10 research outputs found

    Cyber Resilience Evaluation Using Cyber Resilience Review Framework at University XYZ

    Get PDF
    Cyber resilience is about protecting data and information owned by University XYZ and adapting business processes at University XYZ to ensure service continuity when cyber threats occur. However, University XYZ never evaluates its practices to implement security and data management. University XYZ needs to know its maturity level based on cyber resilience evaluation to improve its cyber resilience. Therefore, this research was carried out to evaluate cyber resilience at University XYZ using the Cyber Resilience Review (CRR) assessment by evaluating ten cyber resilience domains. The evaluation covers academic services that use the University XYZ academic information system. The evaluation process will be held through an interview with the process owner. The interview questions are based on CRR assessment. After the evaluation, we found that none of the domains in University XYZ had yet reached Maturity Indicator Level (MIL)-1. In addition, the overall performance percentage for each CRR domain had not yet reached 100%. An improvementrecommendation for each domain has also been made, containing guidance for implementing incomplete and noncommitted practices. University XYZ can implement cyber resilience practices according to recommendations so that the implementation process can run optimally, even thoughcyber threats occur from time to time

    Efficient attack countermeasure selection accounting for recovery and action costs

    Get PDF
    The losses arising from a system being hit by cyber attacks can be staggeringly high, but defending against such attacks can also be costly. This work proposes an attack countermeasure selection approach based on cost impact analysis that takes into account the impacts of actions by both the attacker and the defender. We consider a networked system providing services whose functionality depends on other components in the network. We model the costs and losses to service availability from compromises and defensive actions to the components, and show that while containment of the attack can be an effective defense, it may be more cost-efficient to allow parts of the attack to continue further whilst focusing on recovering services to a functional state. Based on this insight, we build a countermeasure selection method that chooses the most cost-effective action based on its impact on expected losses and costs over a given time horizon. Our method is evaluated using simulations in synthetic graphs representing network dependencies and vulnerabilities, and performs well in comparison to alternatives

    On the design of a moving target defense framework for the resiliency of critical services in large distributed networks

    Get PDF
    2018 Fall.Includes bibliographical references.Security is a very serious concern in this era of digital world. Protecting and controlling access to secured data and services has given more emphasis to access control enforcement and management. Where, access control enforcement with strong policies ensures the data conïŹdentiality, availability and integrity, protecting the access control service itself is equally important. When these services are hosted on a single server for a lengthy period of time, the attackers have potentially unlimited time to periodically explore and enumerate the vulnerabilities with respect to the conïŹguration of the server and launch targeted attacks on the service. Constant proliferation of cloud usage and distributed systems over the last decade have materialized the possibilities of distributing data or hosting services over a group of servers located in different geographical locations. Existing election algorithms used to provide service continuity hosted in the distributed setup work well in a benign environment. However, these algorithms are not secure against skillful attackers who intends to manipulate or bring down the data or service. In this thesis, we design and implement the protection of critical services, such as access-control reference monitors, using the concept of moving target defense. This concept increases the level of difïŹculty faced by the attacker to compromise the point of service by periodically moving the critical service among a group of heterogeneous servers, thereby changing the attacker surface and increasing uncertainty and randomness in the point of service chosen. We describe an efïŹcient Byzantine fault-tolerant leader election protocol for small networks that achieves the security and performance goals described in the problem statement. We then extend this solution to large enterprise networks by introducing random walk protocol that randomly chooses a subset of servers taking part in the election protocol

    On designing large, secure and resilient networked systems

    Get PDF
    2019 Summer.Includes bibliographical references.Defending large networked systems against rapidly evolving cyber attacks is challenging. This is because of several factors. First, cyber defenders are always fighting an asymmetric warfare: While the attacker needs to find just a single security vulnerability that is unprotected to launch an attack, the defender needs to identify and protect against all possible avenues of attacks to the system. Various types of cost factors, such as, but not limited to, costs related to identifying and installing defenses, costs related to security management, costs related to manpower training and development, costs related to system availability, etc., make this asymmetric warfare even challenging. Second, newer and newer cyber threats are always emerging - the so called zero-day attacks. It is not possible for a cyber defender to defend against an attack for which defenses are yet unknown. In this work, we investigate the problem of designing large and complex networks that are secure and resilient. There are two specific aspects of the problem that we look into. First is the problem of detecting anomalous activities in the network. While this problem has been variously investigated, we address the problem differently. We posit that anomalous activities are the result of mal-actors interacting with non mal-actors, and such anomalous activities are reflected in changes to the topological structure (in a mathematical sense) of the network. We formulate this problem as that of Sybil detection in networks. For our experimentation and hypothesis testing we instantiate the problem as that of Sybil detection in on-line social networks (OSNs). Sybil attacks involve one or more attackers creating and introducing several mal-actors (fake identities in on-line social networks), called Sybils, into a complex network. Depending on the nature of the network system, the goal of the mal-actors can be to unlawfully access data, to forge another user's identity and activity, or to influence and disrupt the normal behavior of the system. The second aspect that we look into is that of building resiliency in a large network that consists of several machines that collectively provide a single service to the outside world. Such networks are particularly vulnerable to Sybil attacks. While our Sybil detection algorithms achieve very high levels of accuracy, they cannot guarantee that all Sybils will be detected. Thus, to protect against such "residual" Sybils (that is, those that remain potentially undetected and continue to attack the network services), we propose a novel Moving Target Defense (MTD) paradigm to build resilient networks. The core idea is that for large enterprise level networks, the survivability of the network's mission is more important than the security of one or more of the servers. We develop protocols to re-locate services from server to server in a random way such that before an attacker has an opportunity to target a specific server and disrupt it’s services, the services will migrate to another non-malicious server. The continuity of the service of the large network is thus sustained. We evaluate the effectiveness of our proposed protocols using theoretical analysis, simulations, and experimentation. For the Sybil detection problem we use both synthetic and real-world data sets. We evaluate the algorithms for accuracy of Sybil detection. For the moving target defense protocols we implement a proof-of-concept in the context of access control as a service, and run several large scale simulations. The proof-of- concept demonstrates the effectiveness of the MTD paradigm. We evaluate the computation and communication complexity of the protocols as we scale up to larger and larger networks

    A survey on cyber resilience: key strategies, research challenges, and future directions

    Get PDF
    Cyber resilience has become a major concern for both academia and industry due to the increasing number of data breaches caused by the expanding attack surface of existing IT infrastructure. Cyber resilience refers to an organisation’s ability to prepare for, absorb, recover from, and adapt to adverse effects typically caused by cyber-attacks that affect business operations. In this survey, we aim to identify the significant domains of cyber resilience and measure their effectiveness. We have selected these domains based on a literature review of frameworks, strategies, applications, tools, and technologies. We have outlined the cyber resilience requirements for each domain and explored solutions related to each requirement in detail. We have also compared and analysed different studies in each domain to find other ways of enhancing cyber resilience. Furthermore, we have compared cyber resilience frameworks and strategies based on technical requirements for various applications. We have also elaborated on techniques for improving cyber resilience. In the supplementary section, we have presented applications that have implemented cyber resilience. This survey comprehensively compares various popular cyber resilience tools to help researchers, practitioners, and organisations choose the best practices for enhancing cyber resilience. Finally, we have shared key findings, limitations, problems, and future directions

    Improving resilience to cyber-attacks by analysing system output impacts and costs

    Get PDF
    Cyber-attacks cost businesses millions of dollars every year, a key component of which is the cost of business disruption from system downtime. As cyber-attacks cannot all be prevented, there is a need to consider the cyber resilience of systems, i.e. the ability to withstand cyber-attacks and recover from them. Previous works discussing system cyber resilience typically either offer generic high-level guidance on best practices, provide limited attack modelling, or apply to systems with special characteristics. There is a lack of an approach to system cyber resilience evaluation that is generally applicable yet provides a detailed consideration for the system-level impacts of cyber-attacks and defences. We propose a methodology for evaluating the effectiveness of actions intended to improve resilience to cyber-attacks, considering their impacts on system output performance, and monetary costs. It is intended for analysing attacks that can disrupt the system function, and involves modelling attack progression, system output production, response to attacks, and costs from cyber-attacks and defensive actions. Studies of three use cases demonstrate the implementation and usefulness of our methodology. First, in our redundancy planning study, we considered the effect of redundancy additions on mitigating the impacts of cyber-attacks on system output performance. We found that redundancy with diversity can be effective in increasing resilience, although the reduction in attack-related costs must be balanced against added maintenance costs. Second, our work on attack countermeasure selection shows that by considering system output impacts across the duration of an attack, one can find more cost-effective attack responses than without such considerations. Third, we propose an approach to mission viability analysis for multi-UAV deployments facing cyber-attacks, which can aid resource planning and determining if the mission can conclude successfully despite an attack. We provide different implementations of our model components, based on use case requirements.Open Acces
    corecore