229 research outputs found

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Complex oscillations in the delayed Fitzhugh-Nagumo equation

    Full text link
    Motivated by the dynamics of neuronal responses, we analyze the dynamics of the Fitzhugh-Nagumo slow-fast system with delayed self-coupling. This system provides a canonical example of a canard explosion for sufficiently small delays. Beyond this regime, delays significantly enrich the dynamics, leading to mixed-mode oscillations, bursting and chaos. These behaviors emerge from a delay-induced subcritical Bogdanov-Takens instability arising at the fold points of the S-shaped critical manifold. Underlying the transition from canard-induced to delay-induced dynamics is an abrupt switch in the nature of the Hopf bifurcation

    Homoclinic Bifurcations for the Henon Map

    Full text link
    Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We find a bound on the parameter range for which the Henon map exhibits a complete binary horseshoe as well as a subshift of finite type. We classify homoclinic bifurcations, and study those for the area preserving case in detail. Simple forcing relations between homoclinic orbits are established. We show that a symmetry of the map gives rise to constraints on certain sequences of homoclinic bifurcations. Our numerical studies also identify the bifurcations that bound intervals on which the topological entropy is apparently constant.Comment: To appear in PhysicaD: 43 Pages, 14 figure

    Spiralling dynamics near heteroclinic networks

    Full text link
    There are few explicit examples in the literature of vector fields exhibiting complex dynamics that may be proved analytically. We construct explicitly a {two parameter family of vector fields} on the three-dimensional sphere \EU^3, whose flow has a spiralling attractor containing the following: two hyperbolic equilibria, heteroclinic trajectories connecting them {transversely} and a non-trivial hyperbolic, invariant and transitive set. The spiralling set unfolds a heteroclinic network between two symmetric saddle-foci and contains a sequence of topological horseshoes semiconjugate to full shifts over an alphabet with more and more symbols, {coexisting with Newhouse phenonema}. The vector field is the restriction to \EU^3 of a polynomial vector field in \RR^4. In this article, we also identify global bifurcations that induce chaotic dynamics of different types.Comment: change in one figur

    Computational Study in Chaotic Dynamical Systems and Mechanisms for Pattern Generation in Three-Cell Networks

    Get PDF
    A computational technique is introduced to reveal the complex intrinsic structure of homoclinic and heteroclinic bifurcations in a chaotic dynamical system. This technique is applied to several Lorenz-like systems with a saddle at the center, including the Lorenz system, the Shimizu-Morioka model, the homoclinic garden model, and the laser model. A multi-fractal, self-similar organization of heteroclinic and homoclinic bifurcations of saddle singularities is explored on a bi-parametric plane of those dynamical systems. Also a great detail is explored in the Shimizu-Morioka model as an example. The technique is also applied to a re exion symmetric dynamical system with a saddle-focus at the center (Chua\u27s circuits). The layout of the homoclinic bifurcations near the primary one in such a system is studied theoretically, and a scalability ratio is proved. Another part of the dissertation explores the intrinsic mechanisms of escape in a reciprocally inhibitory FitzHugh-Nagumo type threecell network, using the phase-lag technique. The escape network can produce phase-locked states such as pace-makers, traveling-waves, and peristaltic patterns with recurrently phaselag varying
    corecore