
Efficient Attack Countermeasure Selection Accounting for
Recovery and Action Costs

Jukka Soikkeli
Imperial College London

United Kingdom
j.soikkeli@imperial.ac.uk

Luis Muñoz-González
Imperial College London

United Kingdom
l.munoz@imperial.ac.uk

Emil Lupu
Imperial College London

United Kingdom
e.c.lupu@imperial.ac.uk

ABSTRACT
The losses arising from a system being hit by cyber attacks can
be staggeringly high, but defending against such attacks can also
be costly. This work proposes an attack countermeasure selection
approach based on cost impact analysis that takes into account the
impacts of actions by both the attacker and the defender.

We consider a networked system providing services whose func-
tionality depends on other components in the network. We model
the costs and losses to service availability from compromises and
defensive actions to the components, and show that while con-
tainment of the attack can be an effective defense, it may be more
cost-efficient to allow parts of the attack to continue further whilst
focusing on recovering services to a functional state. Based on this
insight, we build a countermeasure selection method that chooses
the most cost-effective action based on its impact on expected losses
and costs over a given time horizon. Our method is evaluated using
simulations in synthetic graphs representing network dependencies
and vulnerabilities, and performs well in comparison to alternatives.

CCS CONCEPTS
• Security and privacy → Vulnerability management; Net-
work security; • Networks→ Network reliability;

KEYWORDS
Countermeasure selection, Cyber resilience, Impact analysis.

1 INTRODUCTION
Organisations providing services across the Internet or otherwise
connected to an external network face the possibility of cyber-
attacks against their systems. Consequently, such organisations
should invest in cyber security to protect their services, both to
lower the risk of attacks, and to reduce the impact when they occur.
Determining the desired level for this investment, and its correct
application, is not as straightforward as attempting to secure every-
thing fully. The literature on cyber security investment has shown
that a company should never invest to the extent as to cover all
potential vulnerabilities or weaknesses [9], and that a company
should retain some part of the security investment budget for when
an attack event has taken place [5, 10]. Furthermore, given the
existence of unknown vulnerabilities and exploits [16], not all even-
tualities can be prepared against. Additionally, security actions can
cause limitations to availability, e.g. reductions to communication
between systems or users, or loss of compatibility between software
applications due to patching. Combined, these observations lead
to a concern over the cyber-resilience of the system consisting of

services the organisation provides and the related network, i.e. the
ability of the system to withstand and recover from cyber attacks.

Given the possibility that an attack against an organisation’s sys-
tem will occur, some cyber-security investment should be allocated
into improving the ability of the system to cope during an attack,
and recover to normal functionality. The actions organisations take
to mitigate the effects of attacks is the subject of the literature in
attack countermeasure selection, reviewed by [15]. In contrast to
existing work on countermeasure selection, we take a longer term
view by focusing on network resilience, forcing the countermeasure
selection to consider impacts over time, and recovery dynamics.

We propose a method for countermeasure selection based on
cost impact assessment of both attacker and defender actions, in a
medium-to-long-run setting including recovery dynamics. The im-
pacts of actions are estimated using an approach that builds on the
attack impact analysis approach by [1, 2], which uses attack graphs
(AGs) and dependency graphs (DGs) to estimate attack impact. Our
work adds a cost structure, specifying costs for loss of node avail-
ability, the countermeasures, and recovery actions. This extends
the impact assessment beyond attack impact alone, including the
cost impact of defender’s actions alongside that from attack steps.
The structure enables dynamic semi-automatic countermeasure
selection based on the overall costs of alternative defender actions.
This allows our method to make more nuanced countermeasure
decisions, balancing attack containment and focus on recovery ac-
cording to the situation to yield efficient countermeasure strategies.

Our main contribution on countermeasure selection, beyond the
use of our novel impact assessment, is a method to evaluate the
effectiveness of each countermeasure based on its expected impact
on the system. This involves the effects of the countermeasure on
the possible evolution of the attack, and on the network’s service
provision, both immediately and in a longer term. We achieve this
by using the network attack graph to form expectations of possible
attack paths and their likelihoods, and employing the impact as-
sessment method to estimate the cost impact of the different states
the system could enter within a few steps from the current state.

We test our method by simulations on a small sample graph and
on synthetic graphs, against two alternative methods. The results
suggest that our method provides more cost-efficient countermea-
sure selection than the alternatives tested, especially when attacks
are detected with a delay. As our method builds on the attack impact
assessment by [1, 2], we made comparisons to an alternative that
employs the principles of their attack impact assessment without
our extensions. The comparisons show that, for countermeasure
selection, our extensions to their analysis add considerable improve-
ments to cost effectiveness and average service performance.

1

In summary, our contributions include: 1. Extending the attack
impact assessment model by [1, 2] into a more general model for
impact assessment including defender actions, via modelling service
losses and the costs of the countermeasures, and adding a change
to enable the modelling of recovery, which the original formulation
does not support; 2. Introducing an approach to countermeasure
selection based on estimating the expected impacts of actions; 3.
Showing that considering recovery and the costs of actions over
time can yield a more efficient countermeasure selection.

The paper is structured as follows: Sec. 2 discusses related work;
Sec. 3 introduces our impact analysis model, including concepts and
definitions from [1, 2] which we build upon; Sec. 4 introduces our
countermeasure selection approach; Sec. 5 evaluates the method
against two alternatives, using simulations; and Sec. 6 concludes.

2 RELATEDWORK
In a general sense, resilience is the ability of a system (an organism,
a network, a country) to withstand and recover from adverse events
such as natural disasters, epidemics, system faults or cyber attacks.
Due to the wide use of the term in different fields of study, various
definitions for the term have been used [11]. In the definition we
shall use, the defining characteristic of resilience is the recovery and
adaptation exhibited by a system during and after an adverse event.
The systems ability to simply weather an event, which we call
robustness after [8], covers only part of resilience in our definition.

A key work in the field of resilience measurement, Bruneau et
al. [3] introduced a way to measure resilience based on a system
performance curve. Their method calculates resilience loss, the
performance lost due to lack of resilience. This is the difference
between the level of a performance metric and its optimal value
over time, from the start of the disruption to when performance has
recovered fully. While other measures have been proposed, such as
a method combining two metrics for measuring the resilience of
a backbone network by Sterbenz et al. [19, 20], approaches based
on performance curves akin to [3] have become common in the
literature for quantifying system resilience, used by e.g. [8, 22].

Our work differs frommost of the existing literature on resilience
by focusing on the actions and investment choices during an ongo-
ing event (attack) and the recovery phase, instead of preparatory
planning and capability investment. This focus is intended to ad-
dress the evolving nature of systems, and adaptation to conditions
such as loss of confidentiality or network unavailability. Most cyber
resilience works have focused on the planning and design stage,
such as [8, 18, 20]. Additionally, papers considering reactive re-
sponse and recovery apply to narrow settings unrelated to our work.
For example, the approaches by [4, 22] apply to settings where a
control action to correct for a deviation from desired performance
is easy to determine in advance, and to apply automatically.

In the cyber security literature, countermeasure selection
refers to approaches to choose actions to counter security events
(cyber attacks) [15]. These methods focus on defense against attack
events, and as such mainly involve the stages before and during an
attack: modelling the system, the potential attacks and countermea-
sures; identifying the attack and choosing a countermeasure. We
believe that by introducing longer-term resilience considerations,
countermeasure investments can be made more efficient. Recent

frameworks for attack countermeasure selection have commonly
used graphical models [15]. The combined use of attack graphs
(AGs) and dependency graphs (DGs) for analysing the impact of cy-
ber attacks has been explored by Albanese et al. [1, 2]. Kotenko and
Doynikova [6, 12–14] employ these graph tools in a countermeasure
selection system, and Shameli-Sendi et al. [17] use similar graphs
for selecting countermeasures in an intrusion response system.

The method in [1, 2] holds the DG alongside the AG as part
of the dynamic analysis, with the effects of attack steps on the
DG held as key for impact assessment. By contrast, [12] focuses on
enriching the system’s AGwith topological and service dependency
information, and using this augmented AG for the analysis. The
DG is employed as a source of component importance information
at the pre-processing stage. In this work, we follow the approach in
[1, 2] of using the DG ’live’ during the analysis. This is because for
our approach to countermeasure choice and resilience analysis, the
dynamic effects from attack steps on the dependencies are required
for accurate estimation of costs and loss impacts over time.

Our proposed approach has similarities to the countermeasure
selection techniques in [13] and [17] in the use of AGs and DGs,
using costs to quantify attack impact, and basing countermeasure
decisions on costs. While these works focus on containment in
terms of stopping attacks or reducing the risk of them reaching
pre-determined goals, we aim to find a strategy that is efficient over
longer time, considering the cost of recovery to previous functional-
ity. Additionally, we model time dynamics explicitly, and approach
cost and component valuation via the impact on the final services
as opposed to giving each component an intrinsic value.

3 IMPACT ANALYSIS MODELLING
3.1 Attack and Dependency Graphs
Attack graphs are a network risk-assessment tool that provide a
graphical representation of actions that an attacker can take to
reach an attack goal, for example root access on a given server, by
exploiting vulnerabilities that exist in the network. Various types
of attack graphs have been proposed in the literature, depending
on the application. The work presented here will use the defini-
tion of Vulnerability Dependency Graph from [1], a compact AG
representation used in their work on attack impact assessment.

Definition 3.1. (Vulnerability Dependency Graph, [1]) Given a set
of vulnerability exploits V , a set of security conditions C , a require relation
Rr ⊆ C ×V , and an imply relation Ri ⊆ V ×C , a vulnerability dependency
graph G is the directed graphG = (V , R), where R = {(vi , vj) ∈ V ×V |∃c ∈

C, (vi , c) ∈ Ri ∧ (c, vj) ∈ Rr } is the edge set.

The vertices consist of nodes representing vulnerability exploits
such as "remote exploit of vulnerability V on host A", while the
edges implicitly contain security conditions such as "user access to
host A". A require relation Rr between a security condition c and a
vulnerability exploit vi means that c must be satisfied for vi to be
exploited, and an imply relation Ri betweenvj and c means that ex-
ploit of vj leads to condition c being satisfied [21]. The edges in the
set R link pairs of vulnerabilities that are connected via a security
condition by what [2] call a "prepare-for" relation. A prepare-for
relation exists between vi and vj if vi has an edge to security con-
dition c representing an imply relation (exploit of vi implies the

2

attainment of security condition c), and c has an edge to vj repre-
senting a require relation (the exploit of vj requires the condition
c to have been obtained by the attacker). This AG representation
leaves the security conditions implicit, as the edges are defined as
going through a condition but these are not shown, with the end
result resembling a dependency graph of the vulnerabilities.

Dependency graphs (DGs) represent dependency relations be-
tween the various components of a system. For example, a server
may require input from various databases to perform its function,
which themselves may depend on other components. The DGs in
this work represent the availability dependencies of services pro-
vided by software applications in a network. The DG nodes are
applications that provide services across the network, such that the
functionality of applications elsewhere in the network depends on
them. At a given time t , the availability of a given node is measured
as the service level it provides at time t as proportion of the level
normally expected of it, so that 1 represents full availability, and 0
means the node is unavailable. Dependencies between services are
represented by directed edges between the DG nodes. For our DGs,
we use the definition of a Generalised Dependency Graph from [1]:

Definition 3.2. (Generalised Dependency Graph, [1, 2]) A gener-
alised dependency graph is a labeled directed acyclic graph D = (H, Q, ϕ),
where: H is a set of nodes, corresponding to network components;Q = {(h1, h2)
∈ H × H |h1 depends on h2 } is a set of edges; ϕ : H → F is a mapping that
associates with each node h ∈ H a function f ∈ F s.t. the arity of f is equal
to the outdegree of h∗. For each node h ∈ H , hÛdenotes the set of components
that depend on h and Ûh denotes the set of components h depends on.

The first two points in the DG definition describe the basic struc-
ture of the dependency graph (which nodes depend on which oth-
ers), while the mapping ϕ describes the type of dependency that
each node h ∈ H has on its supplier nodes Ûh. We consider the same
dependency function types as used by [1, 2]:

fr (a1, ...,an) =

{
1 if ∃i ∈ [1,n] s .t . ai = 1
0 otherwise

(1)

fd (a1, ...,an) =
1
n

n∑
i=1

ai (2)

fs (a1, ...,an) =

{
1 if ai = 1 ∀i ∈ [1,n]
0 otherwise

(3)

where ai represents the availability value of a network component
which the current component directly depends on, and n is the total
number of components on which the current component depends
(i.e. for hi we have n = | Ûhi |). Here, fr is a redundancy-type depen-
dency (logical OR), fs is strict dependency on all supplier nodes
(logical AND), and fd means availability ofh is themean of the avail-
abilities of its suppliers (degradation). For example, in the sample
graph in Fig. 1, for hT we have f (s(ÛhT , t)) = fs (a1) = fs (s(hC , t)).

3.2 Attack Impact Analysis
Our impact assessment approach builds on the Impact Assess-
ment Graph (IAG) proposed in [1], with combined use of an AG
and a DG for analysing attack impacts. We propose a slight sim-
plification relative to [1]. Specifically, in the IAG we use an AG

∗"If h is a terminal node in the dependency graph (i.e. it does not depend on any other
node), we assume ϕ(h) is the constant (0-ary) function 1"[1].

without the compromise time-windows feature in the original, as
the handling of time in our model makes this feature unnecessary.

Definition 3.3. (Impact Assessment Graph, modified [1]) Given a
vulnerability dependency graph A = (V , R) and a generalised dependency
graph D = (H, Q, ϕ), an impact assessment graph is a 4-tuple (A, D, F , η)
where: F ⊆ V ×H ; η : F → [0, 1] is a function that associates with each pair
(v, h) ∈ F a real number in the [0, 1] interval representing the percentage
reduction in the availability of network component h caused by vulnerability
exploit v .

Effectively, the IAG consists of both the AG and the DG in full, and
connections in between them in the form of the function η that
describes how the availability of the components in the DG are
affected by vulnerabilities in the AG.

The network status function [1] defines how the status of a
node evolves over time with relation to the availabilities of its de-
pendencies. The definition states that a network status function
s for a DG D assigns each DG node h a value in the range [0, 1],
capped by h’s dependency function f over the statuses of its depen-
dencies. That is, the statuses of the components that h depends on
define a maximum availability level for h, but the status of h can be
below this if directly affected by an attack. However, the functional
form of the network node status function s(h, t) in [1] does not
allow modelling recovery in a component’s status due to the way
the previous period’s status s(h, t − 1) enters the function definition.
A low availability status one period will punish the component’s
status in later periods, even if recovery was done. Therefore, we
have redefined the node status function to keep track of all vulnera-
bility exploits that are in effect at time t (either newly exploited, or
previously exploited ones whose related security conditions remain
compromised), each of which may have a direct impact on h. Our
reformulation also introduces a multiplicative interaction between
the direct and indirect availability effects, replacing the minimum
function in the original. In this way, the direct and indirect effects in-
teract to set the effective availability, in contrast to the dependency
availability effect only acting as a cap on the effective availability
level. These changes also enable multiple exploits affecting a node
h ∈ H directly, which the original formulation does not support.
Our proposed formulation for the node status function is:

s(h, t) = f (s(Ûh, t))
∏

v ∈Ve,t

(1 − η(v,h)) (4)

where Ve,t is the set of AG nodes that are in an exploited state
at time t ; η(v,h) ∈ [0, 1] is the availability effect that the exploit
of vulnerability v has on component h (0 for no effect, 1 for fully
unavailable); Ûh is the set of components that h is dependent on; and
f (s(Ûh, t)) is the availability effect on h from its dependencies. Note
that a component recovery is represented as the removal of a vul-
nerabilityv from the exploited setVe,t , while patching vulnerability
v removes it the from the full set V . The status of network compo-
nent h is composed of two effects on availability: 1. Compromise
effect (direct): (1 − η(v,h)), the effect of compromise (vulnerability
exploit) in the AG node v which corresponds to component h; 2.
Dependency availability effect (indirect): f (s(Ûh, t)), the effect of
unavailabilities in the components that h is dependent on, of type
fr (redundancy), fd (degradation) or fs (strict dependence).

We use the example system from [1, 2] to show how our approach
differs. The sample represents the network of a small organisation

3

with two final services, an online shopping Web Service (hA) and
a Mobile Order Tracking app (hC), their local cache databases (hB
and hD for online shopping and order tracking, respectively), and a
separate subnetwork for the internal logic (hE and hF) and a central
database (hG) powering the services.

Figure 1: Impact assessment graph for the sample network

The dependency structure and potential attack paths in the sam-
ple network from [1, 2] are shown in the IAG in Fig. 1. The AG is
on the left, and DG on the right. The AG nodes represent vulner-
abilities in the network, with the attacker entry points shown as
edges from node A. The DG nodes are network components: hA to
hG provide intermediate services (internal services), while hS and
hT are customer-facing services (the product of the organisation).
The exploit of a vulnerability vi affects the availability of the corre-
sponding component hi , and the availability of components which
are dependent on hi . The dashed lines in Fig. 1 show the availability
impact of a vulnerability, η(vi ,hi), for example η(vF ,hF) = 0.7
means hF will lose 70% of its availability when vF is exploited
(unless there is also a dependency availability effect on hF).

The final key component for attack impact analysis using the
IAG is the utility derived from the components in the dependency
graph: ∀h ∈ H ,u(h) gives the utility for node h. The utility is, in
effect, the value of the service provided by a given node at each
time unit. The work in [1, 2] assume that all the DG nodes are
given a utility value which remains static during the analysis. By
contrast, we believe that intermediate services provide value only
when at least a part of the final service to which they contribute is
online (available). Therefore, we only set values for the final service
nodes (hS and hT in the sample), with the value of the other nodes
only reflecting the impact they have on the value arising from
the final services. In this way, we use the dependency structure to
dynamically determine the values of all intermediate services.

In contrast to [1, 2], we propose to introduce a comprehensive
cost model that takes into account the costs of node unavailability,
costs of different countermeasures, and recovery costs. Doing so,
we aim to move beyond the original attack impact assessment to
a more general impact assessment by including the estimation of
the impacts of defensive actions as well as those of the attacker.
Countermeasure decisions can then made based on expected costs
over time, instead of only relying on the projected impacts of at-
tacker actions. Our work uses the impact analysis framework as
part of an approach countermeasure selection, employing the im-
pact estimates for determining which countermeasure is the most
cost effective at a given attack situation. For this purpose, leaving
out the analysis of costs of the countermeasure actions could lead

to inefficient choices of countermeasures, as the application of a
countermeasure can reduce the availability of the services.

3.3 Attacks, Countermeasures and Recovery
We model attacks as sequences of attack steps, i.e. atomic exploits
of a single vulnerability in an AG, with potential to lead to further
steps. They enter the network via particular "entry nodes" which
are directly exploitable by the attacker. For example, in Fig. 1, an
attack can start by an exploit of vA or vC . The potential next steps
are then determined by the AG structure – for example, if vA was
exploited, the possible next steps arevB andvE . The time to exploit
a vulnerability vi (for i ∈ V) is tvi = 1 for all vulnerabilities, so
only one attack step can occur during a time unit t . The probability
of an attacker taking an attack step at a given time period is pstep .
Additionally, the parameter pf ast−step reflects the chance that a
countermeasure/recovery application is slower than the attacker’s
next step, so the attacker’s next step gets executed just before the
defender’s one. This provides some uncertainty to the timing of
events, to avoid limiting us to the case where the defense always
beats the attacker to the next step, which seems unrealistic.

Countermeasures (CMs) are actions aimed at reducing the
impact of an attack. In general these could be of two types, ones
affecting the network’s security capabilities which can be taken
before an attack but not during one (capability changes: redundancy
additions, back-ups), and others which can be taken at any time
(dynamic countermeasures). In this paper, we consider one type
of dynamic countermeasure, patching vulnerabilities. An another
type of dynamic countermeasure, disabling communication links,
will be considered in future work, along with capability changes.

The effect of patching is to remove a vulnerability node from the
AG, restricting potential attack paths. A patching action requires
tP units of time to implement, and comes at a cost consisting of
a direct cost and a service impact, introduced in Sec. 3.4. Fig. 2(a)
illustrates the case where vC is patched after an exploit. Note that
patching does not clear the related DG node hC from compromise,
as recovery is handled separately.

Recovery refers to actions that the network owner uses to re-
cover the functionality of components (DG nodes) compromised by
vulnerability exploits. To simplify the analysis, we consider the case
where there is only one type of recoverymethod, akin to component
replacement. This effectively replaces a compromised component
with a clean and working instance, with the same functionality (and
vulnerabilities) as before, assumed to take tR time, and cost cR . Both
the time and cost values are assumed equal across components. In
terms of the graphs, this corresponds to making a DG node fully
functional and the corresponding AG vulnerability not exploited
(although it will remain in the AG, so may be re-exploited). Fig. 2(b)
shows the case of recovery of hC after compromise by exploit of
vC . More detail on recovery modelling is provided in Sec. 3.6.

3.4 Costs of Actions
Our modelling of costs contains direct costs for each action, i.e.
node recovery cost cR and patching cost cP , in addition to indirect
costs in terms of service loss due to dependencies. While the direct
costs do matter, the key element of our cost modelling is the loss to
the provision of final services caused by component unavailability.

4

(a) Defender patchesvC (hC not cleaned automatically).
Takes tP time units to come to effect.

(b) Defender recovers hC . hC remains temporarily un-
available. After t + tR , hC and hT are up again.

(c) Graph legend

Figure 2: Patching and recovery actions and their effects on the system

Service loss due to unavailability of DG node h at time t :

д(h, t) =
∑

hj ∈HS

(
u(hj) ·

(
fs (s(Ûhj , t) | s(h, t) = s(h, t − 1))−

fs (s(Ûhj , t) | s(h, t))
)) (5)

where we have used s(hj , t) = fs (s(Ûhj , t)) for hj ∈ HS , which fol-
lows from (4) and the observation that the customer-facing service
nodes hS and hT do not have direct exploits (so only the depen-
dency effect counts for them). The function д(h, t) is the impact of
h’s deviation, at time t , from its previous observed availability level
onto the availability of services.

The costs of the countermeasure and recovery actions con-
sist of two parts: the direct cost for the action (cR for recovery of a
node, cP for patching a node, cD for disabling), and the cost of un-
availability of the network components that are directly impacted
by the action. For example, the observed (after the fact) cost of
patching vulnerability vi at time t is given by:

cpatch (vi , t) = cP +
∑

hj ∈M (vi)

(t+tP∑
τ=t

д(hj ,τ)

)
(6)

where vi is a node in the AG, cP is the direct cost of patching.
M(vi) represents the set of elements in the DG that are adjacent
to the AG node vi , that is, the components directly affected by the
vulnerability vi . In other words, these are the software where the
vulnerability exists, and where the patching of vi takes place. The
current time period is t , and tP represents the time units required
for the patching. The inner summation adds together the cost of
component hj being unavailable from t to t + tP . The observed
costs due to disabling and node recovery work in a similar manner.

Note that (6) shows the calculation of the observed cost when
we know the path of any attack steps and defender actions and
therefore know д(hj ,τ) for τ = [t , t + tP]. For estimating the cost
of an action beforehand, we require an expectation of the state of
the model in terms of attacker steps and defender actions during
the periods in question. In practice, our approach is to estimate
the benefit of an action in terms of an expected trajectory for the
system state, as explained in Sec. 4.

3.5 Performance Measurement and Resilience
We measure the performance of the networked system with an
overall service provision status, service performance (SP). It is
the weighted sum of the statuses of the client-facing services (the

"product" of the organisation), weighted by their relative utilities
for the organisation. Mathematically, SP at time t is given as:

SPt =
∑
h∈HS

u(h)∑
hk ∈HS u(hk)

s(h, t) (7)

where s(h, t) is the status (availability level) of component h at
time t , u(h) is the utility the organisation derives from the service
component h (during its full availability), and HS is the set of com-
ponents which are client-facing services. In the sample in Fig. 1
we have HS = {hS ,hT }, as the services are hS and hT . When ob-
served over time, this metric can be used to measure the network’s
resilience based on a performance-curve approach for resilience in
the spirit of [3]. From the curve, resilience metrics can be calculated
e.g. according to the approaches by [3] or [8].

3.6 Recovery Process
We evaluate our model in a setting with automatic recovery deci-
sions, where the choice of whether to recover a node is based on
the likely benefit versus the costs of the recovery strategy. We keep
this recovery process separate from countermeasure choices, which
simplifies expectation formation for CM selection. Node recovery
is done if it leads to a reduction in losses exceeding the recovery
cost. The loss reduction from recovering node h at time t is:

LR(h, t) = Loss¬R (h, t) − LossR (h, t) (8)

where LossR (h, t) is the loss with recovery, which is:

LossR (h, t) =

tmax∑
τ=t
Et (д(h,τ |s(h,τ) = 0))+

thor izon∑
τ=tmax

Et (д(h,τ |s(h,τ) = 1))

(9)

where tmax = t + tR + tP + tD is the time it would take to recover,
patch and re-enable edges (if necessary), and thor izon is the last
time period in the time horizon considered. This metric consists of
the loss from service unavailability from time t until tmax when
the recovery is finished, and from time tmax + 1 onward when the
node will be assumed recovered (and not re-compromisable). Loss
without recovery, Loss¬R (h, t), is given by:

Loss¬R (h, t) =

thor izon∑
τ=t

Et (д(h,τ |s(h,τ) = 0)) (10)

5

3.7 Sample Impact Analysis for CM Selection
Choosing countermeasures by focusing solely on stopping the
progress of an attack means ignoring: 1. the cost of countermeasure
actions (direct and indirect), and 2. recovery of the network toward
a desired state. Disregard of these aspects can lead to choices that
are not efficient in the longer term. Assume that the network in Fig.
1 experiences an attack exploiting vC at t = 0. As vC is exploited,
hC becomes unavailable, and so does hT due to its dependency on
hC . While the exploit of vC already causes considerable damage in
terms of service losses, once an attacker has exploited vC , it can
further exploitvF orvD . While the exploit ofvD only affects hD (as
hC is down) resulting in no change in either cost or SP, an attack on
hF takes down the remaining service hS , causing full loss of service
and cost due to service losses of u(hT) + u(hS) per time period.

When applied repeatedly at each step, the marginal impact analy-
sis approach from [1, 2] would choose to patch themost high-impact
component that could be affected by an attack next. Given the com-
promise of vulnerability vC , at the following time step t = 1, the
next attack step could be vF or vD , affecting components hF and
hD , respectively. Choosing based only on the potential impacts
of these attack steps, the choice would be to patch vF . Given this
choice, at time t = 1 the attacker could proceed to exploitvD , which
was not patched. The appropriate reaction to this would be to patch
vG , given another round of marginal impact calculation. Finally, to
return to full availability of services, nodes vD and vC need to be
recovered (vc with patching, vD without).

While the above approach is sensible if we want to guarantee
that the highest impact nodes hF and hG are never compromised,
it may not be cost efficient over time. The costs of the actions, or
recovery, are not considered by the above countermeasure strategy.
However, the choice of actions and their order can have a large
impact on the costs, especially those arising from service losses.
Note that, as the service impact cost д(h, t) for node h is nonzero
only when the node causes a change in the status of the services,
the service impact of a given node h can change over time. For
example, the unvailability of hG only impacts services when hF is
available. This changing loss impact can make a great difference on
the overall cost of a countermeasure strategy. For example, if there
is a low probability that the attack will have successfully moved
to a different node before the next time step, it may be better to
not take a countermeasure that contains the attack, but focus on
recovering and patching vC . In the worst case, the attacker has
been able to move fast enough to exploit vF before hC goes offline
for patching and recovery. If so, all services go down at t = 1, and
hF will have to be recovered – but this happens without additional
availability impact, as services will be down already. Again, in the
worst case the attacker may move fast enough to compromise hG
before the system hF is taken down for recovery, so hG will require
recovery at t = 3. Even in this worst case the overall costs could be
lower than with the approach from earlier, if the time to recover is
lower than to patch tR < tP . However, this approach also benefits
from there being a chance that the attacker will not successfully
make another step before the defender reacts, meaning in the best
case only hC has to be recovered and patched.

This sample highlights that, depending on the situation, it can be
more cost effective to act reactively and rely on recovery capabilities,

while sometimes proactively containing the attack is better. We
built our CM selection approach on cost impact analysis to be able
to find the approach that works best in a given situation.

4 COUNTERMEASURE SELECTION
Our approach to countermeasure selection relies on cost analysis of
the impacts of defender actions and expected attack steps. We shall
refer to this method as Cost-Impact Countermeasure Selection, or
CICM. Our CM selection algorithm essentially estimates the impact
of all CMs that apply to an AG node of interestvs , and returns a list
of them in descending order of their overall benefit relative to what
would be expected if no countermeasure was applied. The highest
benefit CM is implemented, provided that the benefit is positive.

The effectiveness of each countermeasure is evaluated by com-
paring the expected costs of the CM to the benefits it is expected
to yield. Our approach uses the direct cost of the action, and two
potential evolutions ("trajectories") of the system: the "expected tra-
jectory" reflects how an attack would be expected to proceed within
the network in the absence of the countermeasure, and measures
what the impact would be in terms of costs due to both availabil-
ity loss and recovery actions. The "deviating trajectory" given a
countermeasure action measures the expected costs due to avail-
ability loss and recovery when the countermeasure is applied. As a
countermeasure initially requires a network component to be taken
offline temporarily, we make a difference between the immediate
and the longer-run impacts of the countermeasure. Therefore, our
measure of the benefit arising from a countermeasure is given by:

B(cm,vi , t) =ea f (vi) · (thor izon − t) · trajDLR (cm,vi)

+ trajDcurr (cm,vi) − ccm
(11)

where the first part is an estimate of benefit in later time steps,
consisting of the long-run trajectory difference trajDLR (cm,vi)
multiplied by the expected frequency of future attacks exploitingvi ,
ea f (vi), and the time periods left until the end of the horizon. The
second term is the trajectory difference currently (until the CM has
been successfully applied), and the last term is the direct cost of the
CM, ccm . The expected attack frequency to node vi , ea f (vi), is an
estimate of the probability that the attacker will attempt to exploit
node vi again. This is not based on the current compromise state,
but on the probability to (re-)obtain the privileges for exploiting vi
in the future via any path. We estimate ea f (vi) by approximating
the probability of the shortest viable (not patched) path from the
attacker nodeA tovi . This we calculate as the step probabilitypstep
to the power of the number of edges on the shortest viable attack
path fromA tovi . The approximation is by no means fully accurate,
but captures the behaviour we want, and is considerably simpler
and faster than the calculation of the exact probability. The benefit
from the exact calculation would be limited given the randomness
included in the model and arising from its environment.

The current and long-run trajectory differences are given by:

trajDcurr (cm,vi) = devTrajcurr (cm,vi) − expTraj(vi) (12)
trajDLR (cm,vi) = devTrajLR (cm,vi) − expTraj(vi) (13)

The expected trajectories expTraj(vi), devTraj(cm,vi)curr and
devTraj(cm,vi)lr are calculated by formulating an expected value
for availability impact and costs in the next k time steps. For
expTraj(vi), this proceeds as follows: 1. From the AG, estimate

6

Figure 3: The stages of the expected trajectory calculation

what paths the attacker could follow in the next k time steps start-
ing from nodevi , the current head of the attack. Estimate the impact
of each of these potential paths on service availability and on recov-
ery costs. 2. Formulate expected values for the services impact and
costs in each of the time steps from t to t +k , using the paths calcu-
lated in step 1 with the probabilities for each exploit, the probability
for attack step being completed in each time step. An illustration
of this is provided in Fig. 3, for the case where the vulnerability vC
in the sample graph has been exploited at time period t . The first
panel shows the AG situation at time t , the middle panel shows the
possible attack paths in the next k = 2 time steps. The last panel
shows the calculation of the expected values for the time periods
t , t+1, t+2, whereV (S) refers to the valuation (service performance
or cost) at system state S . For brevity, the figure uses a shorthand
for states with only the exploited nodes listed, e.g. Scompr :{vC ,vD }

stands for the state where the set of exploited nodes is {vC ,vD }.
The "deviating trajectory" estimates given a countermeasure cm are
calculated similarly to expTraj(vi), but assuming that a CM is ap-
plied. An additional difference is that when calculating the expected
values (step 2 above), we further consider the possibility that the
CM is not applied in time before the next step by the attacker, rep-
resented by the probability parameter pf ast−step . We calculate two
deviating trajectories as the application of a CM causes temporary
unavailability at first, before the longer-run effect is obtained.

The split into current and longer term trajectory impacts enables
a simultaneous consideration of the immediate up-front costs of
a countermeasure (direct cost, temporary availability impact) and
the effect it has on the robustness of the network in future periods.
Our method accounts for the future by calculating the "expected
trajectory" impact and the expected number of times such an attack
would be observed in the future. This approach provides an esti-
mate of longer term impact that is considerably more efficient to
calculate than directly considering all possible states in each future
period. A weakness of the method is that it considers future impacts
relative to the current situation, so excludes the impact of changes
to the network or the environment that might happen in the future.
However, such information is unlikely to be available at the time
when the decision is to be made. In the case it was, it should be
possible to establish the robustness of the estimate to such changes,
e.g. by calculating the impact of the CM conditional on other CMs
being applied as well. However, for the sake of tractability and
scalability, we followed a greedy strategy looking for the impact of
the countermeasures independently.

While we calculate probabilities of various paths of attacks to
formulate the expected trajectory, we do not solve for the whole

network or the full time horizon, as such an approach would not
scale to realistic network sizes. Instead, the method focuses on
"neighborhoods" of the current attack, by looking at potential states
a few time-steps forward from the current "boundary" of the attack.
As another way to simplify the problem, we don’t consider patching
at each of the nodes, but focus on the nodes nearest to the entry (if
patchable) [for future attacks], and those on the attack boundary
[for containing the ongoing attack, as well as future attack steps].

5 EVALUATION
We used simulations to investigate the usefulness of the proposed
framework for countermeasure selection, by comparison to two
alternative strategies. The first comparison point is what we call
the Attack Impact Approach (AIA), which we built by adapting
the attack impact assessment approach from [1] to use in auto-
mated countermeasure selection. While their original work was
not proposed for this specific purpose, we built a CM selection
approach for patching actions using the main principles of their at-
tack impact assessment method, using their marginal impact metric
for patching choices. To use this in a setting where we care about
performance over time, we also required the method to handle
recovery, so included our version of the node status calculation in
AIA. AIA can be considered a containment approach, as it chooses
patching actions that apply to the vulnerabilities exploitable next by
the attacker, not ones that apply to already exploited vulnerabilities.
This has the potential for stopping the attacker from compromising
important nodes, but applying CMs on healthy components will
lead to temporary availability losses, which can be costly.

The second comparison is to a strategy where a patch is always
applied to the latest exploited vulnerability, without considering
costs or alternative actions. We call this PLE, for "Patch Latest
Exploit". This approach rejects containment in favour of blocking
the last used attack paths from being exploitable in the future,
effectively limiting future exposure while accepting current risk.
PLE benefits from limiting the availability loss from CM actions, as
actions are only applied to nodes that already suffer from reduced
availability. While the two comparison points represent extremes in
terms of containment and treatment focus, our approach is intended
to be able to choose a cost-efficient approach in between these
extremes based on the attack situation. The same recovery process,
described in section 4, is used with all of the approaches.

We ran tests under two settings: the sample graph in Fig. 1, and
randomly generated synthetic graphs. The sample graph provides
a useful basis for comparisons as the attack impact assessment
method by [1, 2] was demonstrated on it. The generated graphs are
directed acyclic graphs of a specified size (in terms of nodes). For
simplicity, the number of AG nodes was restricted to match that
of the DG nodes. To control the structure, we have restricted the
maximum number of parents of a node (nodes dependent on the
node) to three. The connections between the AG and DG nodes
are chosen at random, meaning that the vulnerabilities in the AG
correspond to random system components (in DG), and the attack
paths on the AG can be considerably different from paths in the
dependency structure. Furthermore, in the DG, the number of de-
pendencies (children) of each node are chosen at random, as are the
dependency functions for each node. For each DG, two nodes are

7

allocated as service nodes. In the AG, the number of children of a
given node (number of further vulnerability exploits made possible
by a given exploit) is drawn at random. To introduce attack entry
points, we add a node representing the attacker’s starting point,
and its children drawn among the other nodes are the entry nodes.
Additionally, probability values for the AG edges are set, repre-
senting the ease of exploiting a node, drawn from a distribution
corresponding to the access complexity metric of CVSS scores [7].

We simulated randomly generated attacks into each graph in
question. The attacks follow a path towards a goal node, which
is picked from among the AG nodes with the highest availabil-
ity impact on the final services (the single highest impact one, or
drawn among the shared highest impact nodes). Each chosen edge
is picked from those along the paths to the goal, based on a draw
between viable candidates, where the distribution is based on the
edge probability values (representing access complexity). This cre-
ates variety across simulations, approximating different attacker
choices based on e.g. different skill levels. One vulnerability exploit
is allowed per time period. If a given step is not possible, due to a
CM action, the attacker attempts another exploit that is on a path
to the goal. If the goal becomes unreachable, the attack will stop.

Unless otherwise stated, the simulations use the following pa-
rameter values: one unit of time to compromise a vulnerability
tvi = 1, two units to patch a vulnerability (tP = 2), and one to
recover a node tR = 1. The direct costs are cP = 2 for patching,
and cR = 3 for node recovery. There is a 30% probability that an
attacker takes an attack step at a given time step (pstep = 0.3), and
pf ast−step = 0.3, so there is a 30% chance that a given CM/recovery
application is slower than the attacker’s next step.

5.1 Results for the Sample Graph
The simulation results on the sample graph are shown in Fig. 4. The
figure shows a comparison of our method to the two alternative
CM schemes, both for the resilience curve (SP metric), and for costs
and service losses over time. The curves represent the mean values
for the metrics (SP, overall costs) across 1000 simulated attacks;
the solid curve indicates our method (CICM), the dashed one is
for PLE and the dash-dot line for AIA. The two upper panels show
simulations where the attacks are detected immediately at the first
step, and the defender actions (countermeasures, recovery) can
be started immediately. By comparison, on the lower two panels,
there is a delayed detection of the initial attack step, in which the
attacker has already done one step before a step is detected (that is,
the second step overall) and the defender actions start. We believe
that this case is closer to reality, as attacks can remain undetected
in a network for long periods of time.

Comparing the results for our approach to those from AIA, we
notice our method outperforming AIA both with regard to service
performance over time, and the overall costs. The difference be-
tween our method and AIA becomes large early on and fails to
recover afterwards. This is true whether we look at the case with
immediate attack detection (upper panels), or the case with delayed
detection (lower panels). Using our approach, the mean SP was
over 20% better (23% for immediate detection, 27% for delayed),
and the overall costs were 42% lower on average than for AIA (for
both immediate and delayed detection). The Wilcoxon signed-rank

0 1 2 3 4 5 6 7 8 9 10
Time step (t)

0.0

0.2

0.4

0.6

0.8

1.0

Se
rv

ice
 p

er
fo

rm
an

ce
 (S

P_
t)

CICM (ours)
PLE
AIA

Resilience curve (SP), sample graph, 1000 attacks

(a) Resilience curve (SP); fully detected
steps

0 1 2 3 4 5 6 7 8 9 10
Time step (t)

0

2

4

6

8

10

Co
st

s+
lo

ss
es

CICM (ours)
PLE
AIA

Costs+losses, sample graph, 1000 attacks

(b) Costs and service losses over time;
fully detected steps

0 1 2 3 4 5 6 7 8 9 10
Time step (t)

0.0

0.2

0.4

0.6

0.8

1.0

Se
rv

ice
 p

er
fo

rm
an

ce
 (S

P_
t)

CICM (ours)
PLE
AIA

Resilience curve (SP), sample graph, 1000 attacks

(c) Resilience curve (SP); 1 undetected
step

0 1 2 3 4 5 6 7 8 9 10
Time step (t)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
st

s+
lo

ss
es

CICM (ours)
PLE
AIA

Costs+losses, sample graph, 1000 attacks

(d) Costs and service losses over time; 1
undetected step

Figure 4: Simulation results for the sample graph

test rejected the hypothesis of the difference being zero for SP and
overall costs in both immediate and delayed case, suggesting that
the performance difference is statistically significant. The result
appears to be due to reduced service availability, which causes the
similarity in the patterns of SP and overall costs (of which service
losses is a part). As these are average curves over randomised at-
tacks, some of the detail related to the individual runs is averaged
out, but it seems that AIA has a harder time purging the attack
from the system than the other approaches, so the difference to
other approaches remains until the end of the time window shown.

The PLE approach exhibits performance roughly matching ours,
both when the detection of the attack is instant (upper panels), and
when there is a delay (lower panels). In fact, the difference between
the two approaches was found statistically insignificant using the
Wilcoxon test. For this particular graph, this result can be expected.
As discussed in Sec. 3.7, to obtain good CM selection performance,
the initial exploit will always be patched in this sample graph as
the services are directly and fully dependent on the entry nodes.
Additionally, the small size of the sample graph limits the variety
in attacker steps, and thus on the CM choices of the defender.

5.2 Results for Randomly Generated Graphs
Simulations were run on graphs of different sizes, and varying the
detection delay between no delay and a delay of two steps. The size
classes vary the number of nodes in the DG (10, 20 and 50-node
DGs), with a corresponding number of AG nodes. We generated
100 graphs of each size, and ran 100 random attacks on each graph.

Table 1 shows the results for comparisons to the AIA approach in
the case of immediate detection. The results for delayed detection
are overall very similar, so we have omitted them to save space. We
found a considerable benefit for CICM in terms of both the SPmetric
and overall cost. While the size of the difference in overall costs

8

Table 1: Comparing mean values of performance metrics,
our approach (CICM) vs AIA; immediate detection

CICM Difference: CICM - AIA

DG size 10 20 50
10 20 50

diff. # +/- diff. # +/- diff. # +/-

SP 0.862
(0.301)

0.904
(0.243)

0.946
(0.169)

0.168
(0.352)

95/3 0.132
(0.298)

95/2 0.077
(0.224)

100/0

p-value - - - 0.00 - 0.00 - 0.00 -

Cost 3.49
(7.14)

2.71
(5.92)

1.84
(4.32)

-3.91
(8.15)

4/96 -3.25
(7.00)

0/100 -2.17
(5.33)

0/100

p-value - - - 0.00 - 0.00 - 0.00 -

Notes: 100 graphs per size, 100 attack simulations each; "# +/-": count of positive/negative diffs.

Table 2: Comparing mean values of performance metrics,
our approach (CICM) vs PLE

Immediate attack detection
CICM Difference: CICM - PLE

DG size 10 20 50
10 20 50

diff. # +/- diff. # +/- diff. # +/-

SP 0.862
(0.301)

0.904
(0.243)

0.946
(0.169)

0.001
(0.112)

42/19 0.000
(0.110)

38/30 0.000
(0.080)

29/38

p-value - - - 0.01 - 0.17 - 0.00 -

Cost 3.49
(7.14)

2.71
(5.92)

1.835
(4.32)

-0.03
(2.69)

34/58 -0.03
(2.59)

43/56 0.04
(2.23)

36/64

p-value - - - 0.00 - 0.00 - 0.02 -

Delayed attack detection, two undetected steps
CICM Difference: CICM - PLE

DG size 10 20 50
10 20 50

diff. # +/- diff. # +/- diff. # +/-

SP 0.801
(0.361)

0.852
(0.302)

0.901
(0.235)

0.044
(0.235)

78/19 0.034
(0.197)

71/21 0.020
(0.154)

68/25

p-value - - - 0.00 - 0.00 - 0.00 -

Cost 5.04
(8.86)

4.16
(7.60)

3.33
(6.32)

-1.09
(5.60)

11/86 -0.96
(4.85)

8/91 -0.80
(4.08)

6/94

p-value - - - 0.00 - 0.00 - 0.00 -

Notes: 100 graphs per size, 100 attack simulations each; "# +/-": count of positive/negative differences.

between the approaches gets smaller with the size of the graphs, due
to a general improvement of both of the approaches, the relative cost
saving for CICM is around 53-54% across graph sizes for immediate,
and 46-51% for delayed detection. Using the Wilcoxon signed-rank
test, we find that CICM demonstrated statistically significantly
better results than AIA for both of the metrics.

Comparisons to the PLE strategy are displayed in Table 2. When
there is no delay in attack detection, CICM performs, on average,
almost identically to PLE in terms of the performancemetric SP. The
difference values are practically zero, and the Wilcoxon test fails
to reject the null hypothesis of equal means for SP for the 20-node
case. On the side of overall cost, the difference magnitudes are also
small. While the simulations show CICM slightly outperforming
PLE on average for 10 and 20-node graphs, with 50-node graphs
the results are mixed. Overall, CICM was more cost-efficient in 64%
of the 50-node graphs simulated, but the mean difference over all
graphs is in favour of PLE (2% cost difference). The main message
here is: if the attack is detected immediately at the point of entry,
there is little difference between CICM and PLE. This makes sense,
as patching the first node stops the attacker from regaining access
to the network after the attack is purged elsewhere, and immediate
detection makes this very effective.

When there is a delay in the detection of the attack, the benefits
of CICM over PLE become clear. There is some evidence of a benefit

on the average service performance relative to PLE (amounting
to between 0.2% and 0.5% of the overall value of the output of
the services, on average). Regardless, the main impact is on the
overall cost side, where our method provides average efficiency
improvements over PLE amounting to 18% for 10-node, 19% for
20-node and 20% for 50-node graphs. Importantly, the cost savings
are consistent, with benefits obtained in 90% of all the graphs tested
(see the +/- counts in the lower part of Table 2: 86% of 10-node
graphs had a negative sign for the cost difference, 91% of 20-node
graphs, and 94% of 50-node). The fact that the difference shows up
in cost instead of SP makes sense, as our method chooses actions
based on the overall cost, not on SP. The results also show that
this effect grows with the size of the graph, suggesting that larger
graphs provide more room for choices that improve cost efficiency.

Summarising the findings from Table 2, we conclude that while
a straightforward patching strategy like PLE can yield good results
in terms of service performance, our method provides considerable
cost savings when attacks are detected with a delay.

We investigated the sensitivity of the results to the length of
delay in detection. We varied the number of attack steps that go
undetected before the defender starts their CM selection and recov-
ery processes, with the other parameter values held constant at the
levels mentioned above. For this, we used the 20-node generated
graphs (100 graphs, 100 simulated attacks for each graph), com-
paring to PLE. The results show that the cost savings from CICM
relative to PLE increase drastically when moving from immediate
to delayed detection, with the saving jumping from 1.1% for im-
mediate detection (0 undetected steps) to 11% for one and 19% for
two undetected steps. However, further undetected steps provide
no additional advantage to our approach, with the relative cost
decreasing slightly to 18% and 17% for 3 and 4 undetected steps,
respectively. The reason for the initial jump is clear, as the attacker
holds more ground in the network and has more possibilities to
pursue, and the PLE strategy loses its edge when there are choices
to be made. The reduction to the benefit at higher number of unde-
tected steps is due to an increase in average overall cost faced by
both approaches, so the difference is smaller relative to this level.

Sensitivity of the results to different assumptions about the cost
structure was also tested. These were again run for the 20-node
graphs, and for delayed detection with 2 undetected steps, which
provided the highest cost impact in the delay sensitivity tests. The
tests consisted of varying two different settings relating to costs:
the utility obtained from services per time unit, which affects the
indirect costs arising from node unavailability; the ratio of the direct
cost of recovery to the direct cost of patching, which can affect the
cost-effectiveness of patching relative to recovery actions.

Fig. 5 shows the results for the cost parameter sensitivity. We can
see two broad patterns: First, the magnitude of the cost difference
between the approaches is reduced as the average service utility
level increases. Second, in most cases a higher cost of recovery
(higher cR/cP ratio) leads to an increase in the cost savings provided
by CICM compared to PLE, other things equal.

The first observation suggests that the higher the potential loss
from unavailability, the less room there is to find benefit from ac-
tions that proactively contains the attack as opposed to treating the
latest compromise. Therefore, the cost-efficient approach becomes
more similar to PLE, which not only treats the latest event but also

9

Figure 5: Sensitivity to different cost parameter levels

patches only nodes that are already down, avoiding additional un-
availability costs. However, the difference between the approaches
is still sizeable, with the smallest difference in Fig. 5 suggesting a
12% average saving using CICM relative to PLE.

The second observation suggests that the higher the cost of re-
covery is relative to patching, the more room there is for CICM to
find cost savings by deviating from treating the latest compromise,
as the cost of taking proactive patching steps is reduced. The aver-
age cost levels of both approaches increases with the cR/cP ratio,
but the rise in the costs incurred is smaller when using CICM than
PLE, leading to an increasing relative benefit.

6 CONCLUSION AND FUTUREWORK
We proposed a framework for automated countermeasure selection
based on cost impact analysis of the organisation’s service loss and
costs over a period of time considering both attacker and defen-
sive actions, aiming for a cost-effective approach to maintaining
service functionality. The method was demonstrated via examples
in a sample network, and an evaluation of its countermeasure se-
lection performance was conducted using simulations. The results
suggest that our method outperforms an alternative countermea-
sure selection approach based on the attack impact assessment
method by [1, 2], both in terms of average service performance
and overall costs over a given time window. Comparisons against
a straightforward patching approach showed that, while average
service performance was a close match, our method found more
cost-efficient ways to achieve the goal.

Future work will involve adding more detail into the impact mod-
elling, moving away from the simple DG as used here in favour of a
more flexible dependency model. On the countermeasure selection
side, we shall investigate extending the method to select a combina-
tion of countermeasures and recovery actions in the same decision.
We also intend to extend the method to also consider detailed dis-
abling schemes based on network connectivity. The current model
could estimate the impact of such schemes, but we do not currently
have this additional topological information included in the attack
or dependency graphs. Consequently, a way to model and evaluate
the system’s performance with such disabling schemes is required.

REFERENCES
[1] M. Albanese and S. Jajodia. 2017. A Graphical Model to Assess the Impact of

Multi-Step Attacks. Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology 15, 1 (2017), 1–15.

[2] M. Albanese, S. Jajodia, A. Pugliese, and V. S. Subrahmanian. 2011. Scalable
Analysis of Attack Scenarios. Atluri V., Diaz C. (eds) Computer Security – ESORICS
2011. Lecture Notes in Computer Science 6879 (2011), 416–433.

[3] M. Bruneau, S.E. Chang, R.T. Eguchi, G.C. Lee, T.D. O‘Rourke, A.M. Reinhorn,
M. Shinozuka, K. Tierney, W.A. Wallace, and D. Von Winterfeldt. 2003. A frame-
work to quantitatively assess and enhance the seismic resilience of communities.
Earthquake spectra 19, 4 (2003), 733–752.

[4] S. Choudhury, L. Rodriguez, D. Curtis, K. Oler, P. Nordquist, P. Chen, and I. Ray.
2015. Action Recommendation for Cyber Resilience. In Proc. 2015 Workshop on
Automated Decision Making for Active Cyber Defense (SafeConfig ’15). ACM, 3–8.

[5] M. Chronopoulos, E. Panaousis, and J. Grossklags. 2018. An options approach to
cybersecurity investment. IEEE Access 6 (2018), 12175–12186.

[6] E. Doynikova and I. Kotenko. 2015. Countermeasure Selection Based on theAttack
and Service Dependency Graphs for Security Incident Management. LNCS, Int.
Conf. Risks and Security of Internet and Systems CRiSIS 2015 9572 (2015), 107–124.

[7] FIRST. 2018. Common Vulnerability Scoring System. (2018). https://www.first.
org/cvss, Accessed: 2018-09-14.

[8] A.A. Ganin, E. Massaro, A. Gutfraind, N. Steen, J.M. Keisler, A. Kott, R. Man-
goubi, and I. Linkov. 2016. Operational resilience: Concepts, design and analysis.
Scientific Reports 6 (2016), 1–12.

[9] L.A. Gordon and M.P. Loeb. 2002. The economics of information security invest-
ment. ACM Trans. Inf. Syst. Security (TISSEC) 5, 4 (2002), 438–457.

[10] L.A. Gordon, M.P. Loeb, and W. Lucyshyn. 2003. Information security expendi-
tures and real options: A wait-and-see approach. Computer Security Journal XIX,
2 (2003), 1–16.

[11] S. Hosseini, K. Barker, and J.E. Ramirez-Marquez. 2016. A review of definitions
and measures of system resilience. Reliab. Eng. Syst. Saf. 145 (2016), 47–61.

[12] I. Kotenko and E. Doynikova. 2014. Evaluation of computer network security
based on attack graphs and security event processing. J. Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications 5, 3 (2014), 14–29.

[13] I. Kotenko and E. Doynikova. 2015. Countermeasure selection in SIEM systems
based on the integrated complex of security metrics. In Proc. 23rd Euromicro Int.
Conf. on Parallel, Distrib., and Network-Based Processing, PDP 2015. IEEE, 567–574.

[14] I. Kotenko and E. Doynikova. 2016. Dynamical Calculation of Security Metrics
for Countermeasure Selection in Computer Networks. In Proc. 24th Euromicro Int.
Conf. on Parallel, Distrib., and Network-Based Processing, PDP 2016. IEEE, 558–565.

[15] P. Nespoli, D. Papamartzivanos, F.G. Marmol, and G. Kambourakis. 2017. Optimal
countermeasures selection against cyber attacks: A comprehensive survey on
reaction frameworks. IEEE Commun. Surveys Tut. 20, 2 (2017), 1–37.

[16] L.L. Njilla, C.A. Kamhoua, K.A. Kwiat, P. Hurley, and N. Pissinou. 2017. Cyber
Security Resource Allocation: A Markov Decision Process Approach. In High
Assurance Systems Engineering (HASE), 2017. IEEE, 49–52.

[17] A. Shameli-Sendi, H. Louafi, W. He, and M. Cheriet. 2016. Dynamic optimal
countermeasure selection for intrusion response system. IEEE Trans. Depend. Sec.
Comput. 15, 5 (2016), 755–770.

[18] T.A. Shatto and E.K. Cetinkaya. 2017. Variations in Graph Energy: A Measure
for Network Resilience. In Resilient Networks Design and Modeling (RNDM), 2017
9th Int. Workshop on. IEEE, 1–7.

[19] J.P.G. Sterbenz, E.K. Çetinkaya, M.A. Hameed, A. Jabbar, S. Qian, and J.P. Rohrer.
2013. Evaluation of network resilience, survivability, and disruption tolerance:
analysis, topology generation, simulation, and experimentation. Telecommunica-
tion systems 52, 2 (2013), 705–736.

[20] J.P.G. Sterbenz, D. Hutchison, E.K. Çetinkaya, A. Jabbar, J.P. Rohrer, M. Schöller,
and P. Smith. 2010. Resilience and survivability in communication networks:
Strategies, principles, and survey of disciplines. Computer Networks 54, 8 (2010),
1245–1265.

[21] L. Wang, S. Noel, and S. Jajodia. 2006. Minimum-cost network hardening using
attack graphs. Computer Communications 29, 18 (2006), 3812–3824.

[22] N. Yodo, P. Wang, and M. Rafi. 2018. Enabling Resilience of Complex Engineered
Systems Using Control Theory. IEEE Trans. Rel. 67, 1 (2018), 53–65.

10

https://www.first.org/cvss
https://www.first.org/cvss

	Abstract
	1 Introduction
	2 Related work
	3 Impact analysis modelling
	3.1 Attack and Dependency Graphs
	3.2 Attack Impact Analysis
	3.3 Attacks, Countermeasures and Recovery
	3.4 Costs of Actions
	3.5 Performance Measurement and Resilience
	3.6 Recovery Process
	3.7 Sample Impact Analysis for CM Selection

	4 Countermeasure selection
	5 Evaluation
	5.1 Results for the Sample Graph
	5.2 Results for Randomly Generated Graphs

	6 Conclusion and Future Work
	References

