16,657 research outputs found

    Localizing Region-Based Active Contours

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.2004611In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models

    Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Get PDF
    Automated source extraction and parameterization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parameterization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, including also different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the ASKAP-EMU survey. The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.Comment: 15 pages, 9 figure

    Shape-driven segmentation of the arterial wall in intravascular ultrasound images

    Get PDF
    Segmentation of arterial wall boundaries from intravascular images is an important problem for many applications in the study of plaque characteristics, mechanical properties of the arterial wall, its 3D reconstruction, and its measurements such as lumen size, lumen radius, and wall radius. We present a shape-driven approach to segmentation of the arterial wall from intravascular ultrasound images in the rectangular domain. In a properly built shape space using training data, we constrain the lumen and media-adventitia contours to a smooth, closed geometry, which increases the segmentation quality without any tradeoff with a regularizer term. In addition to a shape prior, we utilize an intensity prior through a non-parametric probability density based image energy, with global image measurements rather than pointwise measurements used in previous methods. Furthermore, a detection step is included to address the challenges introduced to the segmentation process by side branches and calcifications. All these features greatly enhance our segmentation method. The tests of our algorithm on a large dataset demonstrate the effectiveness of our approach

    Magneto-Centrifugal Launching of Jets from Accretion Disks. II: Inner Disk-Driven Winds

    Full text link
    We follow numerically the time evolution of axisymmetric outflows driven magneto-centrifugally from the inner portion of accretion disks, from their launching surface to large, observable distances. Special attention is paid to the collimation of part of the outflow into a dense, narrow jet around the rotation axis, after a steady state has been reached. For parameters typical of T Tauri stars, we define a fiducial ``jet'' as outlined by the contour of constant density at 10^4 cm^{-3}. We find that the jet, so defined, appears nearly cylindrical well above the disk, in agreement with previous asymptotic analyses. Closer to the equatorial plane, the density contour can either bulge outwards or pinch inwards, depending on the conditions at the launching surface, particularly the mass flux distribution. We find that even though a dense, jet-like feature is always formed around the axis, there is no guarantee that the high-density axial jet would dominate the more tenuous, wide-angle part of the wind. Specifically, on the 100 AU scale, resolvable by HST and ground-based adaptive optics for nearby T Tauri winds, the fraction of the wind mass flux enclosed by the fiducial jet can vary substantially, again depending on the launching conditions. We show two examples in which the fraction is ~20% and ~45%. These dependences may provide a way to constrain the conditions at the launching surface, which are poorly known at present.Comment: 11 pages, 6 figures. Accepted for publication in ApJ, scheduled for vol. 595, October 1, 200

    Interactive image segmentation based on level sets of probabilities

    Get PDF
    In this paper, we present a robust and accurate algorithm for interactive image segmentation. The level set method is clearly advantageous for image objects with a complex topology and fragmented appearance. Our method integrates discriminative classification models and distance transforms with the level set method to avoid local minima and better snap to true object boundaries. The level set function approximates a transformed version of pixelwise posterior probabilities of being part of a target object. The evolution of its zero level set is driven by three force terms, region force, edge field force, and curvature force. These forces are based on a probabilistic classifier and an unsigned distance transform of salient edges. We further propose a technique that improves the performance of both the probabilistic classifier and the level set method over multiple passes. It makes the final object segmentation less sensitive to user interactions. Experiments and comparisons demonstrate the effectiveness of our method. © 2012 IEEE.published_or_final_versio

    Inside-Out Planet Formation. V. Structure of the Inner Disk as Implied by the MRI

    Full text link
    The large population of Earth to super-Earth sized planets found very close to their host stars has motivated consideration of inin situsitu formation models. In particular, Inside-Out Planet Formation is a scenario in which planets coalesce sequentially in the disk, at the local gas pressure maximum near the inner boundary of the dead zone. The pressure maximum arises from a decline in viscosity, going from the active innermost disk (where thermal ionization of alkalis yields high viscosities via the magneto-rotational instability (MRI)) to the adjacent dead zone (where the MRI is quenched). Previous studies of the pressure maximum, based on α\alpha-disk models, have assumed ad hoc values for the viscosity parameter α\alpha in the active zone, ignoring the detailed physics of the MRI. Here we explicitly couple the MRI criteria to the α\alpha-disk equations, to find steady-state (constant accretion rate) solutions for the disk structure. We consider the effects of both Ohmic and ambipolar resistivities, and find solutions for a range of disk accretion rates (M˙\dot{M} = 101010^{-10} - 10810^{-8} M{\rm M}_{\odot}/yr), stellar masses (MM_{\ast} = 0.1 - 1 M{\rm M}_{\odot}), and fiducial values of the nonnon-MRI α\alpha-viscosity in the dead zone (αDZ=105\alpha_{\rm {DZ}} = 10^{-5} - 10310^{-3}). We find that: (1) A midplane pressure maximum forms radially outsideoutside the inner boundary of the dead zone; (2) Hall resistivity dominates near the midplane in the inner disk, which may explain why close-in planets do notnot form in \sim50% of systems; (3) X-ray ionization can be competitive with thermal ionization in the inner disk, because of the low surface density there in steady-state; and (4) our inner disk solutions are viscously unstable to surface density perturbations.Comment: 34 pages, 28 figures, 3 appendices. Accepted by the Astrophysical Journa
    corecore