 69.2 69.1 -0.1
W2V 64.4 64.6 57.5 -7.1
DEPS 65.5 65.6 60.9 -4.7

Table 3.2: Ordering accuracy (percentage) of similarity measures on
SimLex-999nv.

results are presented in column 3 of Table 3.2. Sizeable decrease
is observed in corpus-based measures for highly associated terms
while taxonomy-based measures remain largely unaffected. This
result confirms our hypothesis once more that taxonomy-based
measures are more suited to capture similarity and that corpus-
based methods tend to have difficulties separating similarity from
association.

5.3. Decomposition of Ordering Accuracy

Palmer et al. (2007) showed that making subtle sense distinction is
hard for human subjects leading to evaluations where both coarse-
grained and fine-grained word senses are considered (Palmer
et al., 2007; Navigli et al., 2007). Similarly, establishing which
word-pair is more similar than another is challenging when pairs
are close in similarity. This is illustrated by the sample pairs in
Table 3.3. The fact that ranking such pairs is highly challenging
for humans leads to the question how meaningful differences in
performance of similarities measures on these pairs actually are.

To overcome this issue and gain deeper insight into how often
low performance is the result of many small errors piling up and
how often it is the result of a set of pairs being ranked completely
wrongly, we apply our ordering accuracy to a decomposed dataset.
We divide SimLex-999nv into five equal similarity ranges {gi}
based on SimLex-999’s original ranges. The first range g1 con-
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∆ = 0
pollution-president forget-learn
take-leave succeed-try
army-squad girl-child
emotion-passion collect-save
sheep-lamb attention-awareness

∆ = 1
spoon-cup argue-differ
remind-sell apple-candy
book-topic argument-agreement
corporation-business kidney-organ
alcohol-wine beach-island

Table 3.3: Is the pair in the left or in the right more similar? (All pairs
are extracted from SimLex-999)

tains highly dissimilar pairs of words with a similarity between
0 and 2. Final set g5 contains very similar or synonymous pairs
with a similarity from 8 to 10.

We use different granularity levels ∆ (∆ = 0, ...,4). Compo-
nent accuracy is calculated by comparing each pair in gi to every
pair in g j such that |i− j|= ∆.

The results reported in Figure 3.3 show that all models per-
form consistently well on coarse-grained similarity while only
marginally beating chance-level at the most fine-grained level.
Furthermore, taxonomy-based approaches only outperform corpus-
based approaches when comparing pairs that are further apart in
the gold ranking.

Because the two most fine-grained components (∆ = 0 and
∆ = 1) together have a weight of 58%, the ordering accuracy
as reported in Table 3.2 is dominated by fine-grained similarity
comparison. Spearman’s ρ highly correlates with ordering ac-
curacy, indicating that fine-grained differences also had a major
impact on previous work. It is questionable whether it is really
necessary for these measures to capture the small differences in
similarity that are even difficult for humans to find. This outcome
shows that similarity measures perform better than they seem to
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Figure 3.3: Ordering accuracy varies with degrees of granularity on
SimLex-999nv. ∆ = 0 means two pairs fall in the same range of similar-
ity (e.g. 0-2); ∆ = 1 means they fall in neighboring ranges of similarity
(e.g. 0-2 and 2-4), etc.

do according to recent evaluations in the literature.

5.4. Threshold Evaluation

The final evaluation we carry out is the so-called threshold evalu-
ation. It evaluates how well a threshold performs that separates
highly similar terms from less similar terms based on a specific
score. We use the 10% and 20% most similar terms as a starting
point. In a total set of 888 examples, this means we compare
the top 89 and top 178 pairs of each measurement’s output with
the top pairs of the gold data. We report on the accuracy (i.e.
percentage of pairs correctly classified as highly similar) of each
scores. As mentioned above, taxonomy-based approaches often
assign the same score to multiple pairs. If this was the case for the
pairs around the threshold, we extended the range of comparison
as to include all pairs with an identical score. Table 3.4 provides
an overview of the results.

The top-n sets increase significantly for taxonomy-based ap-
proaches. Because approaches tend to fare better when the size
of the group changes, we calculated the scores for W2V and
DEPS with the top-n ranks found in the taxonomy-based scores.
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Model 10%-based 20%-based
n % n %

WUP 94 42.6 191 50.3
PATH 172 43.5 645 80.8
LCH 172 53.5 305 61.0
W2V 89 32.6 178 38.2
DEPS 89 33.7 178 43.8

Table 3.4: Threshold based evaluation, comparing the set of top-n
similar pairs

model n-value
94 172 191 305 645

W2V 33.0 38.4 39.8 48.5 82.0
DEPS 31.9 43.6 42.9 52.8 81.4
taxo. 42.6 43.5/53.5 50.3 61.0 80.8

Table 3.5: Scores of corpus-based methods on the n-values used for
taxonomy-based scores.

Table 3.5 shows the results of this analysis. The scores of the
relevant taxonomy-based approach are repeated in the third row.

The threshold based evaluation shows more variation than
our other metric. In three out of twelve cases,3 the corpus-based
approach leads to more accurate results than the taxonomy-based
score. In combination with the outcome of the accuracy ordering
result, this outcome underlines the importance of using a variety
of evaluation metrics.

Overall, the outcome seems to confirm that taxonomy-based
approaches are better at identifying similarity. First, taxonomy-
based approaches outperformed corpus-based approaches on iden-
tifying the most accurate pairs. Second, corpus-based approaches
only beat taxonomy-based ones in few measures and with com-
paratively small margins (the largest difference being 1.2%, com-

3We compare eight corpus-based outcomes with one taxonomy score and
two with two scores for n=172, leading to twelve comparisons in total.
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pared to differences up to 15.1%).

6. Discussion and Conclusions

This paper investigated the difference in performance of taxonomy-
based approaches and corpus-based approaches on identifying
similarity. The outcome of our experiments confirmed our hypoth-
esis that taxonomy-based approaches are better at identifying sim-
ilarity. This is mainly due to the fact that corpus-based approaches
have difficulties distinguishing association from similarity, as also
noted by Hill et al. (2014a).

We presented several results that confirm our hypothesis by
(i) comparing performance of taxonomy-based and corpus-based
methods on a dataset designed to capture similarity, (ii) relating
this to the results of the same measures on evaluation sets that
measure both association and relatedness, and (iii) looking what
the influence is of testing against a set that consists of associated
terms.

The results show that taxonomy-based approaches excel at
identifying similarity whereas corpus-based approaches yield
high results when similarity and association are not distinguished.
Furthermore, taxonomy-based approaches are not influenced by
association between words whereas performance of corpus-based
measures drop when their task is to identify similarity.

We applied more than one evaluation to compare the models’
performance on SimLex-999. This was done for two reasons.
First, different evaluation measures can sometimes lead to dif-
ferent conclusions even if they are meant to address the same
question on the same dataset. This also happened in our evalua-
tion, where ordering accuracy without tie-correction and some
thresholds led to different results. Second, the evaluation met-
rics revealed different aspects of the performance. Most notably,
the results of our decomposed ordering accuracy showed that all
similarity measures are quite good in a coarse-grained setting.
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Together with the mixed outcome of the threshold-evaluation,
this shows that corpus-based approaches have good potential
to be used when similarity needs to be detected. In particular,
when taxonomy-based approaches run into coverage issues, they
may be the preferred choice. We therefore believe that it will
ultimately depend on the application which approach works best.
Future work will need to show whether and how these approaches
differ when used in actual applications. All our code is published
on https://bitbucket.org/ulm4/kcsim.
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Appendix: Answers to sample questions in Table 3.3

1. right, 2. right, 3. right, 4. left, 5. right, 6. right, 7. right, 8. left,
9. left, 10. left.

https://bitbucket.org/ulm4/kcsim
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Abstract

LSTM-based language models have been shown effec-
tive in Word Sense Disambiguation (WSD). In particular,
the technique proposed by Yuan et al. (2016b) returned
state-of-the-art performance in several benchmarks, but
neither the training data nor the source code was released.
This paper presents the results of a reproduction study
and analysis of this technique using only openly available
datasets (GigaWord, SemCor, OMSTI) and software (Ten-
sorFlow). Our study showed that similar results can be
obtained with much less data than hinted at by Yuan et al.
(2016b). Detailed analyses shed light on the strengths and
weaknesses of this method. First, adding more unanno-
tated training data is useful, but is subject to diminishing
returns. Second, the model can correctly identify both
popular and unpopular meanings. Finally, the limited
sense coverage in the annotated datasets is a major lim-
itation. All code and trained models are made freely
available.

1. Introduction

Word Sense Disambiguation (WSD) is a long-established task in
the NLP community (see Navigli (2009) for a survey) which goal
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is to annotate lemmas in text with the most appropriate meaning
from a lexical database like WordNet (Fellbaum, 1998). Many
approaches have been proposed – the more popular ones include
the usage of Support Vector Machine (SVM) (Zhong and Ng,
2010), SVM combined with unsupervised trained embeddings
(Iacobacci et al., 2016; Rothe and Schütze, 2017), and graph-
based approaches (Agirre et al., 2014; Weissenborn et al., 2015).

In recent years, there has been a surge in interest in using Long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
to perform WSD (Raganato et al., 2017b; Melamud et al., 2016).
These approaches are characterized by their high performance,
simplicity and their ability to extract a lot of information from
raw text. Among the best-performing ones is the approach by
Yuan et al. (2016b), in which an LSTM language model trained
on a corpus with 100 billion tokens was coupled with small
sense-annotated datasets to achieve state-of-the-art performance
in all-words WSD.

Even though the results obtained by Yuan et al. (2016b) out-
perform the previous state-of-the-art, neither the used datasets nor
the constructed models are available to the community. This is un-
fortunate because this makes the re-application of this technique
a non-trivial process, and it hinders further studies for under-
standing which limitations prevent even higher accuracies. These
could be, for instance, of algorithmic nature or relate to the input
(either size or quality), and a deeper understanding is crucial for
enabling further improvements. In addition, some details are not
reported, and this could prevent other attempts from replicating
the results.

To address these issues, we reimplemented Yuan et al. (2016b)’s
method with the goal of: 1) reproducing and making available
the code, trained models, and results and 2) understanding which
are the main factors that constitute the strengths and weaknesses
of this method. While a full replication is not possible due to the



73

unavailability of the original data, we nevertheless managed to
reproduce their approach with other public text corpora, and this
allowed us to perform a deeper investigation on the performance
of this technique. This investigation aimed at understanding how
sensitive the WSD approach is w.r.t. the amount of unannotated
data (i.e., raw text) used for training, model complexity, how bi-
ased the method is towards the choice of the most frequent senses
(MFS), and identifying limitations that cannot be overcome with
bigger unannotated datasets.

The contribution of this paper is thus two-fold: On the one
hand, we present a reproduction study whose results are publicly
available and hence can be freely used by the community. Notice
that the lack of available models has been explicitly mentioned,
in a recent work, as the cause for the missing comparison of
this technique with other competitors (Raganato et al., 2017b,
footnote 10). On the other hand, we present other experiments to
shed more light on the value of this and similar methods.

We anticipate some conclusions. First, a positive result is that
we were able to reproduce the method from Yuan et al. (2016b)
and obtain similar results to the ones originally published. How-
ever, to our surprise, these results were obtained using a much
smaller corpus of 1.8 billion tokens (Gigaword), which is less
than 2% of the data used in the original study. In addition, we
observe that the amount of unannotated data is important, but that
the relationship between its size and the improvement is not linear,
meaning that exponentially more unannotated data is needed in
order to improve the performance. Moreover, we show that the
percentage of correct sense assignments is more balanced w.r.t
sense popularity, meaning that the system has a less-strong bias
towards the most-frequent sense (MFS) and is better at recogniz-
ing both popular and unpopular meanings. Finally, we show that
the limited sense coverage in the annotated datasets is a major
limitation, as shown by the fact that resulting model does not
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have a representation for more than 30% of the meanings which
should have been considered for disambiguating the test sets.

2. Background

Current WSD systems can be categorized according to two di-
mensions: whether they use raw text without any preassigned
meaning (unannotated data henceforth), and whether they exploit
the relations between synsets in WordNet (synset relations hence-
forth). One prominent state-of-the-art system that does not rely on
unannotated data nor exploits synset relations is It Makes Sense
(IMS) (Zhong and Ng, 2010; Taghipour and Ng, 2015). This
system uses an SVM to train classifiers for each lemma using
only annotated data as training evidence.

In contrast, graph-based WSD systems do not use (un)annotated
data but rely on the synset relations. The system UKB (Agirre
et al., 2014) represents WordNet as a graph where the synsets are
the nodes and the relations are the edges. After the node weights
have been initialized using the Personalized Page Rank algorithm,
they are updated depending on context information. Then, the
synset with the highest weight is chosen. Babelfy (Moro et al.,
2014) and the system by Weissenborn et al. (2015) both repre-
sent the whole input document as a graph with synset relations
as edges and jointly disambiguate nouns and verbs. In the case
of Babelfy, a densest-subgraph heuristic is used to compute the
high-coherence semantic interpretations of the text. Instead, in
Weissenborn et al. (2015) a set of complementary objectives,
which include sense probabilities and type classification, are com-
bined together to perform WSD.

A number of systems make use of both unannotated data and
synset relations. Both Tripodi and Pelillo (2017) and Camacho-
Collados et al. (2016) make use of statistical information from
unannotated data to weigh the relevance of nodes in a graph,
which is then used to perform WSD. Rothe and Schütze (2017)
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use word embeddings as a starting point and then rely on the for-
mal constraints in a lexical resource to create synset embeddings.

Recently, there has been a surge in WSD approaches that use
unannotated data but do not consider synset relations. One exam-
ple is provided by Iacobacci et al. (2016), who investigated the
role of word embeddings as features in a WSD system. Four meth-
ods (concatenation, average, fractional decay, and exponential
decay) are used to extract features from the sentential context us-
ing word embeddings. The features are then added to the default
feature set of IMS (Zhong and Ng, 2010). Moreover, Raganato
et al. (2017b) present a number of end-to-end neural WSD archi-
tectures. The best performing one is based on a bidirectional Long
Short-Term Memory (BLSTM) with attention and two auxiliary
loss functions (part-of-speech and the WordNet coarse-grained
semantic labels). Melamud et al. (2016) also make use of unan-
notated data to train a BLSTM. The work by Yuan et al. (2016b),
which we consider in this paper, belongs to this last category.
Different from Melamud et al. (2016), it uses significantly more
unannotated data, the model contains more hidden units (2048 vs.
600), and the sense assignment is more elaborated. We describe
this approach in more detail in the following section.

3. WSD with Language Models

The method proposed by Yuan et al. (2016b) performs WSD by
annotating each lemma in a text with one WordNet synset that is
associated with its meaning. Broadly speaking, the disambigua-
tion is done by: 1) constructing a language model from a large
unannotated dataset; 2) extracting sense embeddings from this
model using a much smaller annotated dataset; 3) relying on the
sense embeddings to make predictions on the lemmas in unseen
sentences. Each operation is described below.

Constructing Language Models. Long Short-Term Memory
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Figure 3.4: The LSTM model used to perform language modeling
and compute context embeddings. At training time, a softmax layer
is added, allowing it to predict the omitted word; at test time, the
context embeddings are used for WSD in a nearest-neighbor or label-
propagation procedure.

(LSTM) (Hochreiter and Schmidhuber, 1997) is a celebrated re-
current neural network architecture that has proven to be effective
in many natural language processing tasks (Sutskever et al., 2014;
Dyer et al., 2015; He et al., 2017, among others). Different from
previous architectures, LSTM is equipped with trainable gates
that control the flow of information, allowing the neural networks
to learn both short- and long-range dependencies.

In Yuan et al. (2016b), the first operation consists of construct-
ing an LSTM language model to capture the meaning of words
in context. They use an LSTM network with a single hidden
layer of h nodes. Given a sentence s = (w1,w2, . . . ,wn), they
replace word wk (1 ≤ k ≤ n) by a special token $. The model
takes this new sentence as input and produces a context vector c
of dimensionality p (see Figure 3.4).1

Each word w in the vocabulary V is associated with an em-
bedding φo(w) of the same dimensionality. The model is trained

1As usual, vectors are indicated with boldface to distinguish them to scalar
and other symbols.
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to predict the omitted word, minimizing the softmax loss over a
big collection D of sentences.

`=−∑
s∈D

|s|

∑
k=1

log
exp(c ·φo(wk))

∑w′∈V exp(c ·φo(w′))

After the model is trained, we can use it to extract context
embeddings, i.e., latent numerical representations of the sentence
surrounding a given word.

Calculating Sense Embeddings. The model produced by the
LSTM network is meant to capture the “meaning” of words in the
context they are mentioned. In order to perform the sense disam-
biguation, we need to extract from it a suitable representation for
word senses. To this purpose, the method relies on another corpus
where each word is annotated with the corresponding sense.

The main intuition is that words used with the same sense
are mentioned in contexts which are very similar to each other as
well. This suggests a simple way to calculate sense embeddings.
First, the LSTM model is invoked to compute the context vector
for each occurrence of one sense in the annotated dataset. Once
all context vectors are computed, the sense embedding is defined
as the average of all vectors. Let us assume, for instance, that
the sense horse2

n (that is, the second sense of horse as a noun)
appears in the two sentences:

(1) The move of the horse2
n to the corner forced the check-

mate.

(2) Karjakin makes up for his lost bishop a few moves later,
trading rooks and winning black’s horse2

n.

In this case, the method will replace the sense by $ in the sen-
tences and feed them to the trained LSTM model to calculate two
context vectors c1 and c2. The sense embedding shorse2

n
is then
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computed as:

shorse2
n
=

c1 + c2

2

This procedure is computed for every sense that appears in
the annotated corpus.

Averaging technique to predict senses. After all sense embed-
dings are computed, the method is ready to disambiguate target
words. This procedure proceeds as follows:

1. Given an input sentence and a target word, it replaces the
occurrence of the target word by $ and uses the LSTM
model to predict a context vector ct.

2. The lemma of the target word is used to retrieve from Word-
Net the candidate synsets s1, . . . ,sn where n is the number
of synsets. Then, the procedure looks up the corresponding
sense embeddings s1, . . . ,sn computed in the previous step.

3. The procedure invokes a subroutine to choose one of the n
senses for the context vector ct. It selects the sense whose
vector is closest to ct using cosine as the similarity function.

Label Propagation. Yuan et al. (2016b) argue that the averag-
ing procedure is suboptimal because of two reasons. First, the
distribution of occurrences of senses is unknown whereas aver-
aging is only suitable for spherical clusters. Second, averaging
reduces the representation of occurrences of each sense to a single
vector and therefore ignores sense prior. For this reason, they
propose to use label propagation for inference as an alternative
to averaging. Label propagation (Zhu and Ghahramani, 2002) is
a classic semi-supervised algorithm that has been employed in
WSD (Niu et al., 2005) and other NLP tasks (Chen et al., 2006;
Zhou, 2011). The procedure involves predicting senses for not
only the target cases but also for unannotated words queried from
a corpus. It represents both the target cases and unannotated
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words as points in a vector space and iteratively propagates classi-
fication labels from the target classes to the words. In this way, it
can be used to construct non-spherical clusters and to give more
influence to frequent senses.

Overall algorithm. The overall disambiguation procedure that
we implemented proceeds as follows:

1. Monosemous: First, the WSD algorithm checks whether
the target lemma is monosemous (i.e., there is only one
synset). In this case, the disambiguation is trivial.

2. Label propagation: If the label propagation is enabled, then
it checks whether the target lemma occurs at least once in
the annotated dataset and at least once in the auxiliary
unannotated dataset. In this case, the procedure applies
the label propagation technique for selecting the candidate
synset.

3. Averaging: If the previous strategies are not applicable and
there is at least one occurrence of the target lemma in the
annotated dataset, then we apply the averaging technique
for selecting the candidate synset.

4. MFS fallback: If the target lemma does not appear in the
annotated dataset, then the system picks the most-frequent
synset.2

4. Reproduction Study: Methodology

Before we report the results of our experiments, we describe the
datasets used and give some details regarding our implementation.

Training data. The 100-billion-token corpus used in the orig-
inal publication is not publicly available. Therefore, for the
training of the LSTM models, we used the English Gigaword
Fifth Edition (Linguistic Data Consortium (LDC) catalog number

2Notice that Yuan et al. (2016b) did not report if they use an MFS-fallback
strategy or simply returned no answer.
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LDC2011T07). The corpus consists of 1.8 billion tokens in 4.1
million documents, originated from four major news agencies.
We leave the study of bigger corpora for future work.

For the training of the sense embeddings, we use the same
two corpora used by Yuan et al. (2016b):

1. SemCor (Miller et al., 1993a) is a corpus containing ap-
proximately 240,000 sense annotated words. The tagged
documents originate from the Brown corpus (Francis and
Kucera, 1979) and cover various genres.

2. OMSTI (Taghipour and Ng, 2015) contains one million
sense annotations automatically tagged by exploiting the
English-Chinese part of the parallel MultiUN corpus (Eisele
and Chen, 2010). A list of English translations were manu-
ally created for each WordNet sense. If the Chinese trans-
lation of an English word matches one of the manually
curated translations for a WordNet sense, that sense is se-
lected.

Implementation. We used the BeautifulSoup HTML parser to
extract plain text from the Gigaword corpus. Then, we used the
English models3 of Spacy 1.8.2 for sentence boundary detection
and tokenization. The LSTM model is implemented using Tensor-
Flow 1.2.1 (Abadi et al., 2015). We chose TensorFlow because
of its industrial-grade quality and because it can train large-scale
models.

The main computational bottleneck of the entire process is
the training of the LSTM model. Although we do not use a 100-
billion-token corpus, training the model on Gigaword can already
take years if not optimized properly. To reduce training time, we
assumed that all (padded) sentences in the batch have the same
length. This optimization increases the speed by 17% as measured
on a smaller model (h = 100, p = 10). Second, following Yuan et

3en_core_web_md-1.2.1
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al., we use the sampled softmax loss function (Jean et al., 2015).
Third, we grouped sentences of similar length together while
varying the number of sentences in a batch to fully utilize GPU
RAM. Together, these heuristics increased training speed by 42
times.

Although Yuan et al. proposed to use a distributed imple-
mentation of label propagation (Ravi and Diao, 2016), we found
that scikit-learn (Pedregosa et al., 2011) was fast enough for our
experiments. For hyperparameter tuning, we use the annotations
in OMSTI (which are not used at test time). After measuring the
performance of some variations of label propagation (scikit-learn
implementation: LabelPropagation or LabelSpreading; similarity
measure: inner product or radial basis function with different
values of γ), we found that the combination of LabelSpreading
and inner product similarity leads to the best result which is also
better than averaging on the development set.

Evaluation framework. For evaluating the WSD predictions,
we selected two test sets: one from the Senseval2 (Palmer et al.,
2001) competition, which tests the disambiguation of nouns,
verbs, adjectives and adverbs, and one from the 2013 edition
(Navigli et al., 2013b), which focuses only on nouns.

The test set from Senseval-2 is the English All-Words Task;
senseval2 henceforth. This dataset contains 2,282 annotations
from three articles from the Wall Street Journal. Most of the anno-
tations are nominal, but the competition also contains annotations
for verbs, adjectives, and adverbs. In this test set, 66.8% of all
target words are annotated with the most-frequent sense (MFS)
of the lemma. This means that the simple strategy of always
selecting the MFS would score 66.8% F1 on this dataset.

The test set from SemEval-2013 is the one taken from task 12:
Multilingual Word Sense Disambiguation; semeval2013 hence-
forth. This task consists of two disambiguation tasks: Entity
Linking and Word Sense Disambiguation for English, German,
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French, Italian, and Spanish. This test set contains 13 articles
from previous editions of the workshop on Statistical Machine
Translation.4 The articles contain 1,644 test instances in total,
which are all nouns. The application of the MFS baseline on this
dataset yields an F1 score of 63.0%.

5. Results

In this section, we report our reproduction of the results of Yuan
et al. (2016b) and additional experiments to gain a deeper insight
into the strengths and weaknesses of the approach. These experi-
ments focus on the performance on the most- and less-frequent
senses, coverage of the annotated dataset and the consequent
impact on the overall predictions, the granularity of the sense
representation, and the impact of the unannotated data and model
complexity on the accuracy of WSD.

Reproduction results. We trained the LSTM model with the
best reported settings in Yuan et al. (2016b) (hidden layer size
h = 2048, embedding dimensionality p = 512) using a machine
equipped with an Intel Xeon E5-2650, 256GB of RAM, 8TB
of disk space, and two nVIDIA GeForce GTX 1080 Ti GPUs.
During our training, one epoch took about one day to finish with
TensorFlow fully utilizing one GPU. The whole training process
took four months. We tested the performance of the downstream
WSD task three times during the training and observed that the
best performance is obtained at the 65th epoch, despite a later
model producing a lower negative log-likelihood. Thus, we used
the model produced at the 65th epoch for our experiments below.

Table 3.8 (p. 91) presents the results using the test sets sen-
seval2 and semeval2013, respectively. The top part of the table
presents our reproduction results, the middle part reports the re-
sults from Yuan et al. (2016b), while the bottom part reports a

4http://www.statmt.org

http://www.statmt.org


83

representative sample of the other state-of-the-art approaches.

It should be noted that with the test set semeval2013, all
scorers use WordNet 3.0, therefore the performance of the various
methods can be directly compared. However, not all answers in
senseval2 can be mapped to WN3.0 and we do not know how
Yuan et al. (2016b) handled these cases. In the WSD evaluation
framework (Moro et al., 2014) that we selected for evaluation,
these cases were either re-annotated or removed. Thus, our F1 on
senseval2 cannot be directly compared with the F1 in the original
paper.

From a first glance at Table 3.8 (p. 91), we observe that if we
use SemCor to train the synset embeddings, then our results come
close to the state-of-the-art on senseval2 (0.720 vs. 0.733). On
semeval2013, we achieve results comparable to other embeddings-
based approaches (Raganato et al., 2017b; Iacobacci et al., 2016;
Melamud et al., 2016). However, the gap with the graph-based ap-
proach of Weissenborn et al. (2015) is still significant. When we
use both SemCor and OMSTI for the annotated data, our results
drop 0.02 point for senseval2, whereas they increase by almost
0.01 for semeval2013. Different from Yuan et al. (2016b), we did
not observe improvement by using label propagation (comparing
T: SemCor, U: OMSTI against T:SemCor without propagation).
However, the performance of the label propagation strategy is
still competitive on both test sets.

Most- vs. less-frequent-sense instances. The original paper
only analyses the performance on the whole test sets. We extend
this analysis by looking at the performance for disambiguating
the most frequent-sense (MFS) and less-frequent-sense (LFS)
instances. The first type of instances are the ones for which the
correct link is the most-frequent sense, whereas the second subset
consists of the remaining ones. This analysis is important because
it is well-known that the simple strategy of always choosing the
MFS is a strong baseline in WSD, thus there is a tendency for
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WSD systems to overfit towards the MFS (Postma et al., 2016).
Table 3.6 (p. 90) shows that the method by Yuan et al. (2016b)

does not overfit towards the MFS to the same extent as other
supervised systems since the recall on LFS instances is still quite
high 0.41 (a lower recall on LFS instances than on MFS ones is
expected due to the reduced training data for them).

On semeval13, the recall on LFS is already relatively high
using only SemCor (0.33), and reaches 0.38 when using both
SemCor and OMSTI. For comparison, the default system IMS
(Zhong and Ng, 2010) trained on SemCor only obtains an R_lfs
of 0.15 on semeval13 (Postma et al., 2016) and only reaches 0.33
with a large amount of annotated data.

Finally, our implementation of the label propagation does
seem to slightly overfit towards the MFS. When we compare the
results of the averaging technique using SemCor and OMSTI
versus when we use label propagation, we notice an increase in
the MFS recall (from 0.85 to 0.91), whereas the LFS recall drops
from 0.40 to 0.32.

Meaning coverage in annotated datasets. The WSD pro-
cedure depends on an annotated corpus to compose its sense
representations, making missing annotations an insurmountable
obstacle. In fact, annotated datasets only contain annotations for a
proper subset of the possible candidate synsets listed in WordNet.
We analyze this phenomenon using four statistics:

1. Candidate Coverage: For each test set, we performed
a lookup in WordNet to determine the unique candidate
synsets of all target lemmas. We then determined what
percentage of these candidate synsets that have at least one
annotation in the annotated dataset.

2. Lemma Coverage: Given a target lemma in a test set, we
performed a lookup in WordNet to determine the unique
candidate synsets. If all candidate synsets of that target
lemma have at least one annotation in the annotated dataset,
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we claim that the lemma is covered. The lemma coverage
is then the percentage of all covered target lemmas. A high
lemma coverage indicates that annotated dataset covers
most of the meanings in the test set.

3. Gold Coverage: We calculate the percentage of the correct
answers in the test set that has at least one annotation in
the annotated dataset.

The column “Candidate Coverage” of Table 3.9 (p. 92) shows
that SemCor only contains less than 70% of all candidate synsets
for senseval2 and semeval2013, meaning that a model will never
have a representation for more than 30% of the candidate synsets.
Even with the addition of OMSTI, the coverage does not exceed
70%, meaning that we lack evidence for a significant number of
potential annotations. Moreover, the column “Lemma Coverage”
illustrates that we have evidence for all potential solutions for
only 30% of the lemmas in both WSD competitions, meaning
that in the large majority of the cases some solutions are never
seen. The column “Gold coverage” measures whether the right
answers are at least seen in the annotated dataset. The numbers
illustrate that 20% of the solutions in the test sets do not have
any annotations. With our approach, these answers can only
be returned if the lemma is monosemous or by random guess
otherwise.

To further investigate these issues, Table 3.10 (p. 92) reports
the recall of the various disambiguation strategies which could
be invoked depending on the coverage of the lemma (these can
be: monosemous, averaging, label propagation, MFS – see the
overall procedure reported in Section 3). We observe that the
MFS fallback plays a significant role in obtaining the overall
high accuracy since it is invoked many times, especially with
OMSTI due to the low coverage of the dataset (in this case it is
invoked in 775 cases vs. 1072 of averaging). For example, if we
had not applied the MFS fallback strategy for senseval2 using
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SemCor as the annotated corpus, our performance would have
dropped from 0.72 to 0.66, below the MFS baseline of 0.67 for
this task.5 Label propagation was indeed applied on half of the
cases, but leads to lower results. From these results, we learn
that the effectiveness of this method strongly depends on the
coverage of the annotated datasets: If it is not high, as it is with
OMSTI, then the performance of this method reduces to the one
of choosing the MFS.

Granularity of sense representation. Rothe and Schütze
(2017) provided evidence for the claim that the granularity of
the sense representations has an influence on WSD performance.
More in particular, their WSD system performed better when
trained on sensekeys (called lexemes in their paper) than on
synsets. Although a sensekey-based disambiguation results in
less annotated data per target lemma, the sensekey representation
is more precise (since it is a lemma associated with a particular
meaning) than at the synset level.

The reimplementation discussed in this paper allows us to
answer the question: “How will LSTM models work if we lower
the disambiguation level from synset to sensekey?” Table 3.7
(p. 90) presents the results of this experiment. As we can see from
the table, our method also returns better performance on both test
sets. This behavior is interesting and one possible explanation
is that sensekeys are more discriminative than synsets and this
favors the disambiguation.

Impact of unannotated data and model size. Since unanno-
tated data is abundant, it is tempting to use more and more data to
train language models, hoping that better word embeddings would
translate into improved WSD performance. The fact that Yuan
et al. (2016b) used a 100-billion-token corpus only reinforces this

5senseval2 contains 2,282 instances, of which the system would answer in-
correctly 135 instances if the MFS fallback strategy is not used, hence dropping
0.06 in performance.
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intuition. We empirically evaluate the effectiveness of unlabeled
data by varying the size of the corpus used to train LSTM mod-
els and measure the corresponding WSD performance. More in
particular, the size of the training data was set at 1%, 10%, 25%,
and 100% of the GigaWord corpus (which contains 1.8× 107,
1.8×108, 4.5×108 and 1.8×109 words, respectively).

Figure 3.5a (p. 93) shows the effect of unannotated data vol-
ume on WSD performance. The data points at 100 billion (1011)
tokens correspond to Yuan et al. (2016b)’s reported results. As
might be expected, a bigger corpus leads to more meaningful con-
text vectors and therefore higher performance on WSD. However,
the amount of data needed for 1% of improvement in F1 grows
exponentially fast (notice that the horizontal axis is in log scale).
Extrapolating from this graph, to get a performance of 0.8 F1 by
adding more unannotated data, one would need a corpus of 1012

tokens. This observation also applies to the balance of the sense
assignment. Using only 25% of the unannotated data already
yields a recall of 35% on the less-frequent senses.

In addition, one might expect to push the performance further
by increasing the capacity of the LSTM models. To evaluate this
possibility, we performed an experiment in which we varied the
sizes of LSTM models trained on 100% of the GigaWord corpus
and evaluated against senseval2 and semeval2013, respectively.
Figure 3.5b (p. 93) suggests that it is possible but one would need
exponentially bigger models.

Finally, Reimers and Gurevych (2017) have showed that it is
crucial to report the distribution of test scores instead of only one
score as this practice might lead to wrong conclusions. As pointed
out at the beginning of Section 5, our biggest models take months
to train, making training multiple versions of them impractical.
However, we trained our smallest model (h = 100, p = 10) ten
times and our second smallest model (h = 256, p = 64) five times
and observed that as the number of parameters increased, the stan-
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dard deviation of F1 decreased from 0.008 to 0.003. We, therefore,
believe random fluctuation does not affect the interpretation of
the results.

6. Conclusions

This paper reports the results of a reproduction study of the model
proposed by Yuan et al. (2016b) and an additional analysis to
gain a deeper understanding of the impact of various factors on
its performance.

A number of interesting conclusions can be drawn from our
results. First, we observed that we do not need a very large unan-
notated dataset to achieve state-of-the-art all-words WSD perfor-
mance since we used the Gigaword corpus, which is two orders of
magnitude smaller than Yuan et al. (2016b)’s proprietary corpus,
and got similar performance on senseval2 and semeval2013. A
more detailed analysis hints that adding more unannotated data
and increasing model capacity are subject to diminishing returns.
Moreover, we observed that this approach has a more balanced
sense assignment than other techniques, as shown by the relatively
good performance on less-frequent-sense instances. In addition,
we identified that the limited sense coverage in annotated dataset
places a potentially upper bound for the overall performance.

The code with detailed replication instructions is available at:
https://github.com/cltl/wsd-dynamic-sense-vector and
the trained models at: https://doi.org/10.6084/m9.figshare.
6352964.v1.
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4. Adaptation

Consider a hypothetical NLP system that builds up its output via a
sequence of n steps, each introducing a substructure (e.g. an edge
in a syntactic tree or a part-of-speech label) with the accuracy γ0.
Instead of independent decisions, if each step takes previously
built structures as input, the step-wise accuracy is better modeled
as a function of a base accuracy and preceding errors. Assume
that each such error decreases the accuracy by a small constant,
we arrive at γ = max(γ0−m(1− r),0) where m ∈ {0, ..,n− 1}
is the number of pre-existing errors and r ∈ (0,1) stands for the
robustness of the system against them. This simple model allows
us to simulate the effect of error propagation on accuracy (Fig-
ure 4.1). The shape of the curves resembles empirical results
in transition-based dependency parsing (McDonald and Nivre,
2007). Together, they illustrate how error propagation can seri-
ously degrade performance, and how increasing robustness can
alleviate this problem in a significant way.

The paper in this chapter attempts to increase robustness
by replacing the conventional supervised training regime with
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Figure 4.1: Accuracy of the nth decision simulated for some values of
base accuracy rate γ0, robustness r, and decision sequence length n.



96 Chapter 4. Adaptation

reinforcement learning. In transition-based dependency parsing
(see Section 2.5.3), the parser can be considered an agent that
builds up dependency trees by executing actions sequentially,
each modifying its internal state while optionally adding one more
arc. To learn a policy that decides which action to take, a naïve
training scheme applies a sequence of correct actions and trains
the parser on predicting the next one. This means the parser is
never trained on how to behave on erroneous states and therefore
is more susceptible to error propagation. To expand the training
set, efforts have been made in designing dynamic oracles, i.e.
algorithms that compute the optimal action at any valid parsing
state with respect to a reference parse tree (Goldberg and Nivre,
2012). A disadvantage of this approach is that a distinct algorithm
has to be designed for each flavor of transition-based dependency
parsing (Goldberg and Nivre, 2012, 2013; Goldberg et al., 2014;
Gómez-Rodríguez et al., 2014; Björkelund and Nivre, 2015).
Reinforcement learning offers a general and elegant solution:
it trains parsers on their own actions using tree-level accuracy
as reward signals. Our paper shows that this solution leads to
improved performance. More importantly, we devise a procedure
to quantify the effect of error propagation and show that parsers
trained with reinforcement learning are indeed more robust.

Dependency parsing is a convenient test bed because solutions
are small and annotations abundant. However, the algorithms de-
veloped in our paper are general enough to be applied to virtually
any NLP problem. Replace parsing actions with clustering ones
and we can perform coreference resolution. Plugging in labeling
actions instead, we can solve named-entity resolution. Machine
translation, speech recognition, and image captioning can also
be tackled if we use sequence scores such as BLEU as rewards.
We could also solve more than one problem at once by combin-
ing action sets. In support of this hypothesis, various flavors
of reinforcement learning have been applied in all of the above-
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mentioned tasks (Clark and Manning, 2016a; Lao et al., 2019;
Ranzato et al., 2016; Bengio et al., 2015). Although error prop-
agation is not measured in those papers, there is little reason to
doubt a reduction similar to what we have observed.
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Abstract

Error propagation is a common problem in NLP. Rein-
forcement learning explores erroneous states during train-
ing and can therefore be more robust when mistakes are
made early in a process. In this paper, we apply rein-
forcement learning to greedy dependency parsing which
is known to suffer from error propagation. Reinforce-
ment learning improves accuracy of both labeled and
unlabeled dependencies of the Stanford Neural Depen-
dency Parser, a high performance greedy parser, while
maintaining its efficiency. We investigate the portion of
errors which are the result of error propagation and con-
firm that reinforcement learning reduces the occurrence
of error propagation.

1. Introduction

Error propagation is a common problem for many NLP tasks
(Song et al., 2012; Quirk and Corston-Oliver, 2006; Han et al.,
2013; Gildea and Palmer, 2002; Yang and Cardie, 2013). It
can occur when NLP tools applied early on in a pipeline make
mistakes that have negative impact on higher-level tasks further
down the pipeline. It can also occur within the application of
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a specific task, when sequential decisions are taken and errors
made early in the process affect decisions made later on.

When reinforcement learning is applied, a system actively
tries out different sequences of actions. Most of these sequences
will contain some errors. We hypothesize that a system trained
in this manner will be more robust and less susceptible to error
propagation.

We test our hypothesis by applying reinforcement learning to
greedy transition-based parsers (Yamada and Matsumoto, 2003;
Nivre, 2004), which have been popular because of superior ef-
ficiency and accuracy nearing state-of-the-art. They are also
known to suffer from error propagation. Because they work by
carrying out a sequence of actions without reconsideration, an
erroneous action can exert a negative effect on all subsequent
decisions. By rendering correct parses unreachable or promoting
incorrect features, the first error induces the second error and so
on. McDonald and Nivre (2007) argue that the observed nega-
tive correlation between parsing accuracy and sentence length
indicates error propagation is at work.

We compare reinforcement learning to supervised learning
on Chen and Manning (2014)’s parser. This high performance
parser is available as open source. It does not make use of alter-
native strategies for tackling error propagation and thus provides
a clean experimental setup to test our hypothesis. Reinforcement
learning increased both unlabeled and labeled accuracy on the
Penn TreeBank and German part of SPMRL (Seddah et al., 2014).
This outcome shows that reinforcement learning has a positive
effect, but does not yet prove that this is indeed the result of
reduced error propagation. We therefore designed an experiment
which identified which errors are the result of error propagation.
We found that around 50% of avoided errors were cases of error
propagation in our best arc-standard system. Considering that
27% of the original errors were caused by error propagation, this
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result confirms our hypothesis.

This paper provides the following contributions:

1. We introduce Approximate Policy Gradient (APG), a new
algorithm that is suited for dependency parsing and other
structured prediction problems.

2. We show that this algorithm improves the accuracy of a
high-performance greedy parser.

3. We design an experiment for analyzing error propagation
in parsing.

4. We confirm our hypothesis that reinforcement learning
reduces error propagation.

To our knowledge, this paper is the first to experimentally
show that reinforcement learning can reduce error propagation in
NLP.

The rest of this paper is structured as follows. We discuss
related work in Section 2. This is followed by a description
of the parsers used in our experiments in Section 3. Section 4
outlines our experimental setup and presents our results. The
error propagation experiment and its outcome are described in
Section 5. Finally, we conclude and discuss future research in
Section 6.

2. Related Work

In this section, we address related work on dependency parsing,
including alternative approaches for reducing error propagation,
and reinforcement learning.

2.1. Dependency Parsing

We use Chen and Manning (2014)’s parser as a basis for our
experiments. Their parser is open-source and has served as a
reference point for many recent publications (Dyer et al., 2015;
Weiss et al., 2015; Alberti et al., 2015; Honnibal and Johnson,
2015, among others). They provide an efficient neural network
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that learns dense vector representations of words, PoS-tags and
dependency labels. This small set of features makes their parser
significantly more efficient than other popular parsers, such as
the Malt (Nivre et al., 2007) or MST (McDonald et al., 2005b)
parser while obtaining higher accuracy. They acknowledge the
error propagation problem of greedy parsers, but leave addressing
this through (e.g.) beam search for future work.

Dyer et al. (2015) introduce an approach that uses Long Short-
Term Memory (LSTM). Their parser still works incrementally
and the number of required operations grows linearly with the
length of the sentence, but it uses the complete buffer, stack and
history of parsing decisions, giving the model access to global
information. Weiss et al. (2015) introduce several improvements
on Chen and Manning (2014)’s parser. Most importantly, they put
a globally-trained perceptron layer instead of a softmax output
layer. Their model uses smaller embeddings, rectified linear
instead of cubic activation function, and two hidden layers instead
of one. They furthermore apply an averaged stochastic gradient
descent (ASGD) learning scheme. In addition, they apply beam
search and increase training data by using unlabeled data through
the tri-training approach introduced by Li et al. (2014b), which
leads to further improvements.

Kiperwasser and Goldberg (2016b) introduce a new way to
represent features using a bidirectional LSTM and improve the
results of a greedy parser. Andor et al. (2016) present a mathemat-
ical proof that globally normalized models are more expressive
than locally normalized counterparts and propose to use global
normalization with beam search at both training and testing.

Our approach differs from all of the work mentioned above,
in that it manages to improve results of Chen and Manning (2014)
without changing the architecture of the model nor the input rep-
resentation. The only substantial difference lies in the way the
model is trained. In this respect, our research is most similar to
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training approaches using dynamic oracles (Goldberg and Nivre,
2012). Traditional static oracles can generate only one sequence
of actions per sentence. A dynamic oracle gives all trajectories
leading to the best possible result from every valid parse config-
uration. They can therefore be used to generate more training
sequences including those containing errors. A drawback of this
approach is that dynamic oracles have to be developed specifically
for individual transition systems (e.g. arc-standard, arc-eager).
Therefore, a large number of dynamic oracles have been devel-
oped in recent years (Goldberg and Nivre, 2012, 2013; Goldberg
et al., 2014; Gómez-Rodríguez et al., 2014; Björkelund and Nivre,
2015). In contrast, the reinforcement learning approach proposed
in this paper is more general and can be applied to a variety of
systems.

Zhang and Chan (2009) present the only study we are aware
of that also uses reinforcement learning for dependency parsing.
They compare their results to Nivre et al. (2006b) using the same
features, but they also change the model and apply beam search.
It is thus unclear to what extend their improvements are due to
reinforcement learning.

Even though most approaches mentioned above improve the
results reported by Chen and Manning (2014) and even more
impressive results on dependency parsing have been achieved
since (notably, Andor et al. (2016)), Chen and Manning’s parser
provides a better baseline for our purposes. We aim at investigat-
ing the influence of reinforcement learning on error propagation
and want to test this in a clean environment, where reinforcement
learning does not interfere with other methods that address the
same problem.

2.2. Reinforcement Learning

Reinforcement learning has been applied to several NLP tasks
with success, e.g. agenda-based parsing (Jiang et al., 2012), se-
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mantic parsing (Berant and Liang, 2015) and simultaneous ma-
chine translation (Grissom II et al., 2014). To our knowledge,
however, none of these studies investigated the influence of rein-
forcement learning on error propagation.

Learning to Search (L2S) is probably the most prominent line
of research that applies reinforcement learning (more precisely,
imitation learning) to NLP. Various algorithms, e.g. SEARN
(Daumé III et al., 2009) and DAgger (Ross et al., 2011), have
been developed sharing common high-level steps: a roll-in policy
is executed to generate training states from which a roll-out pol-
icy is used to estimate the loss of certain actions. The concrete
instantiation differs from one algorithm to another with choices
including a referent policy (static or dynamic oracle), learned
policy, or a mixture of the two. Early work in L2S focused on re-
ducing reinforcement learning into binary classification (Daumé
III et al., 2009), but newer systems favored regressors for ef-
ficiency (Chang et al., 2015, Supplementary material, Section
B). Our algorithm APG is simpler than L2S in that it uses only
one policy (pre-trained with standard supervised learning) and
applies the existing classifier directly without reduction (the only
requirement is that it is probabilistic). Nevertheless, our results
demonstrate its effectiveness.

APG belongs to the family of policy gradient algorithms (Sut-
ton et al., 1999), i.e. it maximizes the expected reward directly
by following its gradient w.r.t. the parameters. The advantage of
using a policy gradient algorithm in NLP is that gradient-based
optimization is already widely used. REINFORCE (Williams,
1992; Ranzato et al., 2016) is a widely-used policy gradient algo-
rithm but it is also well-known for suffering from high variance
(Sutton et al., 1999).

We directly compare our approach to REINFORCE, whereas
we leave a direct comparison to L2S for future work. Our ex-
periments show that our algorithm results in lower variance and
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achieves better performance than REINFORCE.

Recent work addresses the approximation of reinforcement
learning gradient in the context of machine translation. Shen
et al. (2016)’s algorithm is roughly equivalent to the combination
of an oracle and random sampling. Their approach differs from
ours, because it does not retain memory across iteration as in our
best-performing model (see Section 4).

2.3. Reinforcement and error propagation

As mentioned above, previous work that applied reinforcement
learning to NLP has, to our knowledge, not shown that it improved
results by reducing error propagation.

Work on identifying the impact of error propagation in pars-
ing is rare, Ng and Curran (2015b) being a notable exception.
They provide a detailed error analysis for parsing and classify
which kind of parsing errors are involved with error propagation.
There are four main differences between their approaches and
ours. First, Ng and Curran correct arcs in the tree and our algo-
rithm corrects decisions of the parsing algorithm. Second, our
approach distinguishes between cases where one erroneous action
deterministically leads to multiple erroneous arcs and cases where
an erroneous action leads to conditions that indirectly result in
further errors (see Section 1 for a detailed explanation). Third,
Ng and Curran’s algorithm corrects all erroneous arcs that are
the same type of parsing error and point out that they cannot
examine the interaction between multiple errors of the same type
in a sentence. Our algorithm corrects errors incrementally and
therefore avoids this issue. Finally, the classification and analysis
presented in Ng and Curran (2015b) are more extensive and de-
tailed than ours. Our algorithm can, however, easily be extended
to perform similar analysis. Overall, Ng and Curran’s approach
for error analysis and ours are complementary. Combining them
and applying them to various systems would form an interesting
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direction for future work.

3. A Reinforced Greedy Parser

This section describes the systems used in our experiments. We
first describe the arc-standard algorithm, because familiarity with
it helps to understand our error propagation analysis. Next, we
briefly point out the main differences between the arc-standard
algorithm and the alternative algorithms we experimented with
(arc-eager and swap-standard). We then outline the traditional
and our novel machine learning approaches. The features we
used are identical to those described in Chen and Manning (2014).
We are not aware of research identifying the best feature for a
neural parser with arc-eager or swap-standard so we use the same
features for all transition systems.

3.1. Transition-Based Dependency Parsing

In an arc-standard system (Nivre, 2004), a parsing configuration
consists of a triple 〈Σ,β ,A〉, where Σ is a stack, β is a buffer
containing the remaining input tokens and A are the dependency
arcs that are created during parsing process. At initiation, the
stack contains only the root symbol (Σ = [ROOT]), the buffer
contains the tokens of the sentence (β = [w1, ...,wn]) and the set
of arcs is empty (A = /0).

The arc-standard system supports three transitions. When σ1

is the top element and σ2 the second element on the stack, and β1

the first element of the buffer:1

LEFTl adds an arc σ1
l−→ σ2 to A and removes σ2 from the stack.

RIGHTl adds an arc σ2
l−→ σ1 to A and removes σ1 from the

stack.
SHIFT moves β1 to the stack.

1Naturally, the transitions LEFTl and RIGHTl can only take place if the
stack contains at least two elements and SHIFT can only occur when there is at
least one element on the buffer.
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<ROOT> waves hit stocks themselves on the Big Board

Figure 4.2: Correct dependencies for a simplified example from Penn
TreeBank

When the buffer is empty, the stack contains only the root
symbol and A contains a parse tree, the configuration is completed.
For a sentence of Nw tokens, a full parse takes 2Nw + 1 transitions
to complete (including the initiation). Figure 4.2 provides the
gold parse tree for a (simplified) example from the Penn Treebank.
The steps taken to create the dependencies between the sentence’s
head word hit and its subject and direct object are provided in
Table 4.1 (p. 106).

To demonstrate that reinforcement learning can train different
systems, we also carried out experiments with arc-eager (Nivre,
2003) and swap-standard (Nivre, 2009). Arc-eager is designed
for incremental parsing and included in the popular MaltParser
(Nivre et al., 2006a). Swap-standard is a simple and effective
solution to unprojective dependency trees. Because arc-eager
does not guarantee complete parse trees, we used a variation
that employs an action called UNSHIFT to resume processing of
tokens that would otherwise not be attached to a head (Nivre and
Fernández-González, 2014).

3.2. Training with a Static Oracle

In transition-based dependency parsing, it is common to convert
a dependency treebank D 3 (x,y) into a collection of input fea-
tures s ∈S and corresponding gold-standard actions a ∈A for
training, using a static oracle O . In Chen and Manning (2014),
a neural network works as a function mapping input features to
probabilities of actions: fNN : S ×A → [0,1]. The neural net-
work is trained to minimize negative log-likelihood loss on the
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converted treebank:

L = ∑
(x,y)∈D

∑
(s,a)∈O(x,y)

− log fNN(s,a;θ) (4.1)

3.3. Reinforcement Learning

Following Maes et al. (2009), we view transition-based depen-
dency parsing as a deterministic Markov Decision Process. The
problem is summarized by a tuple 〈S ,A ,T ,r〉 where S is
the set of all possible states, A contains all possible actions,
T is a mapping S ×A → S called transition function and
r : S ×A → R is a reward function.

A state corresponds to a configuration and is summarized into
input features. Possible actions are defined for each transition
system described in Section 1. We keep the training approach
simple by using only one reward r(ȳ) at the end of each parse.

Given this framework, a stochastic policy guides our parser
by mapping each state to a probabilistic distribution of actions.
During training, we use function fNN described in Section 2 as
a stochastic policy. At test time, actions are chosen in a greedy
fashion following existing literature. We aim at finding the policy
that maximizes the expected reward (or, equivalently, minimizes
the expected loss) on the training dataset:

maximize η = ∑
(x,y)∈D

∑
a1:m∼ f

r(ȳ)
m

∏
i=1

fNN(si,ai;θ) (4.2)

where a1:m is a sequence of actions obtained by following policy
fNN until termination and s1:m are corresponding states (with sm+1

being the termination state).

3.4. Approximate Policy Gradient

Gradient ascent can be used to maximize the expected reward in
Equation 4.2. The gradient of expected reward w.r.t. parameters
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is (note that dz = zd(logz)):

∂η

∂θ
= ∑

(x,y)∈D
∑

a1:m∼ fNN

r(ȳ)
m

∏
i=1

fNN(si,ai)

m

∑
i=1

∂

∂θ
log fNN(si,ai;θ)

(4.3)

Because of the exponential number of possible trajectories,
calculating the gradient exactly is not possible. We propose
to replace it by an approximation (hence the name Approximate
Policy Gradient) by summing over a small subset U of trajectories.
Following common practice, we also use a baseline b(y) that only
depends on the correct dependency tree. The parameter is then
updated by following the approximate gradient:

∆θ ∝ ∑
(x,y)∈D

∑
a1:m∈U

(r(ȳ)−b(y))
m

∏
i=1

fNN(si,ai)

m

∑
i=1

∂

∂θ
log fNN(si,ai;θ)

(4.4)

Instead of sampling one trajectory at a time as in REIN-
FORCE, Equation 4.4 has the advantage that sampling over mul-
tiple trajectories could lead to more stable training and higher
performance. To achieve that goal, the choice of U is critical. We
empirically evaluate three strategies:

RL-ORACLE: only includes the oracle transition sequence.
RL-RANDOM: randomly samples k distinct trajectories at each

iteration. Every action is sampled according to fNN , i.e.
preferring trajectories for which the current policy assigns
higher probability.

RL-MEMORY: samples randomly as the previous method but
retains k trajectories with highest rewards across iterations
in a separate memory. Trajectories are “forgotten” (re-
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moved) randomly with probability ρ before each iteration.2

Intuitively, trajectories that are more likely and produce higher
rewards are better training examples. It follows from Equation 4.3
that they also bear bigger weight on the true gradient. This is the
rationale behind RL-RANDOM and RL-ORACLE. For a subop-
timal parser, however, these objectives sometimes work against
each other. RL-MEMORY was designed to find the right balance
between them. It is furthermore important that the parser is pre-
trained to ensure good samples. Algorithm 1 (p. 118) illustrates
the procedure of training a dependency parser using the proposed
algorithms.

4. Reinforcement Learning Experiments

We first train a parser using a supervised learning procedure and
then improve its performance using APG. We empirically tested
that training a second time with supervised learning has little to
no effect on performance.

4.1. Experimental Setup

We use PENN Treebank 3 with standard split (training, devel-
opment and test set) for our experiments with arg-standard and
arg-eager. Because the swap-standard parser is mainly suited for
non-projective structures, which are rare in the PENN Treebank,
we evaluate this parser on the German section of the SPMRL
dataset. For PENN Treebank, we follow Chen and Manning’s
preprocessing steps. We also use their pretrained model3 for arc-
standard and train our own models in similar settings for other
transition systems.

For reinforcement learning, we use AdaGrad for optimization.

2We assign a random number (drawn uniformly from [0,1]) to each trajectory
in memory and remove those assigned a number less than ρ .

3We use PTB_Stanford_params.txt.gz downloaded from
http://nlp.stanford.edu/software/nndep.shtml on December
30th, 2015.
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We do not use dropout because we observed that it destablized
the training process. The reward r(ȳ) is the number of correct
labeled arcs (i.e. LAS multiplied by number of tokens).4 The
baseline is fixed to half the number of tokens (corresponding to
a 0.5 LAS score). As training takes a lot of time, we tried only
few values of hyperparameters on the development set and picked
k = 8 and ρ = 0.01. 1,000 updates were performed (except for
REINFORCE which was trained for 8,000 updates) with each
training batch contains 512 randomly selected sentences. The
Stanford dependency scorer5 was used for evaluation.

4.2. Effectiveness of Reinforcement Learning

Table 4.3 (p. 120) displays the performance of different approaches
to training dependency parsers. Although we used Chen and
Manning (2014)’s pretrained model and Stanford open-source
software, the results of our baseline are slightly worse than what
is reported in their paper. This could be due to minor differences
in settings and does not affect our conclusions.

Across transition systems and two languages, APG outper-
forms supervised learning, verifying our hypothesis. Moreover, it
is not simply because the learners are exposed to more examples
than their supervised counterparts. RL-ORACLE is trained on
exactly the same examples as the standard supervised learning
system (SL), yet it is consistently superior. This can only be ex-
plained by the superiority of the reinforcement learning objective
function compared to negative log-likelihood.

The results support our hypothesis that APG is better than
REINFORCE (abbreviated as RE in Table 4.3, p. 120) as RL-
MEMORY always outperforms the classical algorithm and the
other two heuristics do in two out of three cases. The usefulness of

4Punctuation is not taken into account, following Chen and Manning (2014).
5Downloaded from http://nlp.stanford.edu/software/

lex-parser.shtml.
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training examples that contain errors is evident through the better
performance of RL-RANDOM and RL-MEMORY in comparison
to RL-ORACLE.

Table 4.4 (p. 120) shows the importance of samples for RL-
RANDOM. The algorithm hurts performance when only one
sample is used whereas training with two or more samples im-
proves the results. The difference cannot be explained by the
total number of observed samples because one-sample training is
still worse after 8,000 iterations compared to a sample size of 8
after 1,000 iterations. The benefit of added samples is twofold:
increased performance and decreased variance. Because these
benefits saturate quickly, we did not test sample sizes beyond 32.

5. Error Propagation Experiment

We hypothesized that reinforcement learning avoids error propaga-
tion. In this section, we describe our algorithm and the experiment
that identifies error propagation in the arc-standard parsers.

5.1. Error Propagation

Section 1 explained that a transition-based parser goes through the
sentence incrementally and must select a transition from [SHIFT,
LEFTl , RIGHTl] at each step. We use the term arc error to
refer to an erroneous arc in the resulting tree. The term decision
error refers to a transition that leads to a loss in parsing accuracy.
Decision errors in the parsing process lead to one or more arc
errors in the resulting tree. There are two ways in which a single
decision error may lead to multiple arc errors. First, the decision
can deterministically lead to more than one arc error, because
(e.g.) an erroneously formed arc also blocks other correct arcs.
Second, an erroneous parse decision changes some of the features
that the model uses for future decisions and these changes can
lead to further (decision) errors down the road.

We illustrate both cases using two incorrect derivations pre-
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<ROOT> waves hit stocks themselves on the Big Board

<ROOT> waves hit stocks themselves on the Big Board

(A)

(B)
<ROOT> waves hit stocks themselves on the Big Board

(C)

Figure 4.3: Three dependency graphs: gold (A), arc errors caused by
one decision error (B) and arc errors caused by multiple decision errors
(C).

sented in Figure 4.3. The original gold tree is repeated in (A).
The dependency graph in Figure 4.3 (B) contains three erroneous
dependency arcs (indicated by dashed arrows). The first error
must have occurred when the parser executed RIGHTamod cre-
ating the arc Big→ Board. After this error, it is impossible to
create the correct relations on→ Board and Board→ the. The
wrong arcs Big→ the and on→ Big are thus all the result of a
single decision error.

Figure 4.3 (C) represents the dependency graph that is actually
produced by our parser.6 It contains two erroneous arcs: hit→
themselves and themselves → on. Table 4.2 (p. 119) provides
a possible sequence of steps that led to this derivation, starting
from the moment stocks was added to the stack (Step 4). The first
error is introduced in Step 5’, where hit combines with stocks
before stocks has picked up its dependent themselves. At that
point, themselves can no longer be combined with the right head.
The proposition on, on the other hand, can still be combined with
the correct head. This error is introduced in Step 7’, where the
parser moves on to the stack rather than creating an arc from hit

6The example is a fragment of a more complex sentence consisting of
33 tokens. The parser does provide the correct output when is analyzes this
sequence in isolation.
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to themselves.7 There are thus two decision errors that lead to
the arc errors in Figure 4.3 (C). The second decision error can,
however, be caused indirectly by the first error. If a decision error
causes additional decision errors later in the parsing process, we
talk of error propagation. This cannot be known just by looking
at the derivation.

5.2. Examining the impact of decision errors

We examine the impact of individual decision errors on the overall
parse results in our test set by combining a dynamic oracle and a
recursive function. We use a dynamic oracle based on Goldberg
et al. (2014) which gives us the overall loss at any point during
the derivation. The loss is equal to the minimal number of arc
errors that will have been made once the parse is complete. We
can thus deduce how many arc errors are deterministically caused
by a given decision error.

The propagation of decision errors cannot be determined by
simply examining the increase in loss during the parsing process.
We use a recursive function to identify whether a particular parse
suffered from this. While parsing the sentence, we register which
decisions lead to an increase in loss. We then recursively reparse
the sentence correcting one additional decision error during each
run until the parser produces the gold. If each erroneous decision
has to be corrected in order to arrive at the gold, we assume
the decision errors are independent of each other. If, on the
other hand, the correction of a specific decision also fixes other
decisions down the road, the original parse suffers from error
propagation.

The results are presented in Table 4.5 (p. 120). Total Loss
indicates the number of arc errors in the corpus, Dec. Errors the
number of decision errors and Err. Prop. the number of decision

7Note that technically, on can still become a dependent of hit, but this can
only happen if on becomes the head of themselves which would also be an error.
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errors that were the result of error propagation. This number
was obtained by comparing the number of decision errors in the
original parse to the number of decision errors that needed to be
fixed to obtain the gold parse. If less errors had to be fixed than
originally present, we counted the difference as error propagation.
Note that fixing errors sometimes leads to new decision errors
during the derivation. We also counted the cases where more
decision errors needed to be fixed than were originally present
and report them in Table 4.5 (p. 120).8

On average, decision errors deterministically lead to more
than one arc error in the resulting parse tree. This remains stable
across systems (around 1.4 arc errors per decision error). We
furthermore observe that the proportion of decision errors that
are the result of error propagation has indeed reduced for all
reinforcement learning models. Among the errors avoided by
APG, 35.9% were propagated errors for RL-ORACLE, 48.9% for
RL-RANDOM, and 51.9% for RL-MEMORY. These percentages
are all higher than the proportion of propagated errors occurring
in the corpus parsed by SL (27%). This outcome confirms our
hypothesis that reinforcement learning is indeed more robust
for making decisions in imperfect environments and therefore
reduces error propagation.

6. Conclusion

This paper introduced Approximate Policy Gradient (APG), an
efficient reinforcement learning algorithm for NLP, and applied it
to a high-performance greedy dependency parser. We hypothe-
sized that reinforcement learning would be more robust against
error propagation and would hence improve parsing accuracy.

8We ran an alternative analysis where we counted all cases where fixing one
decision error in the derivation reduced the overall number of decision errors in
the parse by more than one. Under this alternative analysis, similar reductions
in the proportion of error propagation were observed for reinforcement learning.
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To verify our hypothesis, we ran experiments applying APG
to three transition systems and two languages. We furthermore in-
troduced an experiment to investigate which portion of errors were
the result of error propagation and compared the output of stan-
dard supervised machine learning to reinforcement learning. Our
results showed that: (a) reinforcement learning indeed improved
parsing accuracy and (b) propagated errors were over-represented
in the set of avoided errors, confirming our hypothesis.

To our knowledge, this paper is the first to show experimen-
tally that reinforcement learning can reduce error propagation
in an NLP task. This result was obtained by a straight-forward
implementation of reinforcement learning. Furthermore, we only
applied reinforcement learning in the training phase, leaving the
original efficiency of the model intact. Overall, we see the out-
come of our experiments as an important first step in exploring
the possibilities of reinforcement learning for tackling error prop-
agation.

Recent research on parsing has seen impressive improvement
during the last year achieving UAS around 94% (Andor et al.,
2016). This improvement is partially due to other approaches
that, at least in theory, address error propagation, such as beam
search. Both the reinforcement learning algorithm and the error
propagation study we developed can be applied to other pars-
ing approaches. There are two (related) main questions to be
addressed in future work in the domain of parsing. The first
addresses whether our method is complementary to alternative ap-
proaches and could also improve the current state-of-the-art. The
second question would address the impact of various approaches
on error propagation and the kind of errors they manage to avoid
(following Ng and Curran (2015b)).

APG is general enough for other structured prediction prob-
lems. We therefore plan to investigate whether we can apply our
approach to other NLP tasks such as coreference resolution or
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semantic role labeling and investigate if it can also reduce error
propagation for these tasks.

The source code of all experiments is publicly available at
https://bitbucket.org/cltl/redep-java.
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MemorySeqs← /0;
foreach training batch b do

foreach sentence s ∈ b do
OracleSeq← Oracle(s);
SystemSeqs← (sample k parsing transition sequences

for s);
if RL-Oracle then

ComputeGradients(OracleSeq);
else if RL-Random then

ComputeGradients(SystemSeqs);
else if RL-Memory then

m←MemorySeqs[s];
foreach q ∈ m do

if RandomNumber() < ρ then
Remove q from m;

end
end
foreach q ∈ SystemSeqs do

if |m| < k then
Insert q into m;

else
p← (sequence with smallest reward in m);
if reward(q) > reward(p) then

Replace p by q in m;
end

end
ComputeGradients(m);

end
Perform one gradient descent step;

end
Algorithm 1: Training a dependency parser with approximate policy
gradient.
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Arc- Arc- Swap-
standard eager standard

UAS LAS UAS LAS UAS LAS
SL 91.3 89.4 88.3 85.8 84.3 81.3
RE 91.9 90.2 89.7 87.2 87.5 84.4
RL-O 91.8 90.2 88.9 86.5 86.8 83.9
RL-R 92.2 90.6 89.4 87.0 87.5 84.5
RL-M 92.2 90.6 89.8 87.4 87.6 84.6

Table 4.3: Comparing training methods on PENN Treebank (arc-
standard and arc-eager) and German part of SPMRL-2014 (swap-
standard).

Dev Test Test std.
UAS LAS UAS LAS UAS LAS

SL 91.5 89.6 91.3 89.4 - -
RE 92.1∗ 90.4∗ 91.9∗ 90.2∗ 0.04 0.05
1 91.2∗ 89.1∗ 91.0∗ 88.9∗ 0.12 0.15
2 91.8∗ 90.0∗ 91.6∗ 89.9∗ 0.09 0.09
4 92.2∗ 90.5∗ 92.0∗ 90.4∗ 0.09 0.08
8 92.4∗ 90.8∗ 92.2∗ 90.6∗ 0.03 0.05

16 92.4 90.8 92.2 90.6 - -
32 92.4 90.8 92.3 90.6 - -

Table 4.4: Parsing accuracy of RL-RANDOM (arc-standard) with dif-
ferent sample sizes compared to supervised learning (SL) and REIN-
FORCE (RE). ∗: significantly different from SL with p < 0.001

SL RL-O RL-R RL-M
Total Loss 7069 6227 6042 6144
Dec. Errors 5177 4410 4345 4476
Err. Prop. 1399 1124 992 1035
New errors 411 432 403 400
Loss/error 1.37 1.41 1.39 1.37
Err. Prop. (%) 27.0 25.5 22.8 23.1

Table 4.5: Overview of average impact of decision errors



5. Correction

A quick glance over the state-of-the-art in NLP reveals that many
tasks have an error rate of 10-20% or higher.1 In Chapter 1,
I have argued that errors and error propagation are inevitable.
Although the challenge they pose is daunting, I believe that it can
be overcome.

Humans have overcome errors with their ingenuity before.
Early telecommunication is marred by noise caused by electrical
interference along transmission lines. That changed with Shan-
non’s discovery of information theory (Shannon, 1948). This
groundbreaking work gave us a way to measure informational con-
tent and transmit such information reliably. In Shannon (1948),
we can find a mathematical proof that messages can be encoded
(and decoded at the receiving end) such that they are transmitted
with an arbitrarily small error.

There is certainly a parallel between digital and natural com-
munication. In both cases, there is a message that one wants to get
from A to B through an imperfect (noisy) channel. The concept of
a channel can be physically realized in arbitrarily complex ways.
An instant message, for example, might be transformed through
various TCP/IP layers before hitting the wire, hops around the
Internet, goes through TCP/IP layers again, this time in reverse,
before being reconstructed on the recipient’s screen. In the case
of natural language, the message is what the speaker intends to
convey (not the utterance but its intended effect on the hearer)

1I used the listing at https://paperswithcode.com/area/
natural-language-processing combined with my personal collec-
tion of papers.

https://paperswithcode.com/area/natural-language-processing
https://paperswithcode.com/area/natural-language-processing
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and the channel includes the speaker’s language production fac-
ulty, any medium between them, and the hearer’s comprehension
faculty. The development of error-correcting codes has enabled
us today to enjoy reliable communication across the globe and
beyond (Calderbank, 1998). It is possible that error correction
could one day allow us to solve not just error propagation but
natural language understanding as a whole.

Recall that we want to get a message from A to B through a
noisy channel. The message can be characters you see on your
screen or thoughts you have in mind. Error-correcting codes
are protocols use at the transmission source to calculate content
(also called redundancy) that bares some information about this
message. At the receiving end, the message and the redundancy
are cross-checked and any detected errors are corrected. The
simplest code that allows error detection is called parity bit which
works as follows: the number of 1-bits in the message is counted;
if it is an even number, a zero is written to the left of the message,
otherwise, a one is prepended.2 Obviously, the receiver will
need to know how the parity bit algorithm works. Once she
masters the code, she will be able to separate the redundancy
from the message, check if they agree, and tell if one bit has been
randomly flipped during the transmission. The parity bit code
does not permit the detection of more than one error; nor does
it allow error correction. However, other algorithms built on its
concept can. Generally speaking, the more redundancy we add,
the more errors we can fix and, therefore, tolerate.

Redundancy emerges naturally when we speak. Interpreters
of verb-final languages such as German and Japanese are skilled
at predicting the intended message because they cannot wait until
the main verb is uttered to start interpreting. Grissom II et al.

2To be precise, there are two variations of parity bits: even parity makes the
combination of the message and the redundancy always even, and odd parity
makes it always odd. The given example is of the even variety.
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(2016) show that fluent speakers of Japanese can predict the final
verb significantly better than chance. In the first paper in this
chapter, we will also see how human annotators can guess the
content of documents that are heavily masked, i.e. many words
are replaced with blanks, to perform coreference resolution.

Perhaps the most striking demonstrations of redundancy can
be found in modern language models. Using state-of-the-art
techniques, Khandelwal et al. (2020) report a per-word perplexity
of roughly 16 on English Wikipedia. That is to say that their
model finds predicting the next token in a sentence, picking from
a vocabulary of millions, as hard as answering a multiple-choice
question with 16 possible answers. On the other hand, NLP has
so far failed to tap into this large redundancy for error correction.
We have not figured out the code yet.

What does an error correcting code for NLP look like? It
might take researchers many more years to find out. My best
guess is that it involves calculating the compatibility of different
views on the message just as the parity bit algorithm checks the
compatibility of the message and the redundancy. In Section 2.4,
I have also argued that world knowledge is likely to play an
important role. The two papers in this chapter aim at shedding
more light on this important question.

In the first paper, my coauthors and I show that, at least on
OntoNotes (Weischedel et al., 2013a), many coreference reso-
lution systems do not make appropriate use of context. Their
decisions are almost entirely dependent on the expressions whose
coreference status they are trying to determine. This is analogous
to using only the message while ignoring the redundancy. In
contrast, the annotators in our study show a drop in performance
when context is removed. More importantly, via auxiliary tasks
and interviews, we show that they solve difficult cases by combin-
ing their world knowledge with complex reasoning. We argue that
to resolve coreference resolution in a robust way, it is essential to



124 Chapter 5. Correction

incorporate a similar process.

The results are weakened somewhat by the fact that OntoNotes
does not mark singletons (things that are mentioned only once and
therefore do not belong to any coreference chain) which makes
the task easier than it truly is. However, given the complexity of
reasoning based on context, it would be very surprising if mod-
els gain this ability merely through training on some negative
examples.

The second paper is an attempt to capture redundancy in a
way that might facilitate error correction. Semantic role labeling
(SRL), a task that attempts to identify who does what to whom,
is often performed in a strangely incoherent way: the who, the
what, and the whom are resolved without any semantic depen-
dency (e.g. He et al. 2018). Sometimes constraints are applied to
enforce a set of manually defined rules (Täckström et al., 2015)
or to weed out duplicate and overlapping roles (Larionov et al.,
2019; Li et al., 2020a). The few papers that explore the model-
ing of semantic dependency between arguments (Haghighi et al.,
2005; Toutanova et al., 2008) found improvement in performance.
Similarly, implicit SRL is often performed independently of ex-
plicit SRL (see Section 2.5.5 for an overview of these tasks).
We attempt to model the joint distribution of roles using a sim-
ple neural network architecture to improve iSRL performance.
While we found that our models reproduce Haghighi et al. (2005);
Toutanova et al. (2008)’s results in improving SRL, we did not
find improvement associated with the incorporation of role-role
dependency on iSRL.

The unfortunate results might have been caused by two fac-
tors: train-test discrepancy and a lack of adaptation. Our first
experiment is carried out on SemEval-2010 (Ruppenhofer et al.,
2009). The corpus is a rare specimen of novels in NLP: predi-
cates and roles are annotated on chapters of Sherlock Holmes.
However, the proposed models are trained on OntoNotes which
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contains various genres but all are quite different from Victorian
novels. ON5V (Moor et al., 2013b) is used in the second experi-
ment. The corpus is derived from OntoNotes but the distribution
of predicates is radically different from the original dataset. In
hindsight, I could have used adaptation (Ruder et al., 2019), i.e.
further training on the test domain, to improve performance. Fur-
thermore, the learned knowledge about role-role interaction could
have been integrated more closely with the baseline models to
eliminate confounding factors.

It does not help that SemEval-2010 is very small and neural
networks are sensitive to random initialization. The two factors
worked together to decrease the reliability (as opposed to validity)
of the evaluation. In one run, we observed that the proposed
model gets an F-score of 7% below the mean (-31% relative
terms). For the future development of iSRL, it is important that
bigger and broader test sets are developed.

We know that error correction is possible because humans
do it all the time. Neuroscience research has shown that during
language comprehension the brain continuously checks interpreta-
tions against what it already knows (Nieuwland and van Berkum,
2006). This test is so reliable that when no interpretation passes,
the input itself is thrown into doubt. Consider the following
excerpt:3

(1) BTW, when you said “Xander’s love and desire for him
near palatable”, did you mean “palpable”? Palatable is
kind of funny in context, but I didn’t think it was what
you meant.

This type of correcting questions is familiar to all language users.
Although it is still far beyond the reach of NLP systems, I believe
that we will get there someday.

3Taken from the English Web 2015 corpus (Jakubíček et al., 2013)
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An Input Ablation Analysis of Coreference
Resolution

Minh Le, Antske Fokkens, and Piek Vossen
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Vrije Universiteit Amsterdam
{m.n.le,antske.fokkens,piek.vossen}@vu.nl

Abstract

We introduce a method for systematically analyzing what
information coreference resolution systems use and what
additional information may be valuable. We mask specific
types of information in input documents and let humans
and a broad set of automatic systems annotate the mod-
ified documents. Equipped with this method, we study
the coreference linking step (i.e. gold mentions are given)
on OntoNotes. Our analysis reveals insights into the stud-
ied systems and the task itself. First, given gold-standard
mentions, all studied systems make their linking decisions
almost exclusively based on mentions. Second, the neural
end-to-end system we investigate does not make use of
instance-specific knowledge. Third, people make use of
world and script knowledge when resolving challenging
cases, suggesting that modeling these phenomena is a
fruitful research direction.

1. Introduction

In coreference resolution research, a lot of effort has been devoted
to feature engineering. Many features were proposed, most of
them aim at matching mentions (Soon et al., 2001; Lee et al.,
2011; Culotta et al., 2007, among others), while a few try to
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capture textual context (Yarowsky, 1994) and link the text with
real-world entities (Rahman and Ng, 2012; Ponzetto and Strube,
2006). As new features are increasingly harder to come by, re-
searchers have shifted their effort to algorithmic improvement
(e.g. Ng and Cardie (2002a); Luo et al. (2004); Poon and Domin-
gos (2008)). Recently, the incorporation of contextualized lan-
guage models trained on large amounts of data has resulted in
strong boosts in performance (Joshi et al., 2020; Wu et al., 2019b).
There remains, however, a large gap between machine and human
performance.Answering the two following questions can provide
essential insights into narrowing this gap: What information is
being captured by existing systems? and, more importantly, What
information is (not) needed to improve their performance? This
paper introduces a system-independent method to address these
questions.

In language modeling, information use has been studied by
perturbing the textual input (Khandelwal et al., 2018). We ap-
ply this technique to coreference resolution by defining seven
types of transformations and studying their effect on systems’ and
human annotators’ performance. We call this technique input ab-
lation analysis for its resemblance to the popular feature ablation
analysis.

Previous work has observed that some coreference resolution
systems rely too much on mentions (Emami et al., 2019). To study
this effect directly and at scale, we investigate performance of sys-
tems on text where we either mask mentions or their surrounding
context or map mentions to alternative tokens that contain only a
part of the original information. The proposed transformations
allow us to compare multiple systems from various perspectives
beyond overall performance. Moreover, the transformed texts can
be worked on by human annotators. Understanding how people
solve them brings valuable insights into how to improve systems.

Using these automatic and manual annotations combined with
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interviews and ad-hoc analyses, we aim to provide insights to
researchers for choosing worthy research directions in coreference
resolution. Constructed corpora are released so they can be used
as test suites for future approaches and annotations are available
for further analysis.1 We show that on OntoNotes and with respect
to the linking step of coreference resolution:

1. All studied systems exclusively rely on mentions while
ignoring the surrounding context.

2. Humans can also perform well while seeing mentions only.
However, the way they achieve this is via a deep under-
standing of the remaining text.

3. We find evidence that the studied neural end-to-end sys-
tem (Lee et al., 2017) does not capture instance-specific
knowledge from names.

4. Instance-level knowledge, such as enabled by joint pro-
cessing of coreference and entity linking, provides modest
benefit.

The method itself forms the main contribution of this paper. It
can be adapted to other NLP tasks and applied to further analyze
results of any fully replicable experiment.

This paper is structured as follows: we first describe input
ablation analysis and the transformations used in our research in
more detail (Section 2) and then provide the settings chosen for
our experiments (Section 3). Given this foundation, we present
the results of our experiments in Section 4. Finally, related work
is discussed in Section 5 and conclusions offered in Section 6.

2. Input Ablation Analysis

Feature ablation analysis is a popular method for analyzing NLP
systems. When applying it, researchers remove features one-
by-one and observe the change in the performance. If gender

1https://bitbucket.org/cltl/even

https://bitbucket.org/cltl/even
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The cat sat on the mat

The cat sat on __ __

Original:

Transformed:

DT

NP

S

NN VBD

VBD

IN

PP

__ __POS:

Syntax:

Mask

Figure 5.1: An altered text and parse tree for the sentence “The cat sat
on the mat”. Not only a chunk of text is masked, but also the corre-
sponding PoS tags and the syntactic subtree that would have covered
them (an NP in this case) is removed.

matching, e.g. a popular feature, is taken away, a system might
mistakenly annotate Hillary Clinton and he as coreferential.

In a similar vein, we take away parts of the text or layers of
information via two operations: masking and mapping. To mask
a certain text span, we replace each word with <MASKED> (rep-
resented here as a blank for readability). Some coreference resolu-
tion systems start with layers of interpretation (syntax, semantics,
etc.) already given. Because the robustness of, for example, syn-
tactic and semantic parsers against corrupted texts is an orthog-
onal research topic, we do not re-parse documents. Instead, we
apply transformations directly on gold part-of-speech (PoS) tags,
named-entity tags, syntax trees and predicate-argument structures
as illustrated in Figure 5.1. Systems are evaluated on both the
original and derived texts and difference in performance is mea-
sured. Naturally, the higher the number of masked tokens is, the
bigger the difference is expected.

Mapping is a generalization of masking, where the original
text span is replaced by a new one that may maintain some infor-
mation from the original span. The precise operations employed
in this research will be defined in the rest of this section.
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The proposed approach is applicable to any analysis for which
the target sites of transformation can be reliably determined. It
is not suitable to study, for example, the impact of context in
mention boundary detection because mentions and context are not
defined until the task is done. For this reason, we have excluded
mention boundary detection from our analysis and rely instead
on gold mention boundaries. This paper focuses on perturbing
CoNLL-2012 (Pradhan et al., 2012) texts which have served as
a standard benchmark in coreference resolution in recent years.
CoNLL-2012 is attractive because it comes with gold-standard
and automatic annotations of multiple layers of interpretation.
This helps us focus the comparison on coreference resolution
only and identify targets of transformations (e.g. names) with
confidence.

2.1. Masking Mentions and Context

Several researchers have used textual context to improve coref-
erence (Versley et al., 2008; Peters et al., 2018; Rahman and
Ng, 2012; Peng and Roth, 2016, e.g.) However, it is not clear
how much context contributes to their performance. Emami et al.
(2019) create a dataset to test if a system ignores the predicate-
argument structure preceding a mention and observe that existing
systems do so in 22-100% of the cases. It is also not clear how
much we can improve performance by employing context and
what kind of context understanding is needed to reach human-
level performance.

To address these questions, we conduct experiments on au-
tomatic systems where we mask either mentions or context. In
CoNLL-2012, mentions include noun phrases, pronouns, but also
verbs that refer to a person, object or event. Notably, singletons
are not included therefore any mention corefers with at least one
other mention. The majority of mentions are short, containing on
average 2.4 tokens (std=3.3, variations between genres are negli-
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gible). In the context of the current paper, we define context as
any text passages other than mentions. To illustrate the proposed
transformations, consider the following passage from document
bn/cnn/00/cnn_0030 in CoNLL-2012 training set:

(2) [Secretary of State Madeleine Albright]1 has accepted an invita-
tion to visit [North Korea]2 and meet with [leader Kim Jong-il]3.
[She]1 made the unexpected announcement at a [dinner]4 last
night in [Washington]5.

The following two versions of the excerpt have their mentions
or context masked:

(3) [ ]1 has accepted an invitation to visit [ ]2 and
meet with [ ]3. [ ]1 made the unexpected announce-
ment at a [ ]4 last night in [ ]5.

(4) [Secretary of State Madeleine Albright]1 [North
Korea]2 [leader Kim Jong-il]3. [She]1

[dinner]4 [Washington]5.

We ask human annotators to solve a subset of the documents
to gauge the possible usefulness of each type of information. To
deepen the understanding of the processing of mentions and con-
text, we also annotate documents where k% of either mentions
or context is removed, with k ∈ {20,40,60,80}. For a given
type of transformation, the sets of masked tokens Mk are selected
randomly according to a uniform distribution, satisfying the con-
straint: Mp ⊂Mq,∀p < q. In words, each version is derived from
the previous one by masking some additional tokens.

2.2. Mapping Proper Names

Proper names deserve special attention because of their variety
compared to other mentions. Measured on the CoNLL-2012 de-
velopment set, they account for 23% of tokens within mention
boundaries and 36% of types. We study the impact of names
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by using an one-to-one mapping to randomly generated tokens,
keeping their most basic property while hiding gender, type, and
the entity, among other information. For Excerpt (2), this trans-
formation returns:

(5) [Secretary of State _ROO12_ _PI3_]1 has accepted an invitation
to visit [_PHY9_ _JOOL_]2 and meet with [leader _GER16_
_XUN_]3. [She]1 made the unexpected announcement at a
[dinner]4 last night in [_FIM32_]5.

To deal with names, traditional models employ a variety of
string-matching features such as exact string match (Soon et al.,
2001), substring match (Ng and Cardie, 2002b), and “nation-
ality matching” (Ng, 2007). Interestingly, these features are
missing in newer end-to-end models (Lee et al., 2018, 2017).
We hypothesize that this omission leads to either memorization,
where prevalent names are assigned unwarranted meanings; or
negligence, where names are ignored during the formation of
coreferential clusters. A certain level of memorization of proper
names is beneficial because some names, such as United States,
Japan, Disneyland, are prevalent and have stable and unambigu-
ous meaning. However, excessive memorization is not desirable
because of two reasons. First, corpora are often constructed from
a set of similar documents from the same time period and social
context, resulting in a bigger train-test overlap than what can
be expected in a natural setting. Second, even when a system
encounters names it was trained on, their referent and attributes
such as type and gender might differ. A mention of Clinton is, for
instance, more likely to refer to Hillary Clinton in 2016 and to
Bill Clinton in the 1990s.

To detect memorization and negligence, we propose several
transformations of names:

ORIGINAL The original documents are returned intact.
-EXTERNAL Mapping a name into a randomly-generated to-
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ken as in Example (5), therefore making it impossible to
connect to external sources of knowledge such as word em-
beddings, gazetteers, and ontologies. The same dictionary
is used for the training, development, and test sets.

-INTERNAL Mapping in the same way as -EXTERNAL, but us-
ing different dictionaries in training, development, and test
sets, thus preventing exact matching againts memorized
names.

-MATCH Occurrences of the same name are mapped into differ-
ent tokens even within a document.

MASKED Names are replaced by a special token.

If a system ignores names, it will perform at similar levels
on -ORIGINAL and -EXTERNAL. Otherwise, we expect to see
a drop in performance associated with -EXTERNAL. If a model
memorizes names, we expect a further decrease of performance
on -INTERNAL when task-internal knowledge is removed.

For human annotators, we merge -EXTERNAL and -INTERNAL

into one condition named MAPPED and eliminate -MATCH to
avoid confusion. We attempt to disentangle instance-specific
knowledge and class-level knowledge by asking annotators to
predict the true identity and properties of name-mapped entities.
If an annotator can guess some properties of an entity but cannot
pinpoint it to the exact referent, related errors can be attributed
to a mixture of missing instance-specific knowledge and other
factors such as heightened cognitive load. On the other hand, if
annotators can correctly guess the hidden entity, they have access
to the instance-specific knowledge about it and the first cause can
be eliminated.

3. Experimental Settings
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In this section, we describe the settings we used to evaluate
automatic systems and human annotators.

3.1. Evaluation

Coreference resolution can be solved in two steps: mention de-
tection and mention linking (Bengtson and Roth, 2008). Because
the proposed transformations reveal mention boundaries as a side
effect, we evaluate the second step only, i.e. all models are in-
structed to use gold-standard mention boundaries and mentions
are clearly delimited in the annotation interface.

Following common practice (Pradhan et al., 2012), we use
average F1 to measure performance. It should be noted that
our manual annotation is different from the conventional setting.
Instead of building a gold standard, we are interested in how
well a human can still perform the task while some information
is removed. Therefore, instead of calculating inter-annotator
agreement, we compare annotations done on edited documents
with the existing gold standard and measure average F1 score.

3.2. Dataset

CoNLL-2012 (Pradhan et al., 2012) contains 2,385 annotated
English documents, totaling at 1.6M words. The documents
come from various genres such as newswire, weblogs, and tele-
phone conversations. The dataset is distributed with a stable
train/development/test division. We will use the training set for
training while merging development and test set for annotation
and evaluation. Generally speaking, one annotator cannot work
on two transformations of the same document, we thus need more
documents to obtain statistically meaningful results.

3.3. Systems and Baselines

To demonstrate the value of our analysis, we will evaluate high-
performance open source systems that represent different paradigms:
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SIEVE (Lee et al., 2013) is a rule-based system composed of
multiple stages from the most precise to the highest recall,
tied together by hard-coded constraints.

CORT-MP (Martschat and Strube, 2015) is an implementation
of the simple-yet-competitive mention-pair approach pow-
ered by a simple linear model (perceptron) and a rich set
of features.

CORT-MR is an implementation of mention ranking from the
same library. This approach represents competitions be-
tween possible antecedents and has been shown to im-
prove performance over the pair-wise approach (Denis and
Baldridge, 2008).

CORT-EM realizes the entity-mention approach. It goes fur-
ther than mention-ranking by encoding entities as a tree
of corefering mentions connected by anaphor-antecedent
relations.

DEEP-COREF (Clark and Manning, 2016b) is an neural entity-
ranking model. It encodes entity-level information by pool-
ing the distributed representation of all mention pairs that
connect two entities. It also reduces the number of hand-
crafted features, replacing some of them with distributed
features learned by a neural network.

E2E (Lee et al., 2017) replaces all hand-crafted features with
BiLSTM-based contextualized representation of words.
The decoding scheme is mention ranking with pair-wise
scores computed by a two-layer feed-forward neural net-
work.

To ensure that the difference in performance is not due to
out-of-vocabulary tokens, we retrain models on the transformed
training set for each version of CONLL-2012.2 To put the results
in perspective, we also include two baselines:

2The most recent models (Joshi et al., 2020, 2019) are not easily retrainable,
which is why we leave their analysis to future work.
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RANDOM iterates a randomly-ordered list of mentions and picks
antecedents randomly with an uniform distribution from
the pool of previous mentions plus a special mention ε

(meaning to create a new cluster).
HEAD-MATCH links all mentions that have the same head word

together. Head words are found by syntactic rules defined
in the Cort library (Martschat and Strube, 2015).

3.4. Manual Annotation

To investigate what level of performance is possible without cer-
tain types of information, we ask human annotators to perform
the same task systems do, i.e. linking given mentions into core-
ferring clusters. Annotations were performed by three master’s
students, one native and two near-native speakers of English,
with a background in NLP. Details about the annotation process
and annotation tool can be found in Section 1 and Section 2 of
Supplementary Material.

It is important to note that we do not aim to investigate general
properties of language processing in humans. Instead, we are
interested in studying the contribution of certain features to the
performance of powerful and interpretable systems and evidence
from a handful of human annotators can be sufficient to gain such
insights.

As an artefact of the annotation process, the distribution of
genres differs across annotators and types of transformation. We
counter this by resampling 25 times according to the original
distribution and present here the mean and standard deviation of
performance on samples. For a fair comparison, experiments on
automatic systems are also performed on 25 resampled versions.

4. Results and Discussions

In this section, we present the results of our experiments. Each of
the following subsections will discuss one question concerning
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Figure 5.2: Performance of automatic systems and annotators when ei-
ther context or mentions are removed. The horizontal dashed line is the
random baseline. During data processing, we discovered that the third
annotator only worked on one uncommon genre in their -CONTEXT set.
For this reason, we drop the annotator’s results from this figure.

either automatic or human performance.

4.1. Mentions and Context for Systems

The results in Figure 5.2 (left part) and Figure 5.3 support the
hypothesis that algorithms rely almost exclusively on the content
within mention boundaries. When context is masked, all models
show an unchanged level of performance whereas when mentions
are masked, most systems decay linearly and rest at or below
chance level.

Although it is still possible that a model trained on ORIG

learns how to make use of context, the results show that the contri-
bution of this information is insignificant or negative. For SIEVE

and CORT, this is not surprising given that their feature sets con-
tain no information from the surrounding context. DEEP-COREF,
on the other hand, does include preceding and following words
to a mention, all words in the sentence and document, but their
contribution is minimal (0.28% in absolute F1). E2E composes
span representation from BiLSTM embeddings which is com-
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(a) Masking mentions

(b) Masking context

Figure 5.3: Performance of automatic systems and annotators when
more and more mention or context tokens are masked. Because the third
annotator happened to sees only one uncommon genre in their set of
100% context-masked documents, we have dropped the corresponding
point.

puted over whole sentences. Theoretically, this design allows the
model to make use of the context. In practice, it provides only
insignificant benefit over what was already achieved by exploiting
mentions, showing a difference of only 0.36% absolute F1. Never-
theless, the representations it computes for the remaining context
prove useful as it outperforms other systems in -MENTION set-
ting.

In the -MENTION setting, the HEAD-MATCH baseline pro-
duces a single cluster per document. This strategy gets very low
score on CEAF (Luo, 2005): 6.4%F1, but achieves 23.84%F1
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on B3 (Bagga and Baldwin, 1998) with a highly skewed preci-
sion/recall trade-off: P=13.65%, R=100%. It also gets a high
score of 87.46%F1 on MUC (Vilain et al., 1995), which is known
to favor fewer big clusters (Luo, 2005). Therefore, the overall
performance (which is the average of the three) is rather high at
39.23%.

4.2. Estimating the Value of Mentions and Context

Because humans are the gold-standard natural language proces-
sors, analyzing their performance can provide insights into what
kind of information is (not) useful for improving the performance
of automatic systems. Let ∆I be the drop of performance on
documents with the information I removed compared to origi-
nal documents, if ∆I1 > ∆I2 then we can reason that I1 is more
useful than I2.

The right part of Figure 5.2 shows the performance of our
annotators on perturbed documents. It is immediately clear from
the plot that ∆mention� ∆context. The effect of context masking,
as measured by change in average F1, is smaller than one might
expect: ∆ = 5.54% for Annotator 1, ∆ = 3.48% for Annotator 2.
This result is consistent across metrics: when we pool all manual
annotations together (called all-annotators in Figure 5.2), we
found ∆ = 2.26 for B3, ∆ = 1.49 for CEAF, and ∆ = 1.88 for
MUC. Moreover, the line of performance vs. context masking in
Figure 5.3b indicates that much of the effect might be because
of random fluctuation. We asked the annotator to rate their con-
fidence in a 0-5 scale and the recorded levels show only a slight
decrease as more and more context is masked.

These results demonstrate that it is possible to solve CoNLL-
2012 with high performance without making use of context.
While it is still possible that context processing is needed to
reach human-level performance, research on the effect of context
on coreference resolution should consider evaluating on other
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datasets, for example Zhao et al. (2018) and Emami et al. (2019),
for higher sensitivity.

4.3. The Role of Comprehension

The results discussed above seem to suggest that CoNLL-2012
can largely be solved through mention-matching only. We further
explore how annotators perform the task to verify this outcome.

We asked annotators to summarize a random selection of doc-
uments they annotated. They were instructed to capture as much
of what is described in a document as possible using no more
than 3 sentences (for details, see Section 3 in Supplementary Ma-
terial). A total of 210 summaries were gathered. We found that,
although it is true that masking severely affects comprehension,
our annotators can still come up with 3 summarizing sentences
for 17 out of 63 documents that are masked by 80% or more.
The average length of those sentences are 10.9 tokens (excluding
punctuations). Table 5.1 presents some randomly chosen samples
of the summaries.

Sometimes CoNLL-2012 mentions include rich information
that can be considered a kind of embedded context. Only 3.6% of
mentions in the dataset contain 10 or more tokens so this type of
mentions must be rare. However, humans are good at using very
little information to construct stories. These stories are not always
accurate but provide a foundation for annotators to reason about
coreference. This interpretation is supported by our interviews
with annotators (see Section 4 in Supplementary Material).

The results in this section suggest that although both humans
and machines are robust to context removal, they do so for differ-
ent reasons. If the aim is to create coreference resolution systems
that truly understand coreference, and therefore generalize better,
we might need to work on deeper processing of all that is avail-
able in the text instead of ignoring a big chunk of it. If the aim
is to reach human-level performance on CoNLL-2012, the way
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(a) Systems

(b) Humans

Figure 5.4: Performance of systems and human annotators against
different methods of name manipulation

annotators solve hard cases should also provide a hint for how to
overcome the last 10%.

4.4. Names for Systems

Figure 5.4a shows that names are indeed an important source
of information to coreference resolution systems. Comparing
MASKED and ORIGINAL, we can see that the benefit of name
processing in both rule-based and machine learning systems ex-
ceeds that of simple head matching and explains between 6% and
12% of absolute F1 score.

The results show that machine learning-based systems are
able to ignore names when they are misleading: their performance
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is almost the same for -MATCH and MASKED conditions. In
contrast, because HEAD-MATCH and SIEVE lack this ability,
their performance drops significantly.

It is clear that no system ignores names in -EXTERNAL and
-INTERNAL conditions because the performance stays signifi-
cantly higher than that of -MATCH and MASKED. E2E did
not memorize names either as evident in the identical perfor-
mance on -EXTERNAL and -INTERNAL despite substantial over-
lap of between training and evaluation sets that it can use in the
-INTERNAL condition but not in -EXTERNAL.

This leaves open the question of how E2E makes use of names.
One possibility is that it learns what names look like and puts
similar ones into the same cluster or, to the same effect, avoids
putting different-looking names in the same cluster. To test this
hypothesis, we put a model trained on -INTERNAL through evalu-
ation on ORIGINAL and vice versa. This leads to a loss of -4.85%
and -5.65% in absolute F1 compared to models trained and tested
on the same variant of names. Together, the results in this section
suggest that E2E does not link names to knowledge about individ-
ual entities, including those that are unambiguous and beneficial,
and might not be able to differentiate similar-looking names.

4.5. Estimating the Value of Instance-level Knowledge

The performance drop associated with mapped or masked names
is the total effect of a few factors: the loss of identifiers (same
tokens often mean same entity), the loss of type information (such
as an entity being a person or a country), the loss of instance-
level information (such as encyclopedic knowledge about Barack
Obama), and the effect of heightened cognitive load (the increase
in error rate caused by working with randomly generated tokens).
This observation can be summarized as:

∆mapped = ∆instance +∆type + ε (5.1)
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∆masked = ∆instance+∆type+ε+∆identifiers = ∆mapped+∆identifiers

(5.2)

where ε stands for fatigue-induced errors.

The drop caused by name-mapping in human annotators is
between 2.9% and 4.3% absolute F1. To differentiate between
type knowledge and instance-level knowledge, we asked anno-
tators to guess the name or some properties of masked entities
(see Table 5.2 for some samples). The annotators are highly
proficient at inferring properties of hidden entities from context:
they attempted to guess either the name or properties in 95% of
294 masked named-entities, with a precision of 86%. In 74% of
guesses, the annotator answer the type of a masked name (e.g. that
it is a place, a company, a location, or a governmental body) but
cannot pinpoint the hidden entity. Assuming that fatigue-induced
error rate is negligible, a big part of ∆mapped can be attributed to
the loss of instance-specific knowledge. Compared to ∆identifiers

which ranges from 4.6% to 17.3%, the results indicate that har-
vesting instance-level knowledge, such as via joint coreference
resolution and entity linking, can bring improvement but only
modestly.

5. Related Work

Following the rise of neural networks in natural language process-
ing, analysis methods have gained interest (Belinkov and Glass,
2019), including work that modulates input to gain insight into
the inner workings of models. Li et al. (2016a) devised algorithms
to find the minimum set of words to erase to change any predic-
tion. On the flip side, Feng et al. (2018) study the maximum set
of words that one can erase without changing a prediction. Wu
et al. (2019a) build a framework to create, manage, and execute
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rewriting rules which can be used to test hypotheses about a sys-
tem. Different from our work, these approaches help interpret a
system but do not allow comparison between different systems
and between systems and human annotators. The research by
Khandelwal et al. (2018) is closer to ours in this regard. The
authors examine different ways to alter the context preceding a
word to reveal how language models make use of context. Sankar
et al. (2019) do the same for neural dialog systems.

In coreference resolution research, efforts have been put into
analyzing CoNLL-2012 (Moosavi and Strube, 2017) and building
challenge sets that are superior in specific properties: smaller
lexical overlap (Ghaddar and Langlais, 2016), avoiding gender
bias (Zhao et al., 2018; Rudinger et al., 2018; Webster et al., 2018)
and testing for common-sense reasoning (Emami et al., 2019).
While these corpora can demonstrate the shortcomings of current
systems, they have little to say about how much their resolution
might help to improve performance.

6. Conclusions

We analyze the behavior of systems while performing the link-
ing step of coreference resolution on CoNLL-2012 data. By
analyzing the response of systems to changes in input, we demon-
strate that a broad sample of methods is exclusively dependent
on mention-bound features, including methods that compute con-
textualized embeddings over whole sentences. This outcome
supports and extends earlier findings by Emami et al. (2019). We
also show evidence that the neural end-to-end system of Lee et al.
(2017) might not capture instance-specific knowledge of names,
including unambiguous and beneficial ones.

Human annotators in this research project can perform coref-
erence linking on CoNLL-2012 to a high F1 while using hardly
any context, seemingly supporting its omission in many systems.
Analysis of manual annotations, surveys, and interviews showed,
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however, that they achieve this via a deep understanding of men-
tions and the embedded context. Either by context processing
or enhanced mention processing, a deeper understanding of the
text is likely needed to bring the studied systems to human-level
performance.

The next step in our research is to apply our method and
investigate if Transformer-based models indeed make better use
of context. In addition, the research in this paper can be extended
in two directions: similar experiments can be done on other
datasets and a larger study in which people solve cases where
systems make errors would further our understanding of human-
level coreference resolution.

7. Supplementary Material

7.1. Annotation Procedure

Before annotating target documents, we required annotators to
review relevant sections in OntoNotes guidelines (Weischedel
et al., 2013a) and annotate 15 unmodified documents to at least
90% F1. Throughout the project, we also include original docu-
ments as a means of quality checking and discard batches that
have performance on control documents lower than 80%.

Because one of the goals of our research is to uncover infor-
mation that might improve the performance of automatic systems,
we ask annotators not to use heuristics but make decisions based
on their understanding of the text. There are three mechanisms
through which we encourage this behavior. First, when someone
starts annotating, only the first few sentences are shown and new
ones are revealed after all mentions on screen are resolved. This
is to avoid skimming and easy-first, string-matching heuristics.
Second, we randomly ask for confidence judgment in the scale
of 0 (not confident) to 5 (absolutely certain). Third, we hold
weekly meetings in which annotators take turn to annotate while
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“thinking out loud” or discuss difficult cases. To avoid information
leakage, an annotator is not allowed to work on two incompatible
versions of the same document.3

7.2. Annotation Interface

Figure 5.5: The user interface of our crowd-based annotation tool.
Annotators start with a given set of mentions marked in red. They put
mentions into “groups” (i.e. clusters or entities) by clicking on them.
They can also mark singleton groups, remove a mention from a group
or break a group into stand-alone mentions to start over.

To facilitate annotation, we aim at making an intuitive and
distraction-free user interface. This translates into the following
design choices:

1. The interface should allow the user to record multiple posi-
tive coreference decisions after reading one passage of text
as opposed to the one-question-per-text approach of Phrase
Detectives (Poesio et al., 2013).

2. Similar to GATE (Cunningham et al., 2002) but different
from BRAT (Stenetorp et al., 2012) and MMAX2 (Kopeć,
2014), it should represent group membership by colors and
annotations instead of arrows. This is to avoid displacing
pieces of the text and cluttering the space with too many

3One way that two versions become incompatible is that they belong to
different types of manipulations, e.g. context masking and name-mapping. If
they are of the same type, we allow a version with less masking to follow one
with more masking but not the other way around.
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intersecting arrows.
3. It should only require clicking on the text itself most of

the time to minimize eye movement. Different from the
QuizBowl annotation app (Guha et al., 2015), When group-
ing two mentions together, we require annotators to click
on both to lower the chance of mistake.

These considerations crystallize into the interface depicted in
Figure 5.5. At the end of the annotation project, we completed
1,100 documents in a total of 34.5 person-days. Excluding the
initial training phase, we annotated at a speed of roughly 15
minutes/document.

7.3. Summary Experiment

We asked annotators to summarize a random selection of docu-
ments they annotated. They were instructed to summarize each
document in 3 sentences, where 1 or 2 sentences were also al-
lowed if their understanding did not allow for three sentences.
They were not allowed to use generic expressions (e.g. someone,
something). For documents that mainly contain conversations,
we requested reports about what was talked about rather than the
conversations themselves.

A total of 210 summaries were gathered. Figure 5.6 shows
the statistics of summaries as more and more content is masked.

Figure 5.6: Number of sentences and average sentence length given by
annotators as more and more context is removed.
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7.4. Interviews with Annotators

We conducted 3 interviews with annotators at different points
in the project. Each interview lasts between 23 minutes and 1
hour in which annotators annotate a few documents while sharing
their screen with everyone else. Annotators are asked to “think
out loud” and the experimenter can ask questions to help them
elaborate their thinking process. All interviews are recorded.

To see what thinking process is imployed to solve hard doc-
uments, consider the following excerpt from a 100% context-
masked document:4

(6)
[Taiwan] [Ruan] [the main-

land]
[They] [the election] [the
election] [they] [We]
[they]

[them] [Ruan ’s]
[Ruan] [Chen Shui -
bian]
[He]9 [Chen] [the staunchly anti-communist Richard
Nixon, who was able to normalize ties with [the Chinese com-
munists] precisely because [he]10 was trusted by the American
people]

The reasoning line that an annotator used to resolve [he]10 is
as follows:

Annotator 3: Uhm . . . I’m not sure this he refers to
which, Nixon or to Chen. But, honestly, from my world
knowledge I would say he [pointing to Nixon] because
I just assume not many people in the 60’s from the US
knew any Chinese people and trusted them, so . . .

In a telephone conversation, after 80% of context is masked,

4Document: dev/mz_sinorama_10_ectb_1020 (part 001)
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we get:5

(7) B: [Cocoa] [she] [got]
A: [She] [married] [that guy]
B: guy [you] kidding little

[. . . ]
B:
B: yeah
B: very
B: [they] [got]

To solve the mentions they and got in the last line, an annotator
used common sense knowledge about marriage:

Annotator 2: about they . . . I assume that’s Cocoa and
this guy [. . . ] I’ll probably say that this [pointing to the
last got] goes back to got here [pointing to the first one]
which now I think this is still referring to the marriage
and I’m gonna just group these two [cluster of got and
cluster of married] together.

Although we did find documents with repetitive pronouns
that can be solved without understanding the storyline, they are a
minority and cluster in certain genres:

Annotator 1: . . . the one before this which is a biblical
text [. . . ] the format is the same. Like, recently I was
doing one and it was about 90 lines and I thought, wow,
this is gonna take a long time but it actually ends up very
quickly because . . . the lines are shorter, or repetitive
sometimes, maybe.

Annotator 3: [. . . ] biblical text, they follow certain pattern
[. . . ] it’s different from the forum part, those online things,
where people just blurb out what they think.

5Document: dev/tc_ch_00_ch_0020 (part 001)
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Document: test/mz-sinorama-10-ectb-1049 (part 004), masked con-
text: 100%
Excerpt: [The weeping river] $ [the weeping junks]
$ [several of
these boats] $ [the sunken junks]

$
Summary: The government is planning to build a riverside highway
to Tanshui. Another Tanshui project involves building high-rise
apartments. Some residents of Tanshui are unhappy with these
projects.

Document: test/nw-wsj-23-wsj-2344 (part 000), masked context:
100%
Excerpt: [Gulf Resources & Chemical Corp.] [it] [pay]

[an accord with [the Environmental Protection
Agency] regarding an environmental cleanup of [a defunct smelter
[the company] formerly operated in Idaho]] $
Summary: Gulf Resources & Chemical Corp. made an agreement
with the EPA regarding the cleanup of one of their defunct facilities.
The cleanup is to be funded by the federal Superfund program. In the
meantime, the company is going through a reorganization process.

Document: test/bc-msnbc-00-msnbc-0007 (part 004), masked con-
text: 80%
Excerpt: Tim Russert: [the latest study from [the Institute for
Science and International Security]] $ [They] [North
Korea] develop nuclear

two weapons in [George bush] $
Summary: According to a new study, North Korea could be devel-
oping nuclear weapons. Nicholas Burns believes that the U.S. still
has an enormous influence on North Korea. The U.S. policy is to
denuclearize North Korea.

Table 5.1: Sample of heavily masked documents and their summariza-
tions. The symbol $ denotes the end of a sentence and square brackets
denote mention boundaries.
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Query Excerpt Guess Key

_DIM68_,
_NIE_ _ME_

In _DIM68_, _CA_ _PO_
_NIE_ _ME_ was back on
television this morning trying to
shore up public support for his
legal cause.

location,
politician

Washington,
Al Gore

_CEEN33_ With regard to cross-strait
relations, _HEE38_ made his
famous “testicles analogy.”
_CEEN33_ is a part of China,
he stated, just as testicles are a
part of a man’s body.

Taiwan Taiwan

_ZE83_
_LEE_,
_PHE_

_ZE83_ _LEE_ received a very
warm welcome in _PHE_, but
the local press still mentioned
“checkbook diplomacy” in re-
porting on the visit.

president,
a devel-
oping
country

President
Chen,
Nicaragua

Table 5.2: Samples of annotators’ guesses about the identity or charac-
teristics of hidden named-entities.
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Abstract

Implicit Semantic Role Labeling is a challenging task: it
requires high-level understanding of the text while anno-
tated data is very limited. Due to the lack of training data,
most researches either resort to simplistic machine learn-
ing methods or focus on automatically acquiring training
data. In this paper, we explore the possibilities of using
more complex and expressive machine learning models
trained on a large amount of explicit roles. In addition, we
compare the impact of one-way and multi-way selectional
preference with the hypothesis that the added informa-
tion in multi-way models are beneficial. Although our
models surpass a baseline that uses prototypical vectors
for SemEval-2010, we otherwise face mostly negative
results. Selectional preference models perform lower
than the baseline on ON5V, a dataset of five ambiguous
and frequent verbs. They are also outperformed by the
Naïve Bayes model of Feizabadi and Padó (2015) on
both datasets. We conclude that, even though multi-way
selectional preference improves results for predicting ex-
plicit semantic roles compared to one-way selectional
preference, it harms performance for implicit roles. We
release our source code, including the reimplementation
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of two previously unavailable systems to enable further
experimentation.

Keywords: neural network, implicit semantic role label-
ing, selectional preferences

1. Introduction

Defined as the recovery of semantic roles beyond immediate
syntactic structure, implicit Semantic Roles Labeling (iSRL) can
contribute valuable information for obtaining complete semantic
interpretations of text. Yet, it has been elusive since its first shared
task eight years ago (Ruppenhofer et al., 2009).

The main difficulty faced by researchers is the small size of
training data. Compared to traditional SRL datasets, SemEval-
2010 is hundreds-fold smaller, containing only slightly more than
a hundred of training examples (Table 5.3). Early work apply-
ing traditional semantic role labeling (SRL) techniques to iSRL
was met with deflating results. Therefore, researchers limited
themselves to simplistic machine learning models such as Naïve
Bayes (Feizabadi and Padó, 2015, among others) or abandoned
machine learning altogether (Laparra and Rigau, 2013). Several
studies were devoted to the automatic expansion of training data
(see Section for an overview).

This paper presents an attempt to recover implicit semantic
roles using neural networks. We take advantage of the fact that
OntoNotes contains a vast amount of manually annotated explicit
semantic roles from which we can learn the selectional preference
of frames (e.g. look.01 prefers animate fillers for role A0 (looker)).
A neural network is used to capture complex interactions between
a predicate, a target role and its co-occurring roles. In addition,
we compare the impact of one-way selectional preference, taking
only the selectional preference of the predicate for the target role
into account, to multi-way selectional preference, which uses
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SemEval OntoNotesTrain Test
Words 8K 9K 1,700K
Frames 344 371 7,007
Predicates 811 1,008 324,996
Predicates with DNI 102 118 0

Table 5.3: Statistics of an iSRL dataset (SemEval-2010, PropBank
version) and a traditional SRL dataset (OntoNotes).

information from all semantic roles related to the predicate.

The contribution of this paper is twofold: First, we experi-
mented with a class of simple neural models for iSRL and two
types of selection preference. While the results are mostly nega-
tive, they highlight the importance of discourse information (see
Section and ) and suggest future directions that should (not) be
taken.

The second contribution lies in addressing the challenges we
met in carrying out this research and interpreting our results. The
nature of these challenges lies in the fact that (1) all resources
for implicit Semantic Role Labeling are small, (2) previous ap-
proaches differ in the dataset and the metrics they use for eval-
uation, and (3) to our knowledge, none of the existing systems
is available as open source code. This has led to a situation
that is typical for challenging tasks using small datasets: it is
almost impossible to determine what the state-of-the-art approach
is and how new work relates to this. Even results from papers
that are evaluated on the same dataset are difficult to compare,
because differences in results can be due to the difference in
features, machine learning algorithm, method of extending data,
heuristics or (as pointed out in Fokkens et al. (2013b)) choices in
preprocessing and data preparation. As part of this research, we
built an experimental platform for iSRL. This platform provides
open source implementations for the experiments reported in this
paper, for the system described in Schenk and Chiarcos (2016)
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which inspired our own approach and for Feizabadi and Padó
(2015)’s approach which provided state-of-the-art performance
on SemEval-2010.

The rest of the paper is organized as follows: Section sum-
marizes the foundation of iSRL and related work. In Section , we
outline our models of selectional preference. Section quantifies
the effectiveness of selectional preference with regard to iSRL.
Section concludes the work and outlines future directions of
research.

2. Background and Related Work

In this section, we explain what implicit Semantic Role Labeling
entails. This is followed by an overview of previous work on
this task. Next, we address related work that uses selectional
preferences. Consider the following sentence from SemEval-
2010 training set:

(8) Apparently [the tenants]A0 had [brought]bring.01 [little or
nothing]A1 with them, and all the furniture down to the
smallest details had been taken over with [the house]A2.

The roles A0 and A1 of the predicate bring.01 can be filled with
phrases in the immediate syntactic structure while the filler of
A2 falls into a separate clause. Typically, a SRL system would
annotate the fillers for A0 and A1 and ignore A2. It is therefore
called a Null Instantiation (NI).

Null-instantiations can be indefinite (INI) and definite (DNI).
To reuse examples from Ruppenhofer et al. (2009), in the blog
headline More babbling about what it means to know, the subject
of knowing is not expected to be instantiated within the discourse.
In contrast, in the sentence Don’t tell me you didn’t know!, the
hearer expects a concrete filler for the role of what (s)he should
know and it can be expected to be present in previous context.
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The first example is a case of INI while the second is a DNI.

2.1. Previous work on iSRL

Traditional SRL techniques led to very low results for iSRL due
to data sparseness (Chen et al., 2010; Tonelli and Delmonte,
2010). Researchers therefore explored simpler alternatives such
as BayesNet (Silberer and Frank, 2012; Roth and Frank, 2013,
2015), Naïve Bayes (Feizabadi and Padó, 2015), and memory-
based learning (Schenk et al., 2015). Others proposed non-
parametric approaches such as observed frequency (Laparra and
Rigau, 2012), prototypical vectors (Schenk and Chiarcos, 2016)
and other heuristics (Laparra and Rigau, 2013; Gorinski et al.,
2013).

In addition to methods of machine learning and heuristics,
previous work investigated the possibilities of increasing training
data. Feizabadi and Padó (2015) combine multiple corpora and
apply domain adaptation methods to deal with the difference in
genre. They demonstrated that combining two iSRL corpora led
to improved performance. Silberer and Frank (2012) and Roth
and Frank (2015) used heuristics to generate iSRL training ex-
amples from manually and automatically annotated SRL corpora.
This work differs from these approaches, because their research
focused on creating iSRL training examples of reasonable quality
rather than using a SRL resource directly.

2.2. Selectional preferences

Selectional preference has a long research tradition (Katz and
Fodor, 1963) and has been applied in various tasks such as syn-
tactic parsing (Zhou et al., 2011), textual inference (Ritter et al.,
2010), and semantic role labeling (Zapirain et al., 2013). The
idea is simple: a role is filled with some words more frequently
than others. For example, the man is much more likely a filler for
the role A0 (leader) of the predicate lead.01 than e.g. the bottle
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(an inanimate object) although one can construct a grammatically
and semantically correct example for each filler.

Next to the role’s semantics, co-occurring roles also have an
influence. For example, if lead.01’s role A4 (goal) is filled by the
guest house, the nation is an implausible filler for A1 (thing led),
while it is perfectly plausible had we not known what fills A4.
This is known as multi-way selectional preference (Van de Cruys,
2014).

One-way selectional preferences have been applied to implicit
semantic role labeling before. Silberer and Frank (2012)’s system
include a feature calculated using weighted similarity to head
words that are observed to fill a role. The selectional preference
model itself is described in (Erk, 2007) and (Resnik, 1996). A
simpler model that uses unweighted similarity is used by Schenk
and Chiarcos (2016).

Our results show that adding multi-way selectional preference
improves results on explicit semantic roles, but not for iSRL.
Recently work by Do et al. (2017) is closest to our work but
they apply their methods on nominal data and did not compare
one-way and multi-way selectional preference.

2.3. Neural networks

Recent years have witnessed a surge of research interest in neu-
ral networks for natural language processing (Goldberg, 2016).
Plenty of models have been proposed for various tasks (Godbole
et al., 2015; Zhou and Xu, 2015; Andor et al., 2016, among many
others). Apart from Do et al. (2017) who uses a different architec-
ture for a different version of the task, we are not aware of work
that applies neural networks to iSRL.

3. Models

In this study, we focus exclusively on DNI resolution, the last
and hardest step in iSRL. For each test case, we assume that the
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predicate p is already identified and disambiguated, the target
role r∗ is given, and overt roles are coupled with their fillers
{(r j,g j)| j = 1..m}. The goal is to rank the correct filler highest
among the candidates {ci|i = 1..n}. To test a simple multi-way
selectional preference model, we use the following formula to
assign a score for each candidate:

s(ci) =
m⊕

j=1

f (p,r∗,r j,g j,ci) (5.3)

where m is the number of explicit roles known to the system,
⊕

is
a aggregation function (e.g. sum or max). In the case of one-way
selectional preference, the formula degenerates into:

s′(ci) = f ′(p,r∗,ci) (5.4)

f and f ′ are neural networks that have the same architecture,
except the number of inputs. The precise form of the neural
networks and the aggregation function is determined via a hyper-
parameter search (see Section ).

Role fillers {g j} and candidates {ci} can be transformed into
features by extracting the head word, but other features can also be
used. Together with predicate and role names, they are embedded
into a vector space. The embedding matrix is trainable and can be
initialized with pretrained word vectors for better performance.

Compared to a model that computes prototypical vectors as
the average of observed vectors in the fashion of Schenk and
Chiarcos (2016), our neural models have (at least) two advan-
tages:

• Distributed representation is used to represent predicates
and roles, not only fillers, allowing the model to work in
cases of unseen predicates or predicate-role combinations.
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• The representation enables the sharing of statistical strength
between predicates, i.e. rare predicates can get more ac-
curate predictions by means of resemblance to frequent
predicates.

An additional motivation is that multi-way preference can offer a
solution to the context-dependent nature of semantic role labeling.
Our current results, however, do not provide sufficient evidence
to support such a claim.

4. Experiments

We evaluate our models for DNI resolution by comparing our
model to a baseline and to Feizabadi and Padó (2015). In addition,
we perform an ablation analysis to find out which components of
the model are useful.

4.1. Data

We train our selectional preference model on OntoNotes (Weischedel
et al., 2013b), a balanced 1.7M words corpus with over 320K
manually annotated predicates and their explicit arguments.

SemEval-2010 (Ruppenhofer et al., 2010) is a standard dataset
to evaluate iSRL systems. It contains chapters of Sherlock Holmes,
one for training and two for testing, annotated with both implicit
and explicit semantic roles. The organizers provide two versions
of the same dataset: one annotated with FrameNet roles and
the other PropBank. Because OntoNotes was compiled using
PropBank, we also use the PropBank version of SemEval-2010.

Note that OntoNotes differs from SemEval-2010 in task (ex-
plicit versus implicit SRL), genres (news, weblogs and conver-
sations versus novel) and time period (20th century versus 19th
century). Training on OntoNotes SRL and testing on SemEval-
2010 iSRL can be seen as a form of domain adaptation and
requires powerful generalization.

We also test our models on ON5V (Moor et al., 2013a) which
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Predicate Role Filler head Filler full
pay.01 A2 refugees the refugees
pay.01 A2 U.S. U.S.
pay.01 A2 families the victims’ families
pay.01 A2 trust this trust
pay.01 A2 Warner AOL Time Warner
pay.01 A2 they they
pay.01 A2 lenders lenders
pay.01 A2 lawyers lawyers
pay.01 A2 one one

Table 5.4: Examples from ON5V showing the diversity of fillers in
terms of semantic types, part-of-speech, and topics.

poses a different challenge. Implicit semantic roles were manually
annotated on top of explicit semantic roles and other linguistic
information on a selection of OntoNotes documents. The authors
chose five highly frequent verbs to annotate in order to create
“high-volume of annotations for specific verb predicates”.1 As a
result, the words and phrases that fill each role are very diverse,
as illustrated by the examples in Table 5.4. To achieve high
performance on this dataset, a model needs to be selective yet
general enough to encompass different types of fillers.

4.2. Baseline

Our baseline is inspired by Schenk and Chiarcos (2016). For
every <predicate, role> pair found in our training set, it computes
a prototypical vector and, at test time, returns the candidate that
is closest to the prototypical vector. Following their best model,
we use the pretrained embeddings from Collobert et al. (2011).

Due to some differences between research questions and ex-
perimental setup, the results cannot be compared to Schenk and
Chiarcos’s algorithm directly. Firstly, for a fair comparison with
selectional preference-based models, we use only the head word
of each candidate (whereas they average all words in the phrase).

1They are: pay, give, bring, leave, put.
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Secondly, we train and evaluate on PropBank-style datasets while
they use FrameNet-style data.

4.3. Experimental Setup

We use the baseline described in the previous section and a Naïve
Bayes model trained on SemEval-2010 data (Feizabadi and Padó,
2015) to compare to our model’s performance. To quantify the ef-
fect of different aspects of the model, we investigate the following
variants:

ONEWAY captures one-way selectional preference and repre-
sents fillers by their syntactic head.

MULTIWAY captures multi-way selectional preference and rep-
resents fillers by their syntactic head.

SYNSEM uses richer features for fillers rather than selectional
preferences. We use five syntactic and semantic features
from Feizabadi and Padó (2015), namely, Expected roles,
Semantic Type, Word Frequency, POS, and Constituent
type.2

SYNSEM+ONEWAY combines richer features with one-way se-
lectional preference.

SYNSEM+MULTIWAY takes into account co-occurring roles to
capture multi-way selectional preference.

We construct one training example for each argument found
in OntoNotes and split the data into 90% for training and 10%
for development. Models are trained to choose the right filler
for each target role with as input: the predicate, the role and, if
applicable, other explicit arguments. We evaluate on the NI-only
test set from SemEval-2010 using the standard evaluation script
(Ruppenhofer et al., 2009).

We initiated the embedding matrix with 27K vectors from
the pretrained embeddings of Collobert et al. (2011). We use
AdaGrad (Duchi et al., 2010) for optimization; the initial learning

2See Table 2 in their paper. We did not use their discourse features because
they require iSRL annotations which is not available in OntoNotes.
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Train (%) Validation (%)
ONEWAY 59.52 46.61±0.23
MULTIWAY 58.52 47.64±0.19

Table 5.5: Accuracy of selectional preference models on OntoNotes
(for validation set we report mean and standard deviation over 5 runs).

rate was customized for each model to avoid gradient explosion.
All models were trained until no improvement was observed
on the development set (but not more than 1,000 epochs, for
practical reasons). To account for random initialization in neural
networks, we run each model 15 times and average the results. An
arbitrary but fixed random seed was used for each run to ensure
reproducibility.

All hyperparameters were tuned on OntoNotes development
set. We tested sum and max for aggregation function; sigmoid,
tanh, and cube for activation function (Chen and Manning, 2014);
different strength of dropout (Hinton et al., 2012), regularization,
and learning rate. Because of limited computational resource,
we performed a random hyperparameter search to find the best
setting. As discussed in Section , fillers can be represented in
different ways. We observed that using both the head word and
the closest coreferent non-pronoun head word is better than using
the head word only on our development set. Notice that gold
coreference chains are assumed to be available at test time and
were used in previous work (Silberer and Frank, 2012) as well as
the system we compare to (Feizabadi and Padó, 2015).

The source code of all experiments, including random seeds
and replication instructions, is publicly available at: bitbucket.
org/cltl/isrl-sp.

4.4. Results on SemEval-2010

Table 5.5 shows the performance of selectional preference models
with regard to resolving the explicit roles of OntoNotes. Selec-

bitbucket.org/cltl/isrl-sp
bitbucket.org/cltl/isrl-sp
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tional preference alone (without the help of syntactic structures)
can find the correct filler in more than 47% of the cases. We ob-
serve a small but statistically significant (p < 0.05) improvement
on the validation set by adding multiway selectional preference.

The results in Table 5.6 show that our models significantly
increase the F1 score above the baseline on SemEval-2010 dataset.
Both neural models show significant improvement in precision
and an even bigger improvement in recall. This can be attributed
to their ability to generalize to unseen predicate-role combina-
tions and abstract away from observed ones in their hidden layer.
Contrary to our expectation, MULTIWAY is inferior to ONEWAY

(p < 0.05).

ONEWAY and MULTIWAY do not outperform F&P which is
simpler in terms of machine learning architecture, but is trained
on in-domain, iSRL data, and uses more features. To bridge the
gap between the models, we also integrate Feizabadi and Pado’s
syntactic and semantic features into our neural models but they
do not lead to improved performance.

Table 5.5 and Table 5.6 reveal an increase in random fluctua-
tion when moving from OntoNotes to SemEval-2010, probably
because of a difference of some orders of magnitude in size.
Moreover, SYNSEM+ONEWAY gets an F1-score of 16.54% for
one of its runs (lower than the mean of all other neural models)
and 29.43% for another (higher than all means). These observa-
tions stress the importance of running experiments multiple times
when random factors (such as parameter initialization and the
order of training examples) are involved. Based on a single run, a
model might be heavily over- or underrated.

4.5. Results on ON5V

In Table 5.7, we report the results of models on ON5V (Moor
et al., 2013b). Again, the Naïve Bayes model using both local and
discourse information proposed by Feizabadi and Padó (2015)
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P R F1
Baseline 26.85 21.80 24.07
F&P 35.04 30.83 32.80
ONEWAY 28.80 28.67 28.74 ± 1.63
MULTIWAY 27.02 26.82 26.92 ± 1.42
SYNSEM 16.63 16.54 16.58 ± 1.51
ONEWAY+SYNSEM 24.05 23.91 23.98 ± 5.05
MULTIWAY+SYNSEM 17.29 17.29 17.29 ± 0.00

Table 5.6: Results on SemEval-2010. Results of neural models are
averaged over 15 runs. F1 scores are reported with mean and standard
deviation when possible.

P R F1
Baseline 13.00 13.00 13.00
F&P 16.72 15.19 15.90
ONEWAY 10.64 10.64 10.64 ± 1.44
MULTIWAY 9.14 9.14 9.14 ± 1.46
SYNSEM 5.92 5.92 5.92 ± 2.10
ONEWAY+SYNSEM 10.37 10.37 10.37 ± 5.50
MULTIWAY+SYNSEM 1.24 1.24 1.24 ± 0.00

Table 5.7: Results on ON5V

clearly provides the best performance, whereas neural models do
not show improvement over the baseline (p < 0.05).

The disappointing performance points to its inherent limita-
tion: it expects one prototypical filler per 〈predicate, role〉 pair.
As shown in Table 5.4, this assumption breaks in ON5V, resulting
in a lower mean and higher variance.

We expected that MULTIWAY would alleviate this problem by
varying the predicted vector based on surrounding roles. While
it achieves that for explicit SRL on OntoNotes (Table 5.5), the
result does not carry over to ON5V.

Local syntactic and semantic information do not improve re-
sults for SemEval. This applies even more strongly to ON5V.
SYNSEM leads to very low results when standing alone and
does not improve performance when combined with ONEWAY or
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MULTIWAY (the difference between ONEWAY and its combina-
tion with SYNSEM is not statistically significant). In comparison
with F&P, this result emphasizes the importance of discourse
information in the task.

5. Conclusions

In this paper, we investigated the use of more expressive machine
learning models for implicit Semantic Role Labeling. We pro-
posed novel neural models that use selectional preference and
applied them to iSRL. Our empirical results show that neural mod-
els are only better than a lookup table of prototypical vectors in a
natural setting such as SemEval-2010 while underperforming for
highly frequent and ambiguous words in ON5V. Furthermore, the
added expressive power does not help neural models to overcome
a simpler model trained on in-domain data and equipped with
discourse features (though it should be noted that we tested only a
small family of simple architectures, cf. Do et al. (2017)). Multi-
way preference is found to be helpful in the case of (explicit)
semantic role labeling but not for iSRL. Although the results
are mostly negative, our research provides hard-earned insights
into this challenging task which we believe will be useful for
researchers.

We release all of our models and the implementation of
Schenk and Chiarcos (2016) and Feizabadi and Padó (2015)’s
models as open-source software. We also report the fluctuation
of results which stresses the importance of measuring a model
multiple times when stochastic factors are involved.

Overall, this paper provides a solid basis for further research.
Our observations on fluctuation and significance suggest more
evaluation data may be needed to identify the true impact of
specific models and features.
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6. Conclusions

“I’ll try if I know all the things I used to know.
Let me see: four times five is twelve, and four
times six is thirteen, and four times seven is–oh
dear! I shall never get to twenty at that rate!
However, the Multiplication Table doesn’t
signify: let’s try Geography. London is the
capital of Paris, and Paris is the capital of Rome,
and Rome–no, that’s all wrong, I’m certain!”

Alice in Wonderland (Lewis Carroll)

This thesis has taken us to various places in NLP-land. It should
be clear by now that error propagation occurs in every task and
every model architecture. In fact, wherever errors occur there
is a chance of error propagation and in NLP we have never run
out of errors. From this perspective, I have set up for myself an
impossible task. Nevertheless, it is my hope that this thesis has
offered useful insights into this important phenomenon. To wrap
up, this last chapter will take you through a quick tour of what we
have learned so far (Section 6.1) including summaries of our five
papers cast as case studies of and solutions to error propagation
(Section 6.1.2 and 6.1.4). From this vantage point aiming at a
future where NLP reaches human-level performance, I will offer
my perspective on the remaining challenges in Section 6.2 and
promising research directions in Section 6.3.
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6.1 What We Have Learned

Error propagation can be informally defined as when an error
begets another. A review of the literature presented in this thesis
shows that the problem is known to occur in various tasks from
low- to high-level: chunking (Song et al., 2012), syntactic parsing
(e.g. Kong and Smith 2014), semantic role labeling (e.g. He et al.
2017), coreference resolution (e.g. Peng et al. 2015), sentiment
analysis (Gómez-Rodríguez et al., 2017), opinion mining (Yang
and Cardie, 2013), timeline extraction (Caselli et al., 2015), and
machine translation (e.g. Han et al. 2013). The degradation of per-
formance caused by error propagation is significant, sometimes
as big as reported incremental improvements in a task (Dridan
and Oepen, 2013). The prospect of error propagation might even
preclude the application of a task if the state-of-the-art perfor-
mance is deemed not high enough. To better understand this
vexing phenomenon, I have examined it in different angles and
studied possible solutions.

6.1.1 Types of Error Propagation

Error propagation can be classified along at least three dimensions:
within- vs across-task, hard (deterministic) vs soft (probabilistic),
and discrete vs continuous.

Error propagation occurs consistently in traditional pipelines
when a module passes its errors to the next (e.g. Dridan and
Oepen 2013). It can also occur when a single-task system per-
forms consecutive actions with some prominent examples being
transition-based parsing (McDonald and Nivre, 2007; Kummer-
feld et al., 2012) and coreference resolution (Clark, 2015). In the
first example, an incorrect parsing decision at the beginning of
a sentence might render correct syntactic structures in the later
part of the sentence inaccessible (among other consequences).
In the second example, an incorrect cluster formed by multiple
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entities ensures that later mentions of such entities are clustered
incorrectly in one way or another.

The two examples above also exemplify hard error propa-
gation, i.e. when an error deterministically causes another error.
Soft (or probabilistic) error propagation can also occur in each
of the two cases. A strength of transition-based systems is rich
non-local features based on partially-build structures. However,
this is also their Achilles’ heel when it comes to error propagation
since errors can create bad features that increase the chance of
further errors. Similarly, in coreference resolution, a bad cluster
might encourage further incorrect clustering decisions because of
misleading features.

As the output of NLP systems are mainly discrete structures,
it is natural that the majority of the literature so far has been
concerned with discrete errors. However, with the rise of deep
learning, more and more NLP systems make use of word embed-
dings and neural networks. More importantly, in those systems,
embeddings and internal distributed representations precede and
directly cause discrete actions. Talking about discrete errors
without their continuous counterpart is like talking about posi-
tions in a swimming competition without mentioning swimming
techniques.

It is hard to identify errors in real-value vectors because we
do not possess a gold-standard set of vectors to compare them
against. Instead, this thesis has taken a property-based approach:
we can define expected properties that a system might satisfy to a
certain degree. The stability of the internal representations of deep
neural networks was briefly examined using adversarial examples
in computer vision (object recognition). I have shown that a
small perturbation of the input is propagated and exacerbated
along the layers of a deep neural network until the final prediction
is changed. Adversarial examples are found in virtually any
application of deep neural networks, including NLP (e.g. Ribeiro
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et al. 2018). Moreover, aberration might arise naturally in the
first layers of the network because word embeddings have their
own kinds of errors.

6.1.2 Case Studies: Errors in Word Embeddings

Two papers presented in this thesis have to do with the study of er-
rors in word embeddings. The first paper, Taxonomy Beats Cor-
pus in Similarity Identification, but Does It Matter? shows
that word vector models often perform worse than taxonomy-
based models on similarity judgements. Building on an evalua-
tion method proposed in the paper, in this thesis I went beyond
summary measurements at a model level to identify problematic
vectors in Google’s word2vec (Mikolov et al., 2013a): those that
seem to encode an uncommon sense, have incoherent neighbors,
or are assigned into the wrong cluster. An estimated 19% of
words in the dataset I studied have one of those issues, indicating
that word embeddings models might contain a substantial amount
of errors.

The second paper, A Deep Dive into Word Sense Disam-
biguation with LSTM, attempts to measure the extent to which
dynamic embeddings models can capture word senses. Word
sense disambiguation (WSD) is a standard task in NLP but in
this thesis, I treat it as a probing task (Conneau et al., 2018) for
contextualized embeddings models. If a model is insensitive to
context, the highest score it can get in WSD is equal to the score
of the most-frequent-sense baseline (MFS) whereas a perfect
model would get 100%. Our experiments show that the studied
LSTM models perform very close to MFS (between 1% and 8%
relative improvement) and peak at F1 = 72%. Moreover, we show
that the amount of data or parameters needed for an increase of
1% of F1 is exponentially large.
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6.1.3 Existing Remedies

To systematize approaches to reducing error propagation, I pro-
posed a taxonomy of five strategies which can be further grouped
into three main ideas (mitigation, adaptation, and correction):

S1: By reducing the amount of errors at the first steps of a se-
quence of decisions, we can prevent some error propagation
from happening. Approaches in this strategy include work
on static and dynamic embeddings as well as improvements
on other foundational tasks such as sentence boundary de-
tection and part-of-speech tagging.

S2: To reduce the chance of error propagation, we can also
reorder decisions such that easier ones are executed first.
This is the idea behind easy-first approaches (e.g. Goldberg
and Elhadad 2010). When a joint-processing approach
is applied to a transition-based system, decisions are also
reordered. For example, in Constant and Nivre (2016),
syntactic parsing and multi-word expression recognition
decisions, which are usually executed by separate modules,
become interleaved.

S3: The length of the chain of decisions directly influences the
chance of error propagation. By making the chain shorter,
we can reduce or, if all decisions are independent, elim-
inate error propagation. Approaches that could achieve
this feat include graph-based joint processing (e.g. De-
nis and Baldridge 2009) and global inference (e.g. Andor
et al. 2016). End-to-end learning, either single-task (e.g.
Lee et al. 2017) or multi-task (e.g. Collobert and Weston
2008), is often used to remove preprocessing steps that
might lead to error propagation. In the context of non-
projective transition-based dependency parsing, Nivre et al.
(2009) report improvement by training a model to make
less transition steps.

S4: Instead of reducing the amount of errors that precede a de-
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cision, adaptation is the idea that decisions can be made
more robust to such errors. A very simple approach to
improve robustness is to train a system on predicted, as
opposed to gold standard, annotations (e.g. Che et al. 2012).
This minimizes the difference between training and test-
ing therefore cuts down propagated errors and increases
performance. Another method is to accept multiple out-
puts from upstream tasks (e.g. Henestroza Anguiano and
Candito 2012). Finkel et al. (2006) take this approach to
extremes by proposing that whole pipelines can be modeled
as Bayesian networks.

S5: By comparison to humans, some errors will always happen
and error propagation will not be solved completely until
we can detect and correct errors. Relatively little work has
been done in this area, focusing on syntax (e.g. Delecraz
et al. 2017). Reranking, which aims to reduce errors sta-
tistically without detecting errors explicitly, is studied for
syntactic and semantic parsing (e.g. Charniak and Johnson
2005; Ge and Mooney 2006).

6.1.4 Proposed Solutions

There are at least two reasons to believe errors are inevitable
and, therefore, mitigation cannot be the full solution. First, hu-
mans consistently make mistakes during language comprehension
(Rayner and Frazier, 1982). Second, an inherent tension exists in
any system that builds its output incrementally: the first decisions
are the most important to get right yet are based on the smallest
amount of information.

Together with my colleagues, I have explored adaptation and
(the preconditions of) error correction. In the paper Tackling Er-
ror Propagation through Reinforcement Learning: A Case
of Greedy Dependency Parsing, we show that reinforcement
learning can improve the robustness of a syntactic parser against
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error propagation (Strategy S4) and, at the same time, increase
the overall performance. Reinforcement learning incorporates
a system’s own actions and, therefore, errors into the learning
process. This exposure means that the system is more robust
when errors inevitably arise at run time.

To detect and correct errors (Strategy S5), I have argued that
we need to integrate information from multiple views of the input
and check for inconsistency, analogous to the way error correct-
ing codes work in telecommunication (Calderbank, 1998). In
the paper An Input Ablation Analysis of Coreference Resolu-
tion, we show that many high-performing systems of coreference
resolution base their decisions on a single source: the very expres-
sions that they are clustering. Replacing the surrounding tokens
with blanks has almost no effect on their performance. In Neural
Models of Selectional Preferences for Implicit Semantic Role
Labeling, we developed a simple model to capture the interde-
pendence of semantic roles as a first step towards a model of
information integration. The model improves upon the baseline
when tested on predicting explicit role fillers (the same task it
was trained on). However, when applying the model to implicit
semantic role labeling, we obtained largely negative results.

6.2 Challenges

An implicit goal of our research into error propagation is to im-
prove the performance of NLP systems. Otherwise, this thesis
would not have been necessary since global inference systems
already achieved zero error propagation by optimizing and pre-
dicting their whole output in one go. Optimizing such involved
structures, however, puts a strain on computation. As a result,
global inference systems are limited to simple features which in
turn place a cap to achievable performance. At the other extreme,
transition-based systems enable rich features at the risk of severe
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error propagation.

Deep learning systems are successful partly because they
avoid this trade-off to some extent. Distributed representations
allow for rich features without committing to any concrete in-
terpretation of the input. This allows deep neural networks to
perform some of the functions of NLP pipelines (Tenney et al.,
2019) within their layers while reducing error propagation. Nev-
ertheless error propagation persists in its continuous form within
neural layers and in discrete form when the system perform de-
pendent sequential actions. From this point of view, two big
challenges facing researchers are: how to make neural models
more robust to continuous error propagation and how to reinforce
the sequential discrete decisions that cannot be avoided.

Revolving around the first challenge, adversarial examples
have recently become a vibrant research area in NLP (Zhang
et al., 2020). It was demonstrated in various settings that we can
change a small part of a text (a few characters or a few words) in
a way that preserves meaning while changing the prediction of a
neural model. As a concrete example, Liang et al. (2018) reported
fooling the deep convolutional text classification model of Zhang
et al. (2015) to change its prediction by introducing a common
misspelling in a four-sentence passage. As argued earlier in this
thesis (see Section 2.1.3), such hypersensitivity is likely caused by
continuous error propagated and exacerbated through layers until
it is large enough to flip the prediction. Making neural networks
more robust to perturbation is a hard problem and continues to
attract research interest in not only NLP but also machine learning
research.

Regarding the second challenge, as language is inherently
linear and coherent, it is hard to imagine a language process-
ing system that can achieve human-level performance without
sequential, dependent decisions. At a certain level, language com-
prehension is like scientific research: we need hypotheses to base
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our reasoning on while being aware that they might be wrong
and ready to correct them upon new evidence. Research around
garden-path sentences shows that humans can do this (Rayner
and Frazier, 1982). On what basis do we decide something is
incorrect? In this thesis, I have advanced the argument that we
need world knowledge for this type of decisions (see Section 2.4).
Representing and extracting world knowledge is a long-standing
challenge in artificial intelligence research.

Robust and knowledge-rich language processing systems are
challenging goals that might take many more decades to realize.
However, as the applications of NLP reach more and more aspects
of everyday life, including critical areas such healthcare, the need
to address them is more urgent than ever. A precautionary case
of how NLP without knowledge can go wrong is IBM Watson:
after winning Jeopardy! against human champions, the language
processing wizard is deployed in various projects in diagnostics,
clinical-decision support, and personalized medicine. After many
years and billions of dollar spent on development, the results were
overwhelmingly negative (Strickland, 2019). In one case, Watson
was unable to update its beliefs based on the latest paper because
it relied on the statistics on thousands of others; in another case,
it recommended surveillance to some patients with metastatic
cancer (Strickland, 2019). Not every case of NLP absurdity is
obscure or limited to specialized settings. Facebook’s machine
translation once translated “good morning” in Arabic into “attack
them” in Hebrew, resulting in a brief arrest of its user.1 To avoid
such clashes between human expectation and system capability, I
believe that research into world knowledge should precede or at
least parallel the real-world deployment of NLP systems.

1https://www.bbc.com/news/world-middle-east-41714152,
accessed on 31 August 2020.

https://www.bbc.com/news/world-middle-east-41714152
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6.3 Future Research

How to capture world knowledge is a hard question but one clue
can be extracted from its definition: world knowledge is what we
assume the listener to know and therefore left unspoken. Recently,
Bender and Koller (2020) have argued that language models that
are trained on form only cannot learn meaning. Throughout the
course of my PhD study, my experience in extracting knowledge
from text falls along the same line: distributional lexical models,
both static and dynamic, were found to contain capricious distor-
tion and my efforts in extracting typical semantic relations and
event chains resulted in vague or meaningless patterns. For these
reasons, I believe that to find world knowledge, it is necessary to
escape from the boundaries of NLP.

Visual concepts are different from all other types of concepts
NLP has access to so far. Embeddings are abundant in modern
NLP but are structurally poor: they carry little information beyond
similarity and relatedness and support few operations beyond
analogical reasoning (in the sense that a model makes predictions
based on superficial similarity to observations in the training data).
Structured knowledge of the types captured by WordNet, CYC
and modern ontologies can be arbitrarily rich but, because they
are built by experts, the supply has always been limited. The
largest ontologies have been harvested from textual sources and
contain mostly specific entities rather than semantic knowledge
(Färber et al., 2015).

If properly represented and harvested, visual concepts can
be both rich and abundant. By analyzing first images and then
videos, we can learn not only visual characteristics but also intu-
itive physics, common physical mechanisms and typical social
interactions. Visual concepts also serve as the basis of concep-
tual metaphors that help us understand abstract ones (Lakoff and
Johnson, 1980). Without them, much of linguistic usage would
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become arbitrary and require memorization.
None of the above assumes that extracting visual concepts is

easy or applying them would solve all issues in NLP. However,
in my opinion, those are necessary parts of the final solution as
opposed to, for example, applying existing architectures on ever
larger amounts of data. To paraphrase Bender and Koller (2020),
I believe capturing world knowledge via visual concepts is the
right hill to climb.
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Jennifer Foster, Özlem Çetinoğlu, Joachim Wagner, Joseph Le Roux, Joakim
Nivre, Deirdre Hogan, and Josef van Genabith. 2011. From news to com-
ment: Resources and benchmarks for parsing the language of web 2.0. In
Proceedings of 5th International Joint Conference on Natural Language
Processing. Asian Federation of Natural Language Processing, Chiang Mai,
Thailand, pages 893–901.

Winthrop Nelson Francis and Henry Kucera. 1979. Brown corpus manual.
Brown University .

Ruifang Ge and Raymond J. Mooney. 2006. Discriminative reranking for
semantic parsing. In Proceedings of the COLING/ACL 2006 Main Confer-
ence Poster Sessions. Association for Computational Linguistics, Sydney,
Australia, pages 263–270.

Jeremy Getman, Joe Ellis, Stephanie Strassel, Zhiyi Song, and Jennifer Tracey.
2018. Laying the groundwork for knowledge base population: Nine years
of linguistic resources for TAC KBP. In Proceedings of the Eleventh Inter-
national Conference on Language Resources and Evaluation (LREC 2018).
European Language Resources Association (ELRA), Miyazaki, Japan.

Abbas Ghaddar and Phillippe Langlais. 2016. Coreference in Wikipedia: Main
concept resolution. In Proceedings of The 20th SIGNLL Conference on Com-
putational Natural Language Learning. Association for Computational Lin-
guistics, Berlin, Germany, pages 229–238. https://doi.org/10.18653/v1/K16-
1023.

Amin Ghiasi, Ali Shafahi, and Tom Goldstein. 2020. Breaking certified de-
fenses: Semantic adversarial examples with spoofed robustness certificates.
In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Daniel Gildea and Martha Palmer. 2002. The necessity of parsing for pred-
icate argument recognition. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics. Association for Com-
putational Linguistics, Philadelphia, Pennsylvania, USA, pages 239–246.
https://doi.org/10.3115/1073083.1073124.

Varun Godbole, Wei Liu, and Roberto Togneri. 2015. An Investigation of
Neural Embeddings for Coreference Resolution. Computational Linguistics

https://doi.org/10.18653/v1/K16-1023
https://doi.org/10.18653/v1/K16-1023
https://doi.org/10.18653/v1/K16-1023
https://doi.org/10.18653/v1/K16-1023
https://doi.org/10.3115/1073083.1073124
https://doi.org/10.3115/1073083.1073124
https://doi.org/10.3115/1073083.1073124
https://doi.org/10.1007/978-3-319-18111-0
https://doi.org/10.1007/978-3-319-18111-0


192 Bibliography

and Intelligent Text Processing 9041:241–251. https://doi.org/10.1007/978-
3-319-18111-0.

Yoav Goldberg. 2016. A Primer on Neural Network Models for Natural Lan-
guage Processing. Journal of Artificial Intelligence Research 57:345–420.

Yoav Goldberg and Michael Elhadad. 2010. An efficient algorithm for easy-first
non-directional dependency parsing. In Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics,
Los Angeles, California, pages 742–750.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic oracle for arc-eager
dependency parsing. In Proceedings of COLING 2012. The COLING 2012
Organizing Committee, Mumbai, India, pages 959–976.

Yoav Goldberg and Joakim Nivre. 2013. Training deterministic parsers with
non-deterministic oracles. Transactions of the Association for Computational
Linguistics 1:403–414. https://doi.org/10.1162/tacl_a_00237.

Yoav Goldberg, Francesco Sartorio, and Giorgio Satta. 2014. A tab-
ular method for dynamic oracles in transition-based parsing. Trans-
actions of the Association for Computational Linguistics 2:119–130.
https://doi.org/10.1162/tacl_a_00170.

Carlos Gómez-Rodríguez, Iago Alonso-Alonso, and David Vilares. 2017.
How Important is Syntactic Parsing Accuracy? An Empirical Evalua-
tion on Sentiment Analysis. Artificial Intelligence Review pages 1–17.
https://doi.org/10.1007/s10462-017-9584-0.

Carlos Gómez-Rodríguez, Francesco Sartorio, and Giorgio Satta. 2014. A
polynomial-time dynamic oracle for non-projective dependency parsing.
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics,
Doha, Qatar, pages 917–927. https://doi.org/10.3115/v1/D14-1099.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Philip Gorinski, Josef Ruppenhofer, and Caroline Sporleder. 2013. Towards
weakly supervised resolution of null instantiations. In Proceedings of the
10th International Conference on Computational Semantics (IWCS 2013) –

https://doi.org/10.1007/978-3-319-18111-0
https://doi.org/10.1007/978-3-319-18111-0
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00170
https://doi.org/10.1162/tacl_a_00170
https://doi.org/10.1162/tacl_a_00170
https://doi.org/10.1007/s10462-017-9584-0
https://doi.org/10.1007/s10462-017-9584-0
https://doi.org/10.1007/s10462-017-9584-0
https://doi.org/10.3115/v1/D14-1099
https://doi.org/10.3115/v1/D14-1099
https://doi.org/10.3115/v1/D14-1099


193

Long Papers. Association for Computational Linguistics, Potsdam, Germany,
pages 119–130.

Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan, and Hal Daumé III.
2014. Don’t until the final verb wait: Reinforcement learning for si-
multaneous machine translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). As-
sociation for Computational Linguistics, Doha, Qatar, pages 1342–1352.
https://doi.org/10.3115/v1/D14-1140.

Alvin Grissom II, Naho Orita, and Jordan Boyd-Graber. 2016. Incremental pre-
diction of sentence-final verbs: Humans versus machines. In Proceedings of
The 20th SIGNLL Conference on Computational Natural Language Learning.
Association for Computational Linguistics, Berlin, Germany, pages 95–104.
https://doi.org/10.18653/v1/K16-1010.

Anupam Guha, Mohit Iyyer, Danny Bouman, and Jordan Boyd-Graber. 2015.
Removing the training wheels: A coreference dataset that entertains humans
and challenges computers. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics,
Denver, Colorado, pages 1108–1118. https://doi.org/10.3115/v1/N15-1117.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On calibra-
tion of modern neural networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. PMLR, volume 70
of Proceedings of Machine Learning Research, pages 1321–1330.

Kelvin Guu, John Miller, and Percy Liang. 2015. Traversing knowledge graphs
in vector space. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational Lin-
guistics, Lisbon, Portugal, pages 318–327. https://doi.org/10.18653/v1/D15-
1038.

Aria Haghighi, Kristina Toutanova, and Christopher Manning. 2005. A joint
model for semantic role labeling. In Proceedings of the Ninth Conference
on Computational Natural Language Learning (CoNLL-2005). Association
for Computational Linguistics, Ann Arbor, Michigan, pages 173–176.

Peter Hagoort, Lea Hald, Marcel Bastiaansen, and Karl Magnus Petersson.
2004. Integration of word meaning and world knowledge in language
comprehension. science 304(5669):438–441.

https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.18653/v1/K16-1010
https://doi.org/10.18653/v1/K16-1010
https://doi.org/10.18653/v1/K16-1010
https://doi.org/10.3115/v1/N15-1117
https://doi.org/10.3115/v1/N15-1117
https://doi.org/10.3115/v1/N15-1117
https://doi.org/10.18653/v1/D15-1038
https://doi.org/10.18653/v1/D15-1038
https://doi.org/10.18653/v1/D15-1038
https://doi.org/10.18653/v1/D15-1038


194 Bibliography
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