563,583 research outputs found

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models

    Principles of Discrete Time Mechanics: I. Particle Systems

    Full text link
    We discuss the principles to be used in the construction of discrete time classical and quantum mechanics as applied to point particle systems. In the classical theory this includes the concept of virtual path and the construction of system functions from classical Lagrangians, Cadzow's variational principle applied to the action sum, Maeda-Noether and Logan invariants of the motion, elliptic and hyperbolic harmonic oscillator behaviour, gauge invariant electrodynamics and charge conservation, and the Grassmannian oscillator. First quantised discrete time mechanics is discussed via the concept of system amplitude, which permits the construction of all quantities of interest such as commutators and scattering amplitudes. We discuss stroboscopic quantum mechanics, or the construction of discrete time quantum theory from continuous time quantum theory and show how this works in detail for the free Newtonian particle. We conclude with an application of the Schwinger action principle to the important case of the quantised discrete time inhomogeneous oscillator.Comment: 35 pages, LateX, To be published in J.Phys.A: Math.Gen. Basic principles stated: applications to field theory in subsequent papers of series contact email address: [email protected]

    Closed orbits in quotient systems

    Get PDF
    If we have topological conjugacy between two continuous maps, T : X ā†’ X and T 0 : X0 ā†’ X0 , then counts of closed orbits and periodic points are preserved. However, if we only have topological semi-conjugacy between T and T 0 , then anything is possible, and there is, in general, no relationship between closed orbits (or periodic points) of T and T 0 . However, if we let a finite group G act on X, where the action of G commutes with T and where we let X0 = G\X be the quotient of the action, then it is indeed possible to say a bit more about the relationship between the count of closed orbits of (X, T) and its quotient system (X0 , T0 ). In this thesis, we will describe the behaviour of closed orbits in quotient systems, and we will show that there exists a wide but restricted range of what growth rates can be achieved for these orbits. Moreover, we will examine the analytic properties of the dynamical zeta function in quotient systems

    Cognition in Context: Phenomenology, Situated Robotics and the Frame Problem

    Get PDF
    The frame problem is the difficulty of explaining how non-magical systems think and act in ways that are adaptively sensitive to context-dependent relevance. Influenced centrally by Heideggerian phenomenology, Hubert Dreyfus has argued that the frame problem is, in part, a consequence of the assumption (made by mainstream cognitive science and artificial intelligence) that intelligent behaviour is representation-guided behaviour. Dreyfusā€™ Heideggerian analysis suggests that the frame problem dissolves if we reject representationalism about intelligence and recognize that human agents realize the property of thrownness (the property of being always already embedded in a context). I argue that this positive proposal is incomplete until we understand exactly how the properties in question may be instantiated in machines like us. So, working within a broadly Heideggerian conceptual framework, I pursue the character of a representationshunning thrown machine. As part of this analysis, I suggest that the frame problem is, in truth, a two-headed beast. The intra-context frame problem challenges us to say how a purely mechanistic system may achieve appropriate, flexible and fluid action within a context. The inter-context frame problem challenges us to say how a purely mechanistic system may achieve appropriate, flexible and fluid action in worlds in which adaptation to new contexts is open-ended and in which the number of potential contexts is indeterminate. Drawing on the field of situated robotics, I suggest that the intra-context frame problem may be neutralized by systems of special purpose adaptive couplings, while the inter-context frame problem may be neutralized by systems that exhibit the phenomenon of continuous reciprocal causation. I also defend the view that while continuous reciprocal causation is in conflict with representational explanation, special-purpose adaptive coupling, as well as its associated agential phenomenology, may feature representations. My proposal has been criticized recently by Dreyfus, who accuses me of propagating a cognitivist misreading of Heidegger, one that, because it maintains a role for representation, leads me seriously astray in my handling of the frame problem. I close by responding to Dreyfusā€™ concerns

    Behavioural hybrid process calculus

    Get PDF
    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in the presence of nondeterminism, system composition by interconnection of concurrent component systems, and notions of behavioural equivalence of such systems. It has contributed fundamental concepts such as bisimulation, and has been successfully used in a wide range of problems and practical applications in concurrent systems. We believe that the basic tenets of process algebra are highly compatible with the behavioural approach to dynamical systems. In our contribution we present an extension of classical process algebra that is suitable for the modelling and analysis of continuous and hybrid dynamical systems. It provides a natural framework for the concurrent composition of such systems, and can deal with nondeterministic behaviour that may arise from the occurrence of internal switching events. Standard process algebraic techniques lead to the characterisation of the observable behaviour of such systems as equivalence classes under some suitably adapted notion of bisimulation

    Discrete Simulation of Behavioural Hybrid Process Calculus

    Get PDF
    Hybrid systems combine continuous-time and discrete behaviours. Simulation is one of the tools to obtain insight in dynamical systems behaviour. Simulation results provide information on performance of system and are helpful in detecting potential weaknesses and errors. Moreover, the results are handy in choosing adequate control strategies and parameters. In our contribution we report a work in progress, a technique for simulation of Behavioural Hybrid Process Calculus, an extension of process algebra that is suitable for the modelling and analysis of hybrid systems

    A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    Get PDF
    http://dx.doi.org/10.1093/bib/bbn026Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach { Qualitative Petri nets, and quantitative approaches { Continuous Petri Nets and Ordinary Differential Equations. We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present ..
    • ā€¦
    corecore