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ABSTRACT

ON THE DESIGN OF A MOVING TARGET DEFENSE FRAMEWORK FOR THE

RESILIENCY OF CRITICAL SERVICES IN LARGE DISTRIBUTED NETWORKS

Security is a very serious concern in this era of digital world. Protecting and controlling access

to secured data and services has given more emphasis to access control enforcement and man-

agement. Where, access control enforcement with strong policies ensures the data confidentiality,

availability and integrity, protecting the access control service itself is equally important. When

these services are hosted on a single server for a lengthy period of time, the attackers have po-

tentially unlimited time to periodically explore and enumerate the vulnerabilities with respect to

the configuration of the server and launch targeted attacks on the service. Constant proliferation

of cloud usage and distributed systems over the last decade have materialized the possibilities of

distributing data or hosting services over a group of servers located in different geographical lo-

cations. Existing election algorithms used to provide service continuity hosted in the distributed

setup work well in a benign environment. However, these algorithms are not secure against a skill-

ful attackers who intends to manipulate or bring down the data or service. In this thesis, we design

and implement the protection of critical services, such as access-control reference monitors, using

the concept of moving target defense. This concept increases the level of difficulty faced by the

attacker to compromise the point of service by periodically moving the critical service among a

group of heterogeneous servers, thereby changing the attacker surface and increasing uncertainty

and randomness in the point of service chosen. We describe an efficient Byzantine fault-tolerant

leader election protocol for small networks that achieves the security and performance goals de-

scribed in the problem statement. We then extend this solution to large enterprise networks by

introducing random walk protocol that randomly chooses a subset of servers taking part in the

election protocol.
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Chapter 1

Introduction

There is an increase in the demand for servers hosting wide varieties of web and applications

services over the Internet. Critical services like identity and access management, intrusion detec-

tion systems, anti-virus software, network and web security are hosted using cloud infrastructures.

Such applications are being outsourced to the companies in the form of Security as a Service (SE-

CaaS) products [1]. The servers hosting these critical services are central targets to the attackers

who intend to cause harm to the companies that use them. Any compromise of a critical service not

only allows the attacker to tamper with the integrity and availability of the service but also opens

possibilities for future attacks.

For example, consider a server that hosts a role-based access control system by enforcing file

permissions on resources after receiving access request from a user. An attacker will focus on enu-

merating the vulnerabilities of the services based on current server configuration with an intention

to compromise these services. The single point of contact server connected to the Internet provide

attackers sufficient time to exploit the vulnerabilities and tamper with the integrity and availability

of services. This can lead to short term manipulation of the service, disrupting the service using

Denial of Service Attacks (DoS) or long term damage like loss of data. Therefore, protection of

these critical services from targeted attacks is an important and challenging problem.

1.1 Use Case

Effective access control depends both on the existence of strong policies and ensuring that the

access control enforcement system is adequately protected [2]. Protecting these systems are not

well addressed in literature. In general, access control is assumed to be implemented as reference

monitor [3]. One way to design a reference monitor is to implement a Trusted Computing Base

(TCB). TCBs are computer systems with hardware, firmware and software designed to be secure

against hardware/software bugs, vulnerabilities and attacks [4]. They are designed to be small,
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thoroughly tested and analyzed to make it tamper-proof. However, according to [2], it is impossible

to design a single TCB in distributed computing environments to provide access control.

Hence, we design a network of heterogeneous servers where each server implements all the

components of the access control reference monitor. The service that provides the access control to

clients is moved around the reference monitor network based on the node chosen by the distributed

consensus to serve for a given period of time.

1.2 Moving Target Defense

1.2.1 Definition

It is the concept of moving the target of the attack, i.e., the critical service from one location

to another to increase the uncertainty and the apparent complexity of the attacker. Changing the

point of contact after a certain period of time will change the attack surface thereby reducing the

window of opportunity for an attacker to learn and exploit the vulnerabilities of a system. This

would also help increase the cost of an attack and disrupt any ongoing attack.

According to the Trustworthy Cyberspace Strategic plan published by the Executive Office of

the President, National Science and Technology Council, December 2011 [5], "Moving Target De-

fense enables us to create, analyze, evaluate, and deploy mechanisms and strategies that are diverse

and that continually shift and change over time to increase complexity and cost for attackers, limit

the exposure of vulnerabilities and opportunities for attack, and increase system resiliency." As a

result, the defenders are able to create systems that are more dynamic and the attackers have to

deal with higher amount of uncertainty. The ultimate goal of Moving Target Defense is to increase

the cost of the attacks by dynamically and randomly changing the attack surface. This approach

has been heralded as a "game changer" in the field of research [6].

1.2.2 Examples

The concept of moving target defense can be illustrated using the "Shell Game", also known as

thimblerig, three shells and a pea, the old army game [7]. Here, the target is hidden under one of
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the three shells or cups facing down on the surface. The objective of the game is to find the target

after the shells have been randomly shuffled, which is hard. This is analogous to the intent of

moving the target of the attack, i.e., the critical service randomly across the nodes in a distributed

network.

Another example could be Address Space Layout Randomization (ASLR), which is a famous

approach used in the operating systems to fortify against memory corruption vulnerabilities [8].

The idea here is to introduce artificial diversity by randomizing the memory location of certain

system components. ASLR is able to randomize the address space of a particular application,

making it hard for the attacker to predict them. The advantage of uncertainty in the address space

increases the cost of the attack. This approach proves that the concept of moving target defense is

used in the real computing world.

1.3 The Problem

When a service is hosted on a centralized static server, an attacker is provided with poten-

tially unbounded time to explore the vulnerabilities of the server with respect to the configuration.

This allows the attacker to manipulate or break the service. To avoid this, we consider a network

of heterogeneous servers where any server can seamlessly provide the service at any time. The

heterogeneity of the servers broadens the attacker’s surface and cannot easily exploit the same

vulnerability enumerated on one server across all others in the network. This approach is robust

against attacks that are launched on a single static server.

Given a set of n servers: {S1, S2, · · · , Sn}, the objective is to design a protocol that selects one

server uniformly at random to host the critical service. This protocol should be repeated periodi-

cally so that a server hosts the critical service for a short period of time, known as the "Election

term". The protocol should also work in a compromised network environment where the attacker

is assumed to control some servers. The server or a node selection should be a decentralized dis-

tributed consensus process, where all the nodes participate in the protocol to reach an agreement.

Moreover, the protocol should be configured such that the election term of a server is shorter than

3



the average time taken by an attacker to enumerate the service vulnerabilities on the current server.

With this configuration, and the network with heterogeneous servers, the probability of a successful

attack can be reduced.

1.3.1 The Solution

Our approach consists of using several networked heterogeneous servers and choosing one

server at random, at regular time intervals, as the point of service. The time interval, also known

as the Election term is chosen such that the attackers has least probability of success in exploiting

the vulnerabilities of the current point of service and launching an attack. The point of service is

moved from server to server in a non-deterministic fashion and this makes it difficult to plan and

execute an attack. With this design, the system conforms to the concept of moving target defense.

As the election term of one node completes, we design a leader election protocol that is capable of

being resilient to nodes exhibiting byzantine failures [9]. All the nodes taking part in the election

protocol are loosely synchronized and the nodes initiate the leader election protocol at the end

of the chosen node’s election term. During the protocol, each node chooses a random value and

broadcasts it to the other servers. The server that broadcasts the smallest random number is chosen

as the leader and is confirmed by at least n − k nodes. Here, n is the total number of nodes and

k = ⌊n−1
3
⌋ number of faulty nodes the protocol can withstand [10]. Finally, the consistency of the

messages exchanged between the nodes are checked and time-outs are implemented by each node

to detect Byzantine-fault behavior. Chapter 4 describes this approach in detail.

1.3.2 Shortcomings of this Solution

The leader election protocol overview described in section 1.3.1 requires at least n− k honest

nodes (where k = ⌊n−1
3
⌋) to participate and choose a leader that hosts the critical service. The

resiliency of this system is given by the value of k. As the number of nodes n taking part in the

algorithm increases, so does the resiliency of the system k. However, as the number of nodes

taking part in the protocol increases, the number of messages exchanged between the nodes and

time required by each node to verify the messages increases. This in turn slows down the protocol,
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increases the turn-around time to achieve distributed consensus. In short, as the number of nodes

taking part in the algorithm increases, the communication complexity of the protocol and time to

achieve distributed consensus increases. Moreover, the network of heterogeneous servers that take

part in the protocol do not change over time. This fixed group of servers are vulnerable to an

attacker who patiently unveils the vulnerabilities of each system and then enumerates the whole

network. To address this problem, we consider choosing a random subset of nodes within a larger

network, for each election term. The random subset of nodes are then responsible to choose a node

that hosts the critical service within the subset by executing the leader election protocol.

1.3.3 Large Networks

Given a set of n servers: {S1, S2, · · · , Sn}, the objective is to design another protocol that

chooses a subset of m servers: {T1, T2, · · · , TM} ⊂ N uniformly at random that would take

part in the election protocol. This protocol is executed before the leader election protocol and

repeated periodically to choose a subset that executes the next leader election protocol. It should

be designed to work in a compromised network environment, where the attacker is assumed to

control some servers. The subset selection is a distributed process and requires that the presence

of every node in the subset can be verified by every other node in the network. The protocol is

required to complete its process before the next election protocol begins. Furthermore, the election

term should be longer than the completion time of the protocol, but shorter than the average time

taken by an attacker to enumerate the service vulnerabilities on the current server.

1.3.4 Solution for All Networks

This approach is designed to work closely with the leader election protocol on a network with

several heterogeneous servers. A subset of the network is generated at regular intervals, but be-

fore the execution of the next leader election protocol. The subset cannot be chosen by a central

authority server because it is vulnerable to manipulation attacks. Hence, the subsets are required

to be generated in a sequential fashion, where the previous node added to subset is responsible to

choose the next node in the subset. A node chooses the next node by generating a random number
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and using the modulo arithmetic. This node then delegates the process to the next node to continue

the sequential process of subset generation. This decentralized sequential algorithm is executed

within the distributed network until the predefined number of nodes are added to the subset. All

the nodes added in the subset are required to be non-faulty, verifiable and honest. A subset should

to be verifiable by every node in the network. The nodes in a subset are responsible for choosing

the next node that hosts the critical service by executing the leader election protocol. The sequen-

tial node selection algorithm is executed again for the next subset to continue the leader election

protocol. Time-outs and message verification algorithms are implemented in each node to detect

nodes exhibiting byzantine behavior. Chapter 6 describes this approach in detail.

1.4 System Design Overview

As discussed in section 1.1, our solution requires a network of heterogeneous servers and a

critical service as a target of the attack. As a case study, we chose a role based access control as the

critical service and this access control engine requires an implementation of a reference monitor

[3]. This mediates all access to objects or resources based on the roles provided to the subject or

user. The user-role assignments and their respective access privileges are described in a policy file.

This access control service is moved around the distributed network of heterogeneous servers, to

allow limited opportunity to the attacker to explore and enumerate vulnerabilities, thereby reducing

the attack surface of the system.

When a new node is selected and the service is moved, the clients requests are redirected

to the new server using service discovery protocol [11]. In this thesis, we used an open source

implementation of service discover protocol [12]. However, the working of service discovery

protocol are out of scope for our discussions in this thesis.

Chapter 3 describes the system architecture and the modules that are designed to test whether

our solution is viable.
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1.5 Thesis contribution and Organization

The rest of the thesis is organized as follows. Chapter 2 presents a comprehensive survey

of existing leader election protocol and random walk approaches applied to various problems.

In chapter 3, we provide an overview of the system architecture built to test our approach. In

chapter 4, we describe the leader election protocol and its constructs. Also, we explain how this

approach is useful in small enterprise networks. In chapter 5, we discuss the experimental setup

and performance analysis of the leader election protocol. In chapter 6 we discuss the problems

of the leader election protocol in large networks, propose a better approach to overcome these

problems and describe a general solution for all networks. We evaluate our general solution by

conducting different experiments and practical analysis in chapter 7. Finally, chapter 8 concludes

the thesis and provides directions for future work.
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Chapter 2

Related Work

In the world of distributed systems, there are several election algorithms designed and devel-

oped to host services hosted in these systems. The ring based algorithm [13] provide safety and

aliveness features by implementing failure detectors using alive messages and timeouts. The Bully

algorithm [14] proposed by Garcia-Molina is also a famous distributed election algorithm designed

to elect a leader with consensus of all the nodes in a distributed environment. These algorithms as-

sume a network with synchronous systems and reliable network communications. The ring based

algorithm elects leader in a ring based network. These algorithms choose a node with the highest

node identifier among all the nodes in a distributed network. This algorithm conducts election

only when the leader goes down. Hence, these algorithms do not hold good in a compromised

environment which is considered to be the environment of our problem statement.

Moving target defense (MTD) [7] is the concept of introducing controlled change across mul-

tiple components of the network in order to reduce the window of opportunity of attackers, and

increase the cost of their attack efforts. Zhuang et al. [15] describes the key concepts of MTD and

their properties. Evans et al. [16] explains different low level techniques of MTD, dynamic diver-

sity defenses, analyze the security properties of a few example defenses and attacks, and identify

scenarios where moving target defenses are not effective. Han et al. [17] defines and investi-

gates two complementary measures that are applicable when the defender aims to deploy MTD to

achieve a certain security goal. At the network level, the work in [18] presents some network-based

MTD approaches while the work in [19] introduces a MTD approach for the cloud system.

Int this thesis, we are interested in solving the consensus problem using MTD in an environ-

ment with Byzantine failures. Byzantine failures [20] are a type of failures that can affect a com-

puter system and cause it to behave in a arbitrary way. There are many byzantine agreement pro-

tocols proposed to conduct election in a compromised environment. Castro and Liskovs et al. [21]

proposed the earlier protocols that included Practical Byzantine Fault-tolerance protocol. There are
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byzantine agreement protocols [20, 22, 23] that work in a different environment as opposed to the

one assumed in the problem statement. Some protocols [21,24,25] perform the election algorithm

with required randomness but do not consider the attackers time-window to explore vulnerabili-

ties to break the system. Among the work proposing the MTD approach in face of the Byzantine

failures, [26] proposes a moving target defense approach to switch among Byzantine fault tolerant

protocol according to the existing system and network vulnerability. In [27], the authors introduce

Turtle Consensus (MPTC), an asynchronous consensus protocol for Byzantine-tolerant distributed

systems that uses MTD strategies to tolerate certain attacks. In [28], Tangaroa protocol is pro-

posed, which is an extension of the Raft protocol [25] and the protocol from [21]. In [29, 30],

the authors present Byzantine consensus protocols for synchronous and authenticated setting that

tolerate less than n
2

faults. For mission-critical applications, in [31] the authors describe a practi-

cal asynchronous Byzantine fault tolerant protocol, which guarantees liveness without making any

network timing assumptions.

In [2], the authors proposed an initial solution for this problem using access control reference

monitors, based on the "moving target defense" [15,16,32] where a server is elected for a particular

election period using a Byzantine fault-tolerant leader election protocol. Here, the node is chosen

as a leader in a deterministic manner [10]. The number of election terms is divided by the total

number of nodes and the resultant remainder is the node identifier. The server corresponding to

that node identifier value is chosen as the leader for that election term. Moreover, the number of

communication rounds designed to elect a leader with the consensus of all the nodes in the network

is high. A compromised server has a good chance of being elected as a leader of the protocol.

If an attacker compromises a few select nodes, then the attacker has a very high probability of

succeeding in tampering with the result of the protocol.

In the current problem statement, we assume the network is reliable and there no churn in the

network. If churn is considered, this would provide opportunities for developing an optimized

protocol within this setting. State-of-the-art enterprise implementations like [25] are designed as

voluntary "voting" mechanisms for replicated log management applications and are inefficient for
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protecting critical services. Furthermore, adapting other practical Byzantine-fault tolerant proto-

cols [21, 24] for this problem is not a feasible option as these protocols will require non-trivial

modifications to suit the constraints of the problem statement.

Network resilience is defined as the ability of the network to function in face of failures due

to natural disaster or malicious attacks, which affect the proper operation of some of its com-

ponents [33, 34]. This is an important parameter that measures the security level of the system

and how protected the system is from byzantine failure. In this thesis, we design a system that in-

creases the network resiliency of the distributed network that provides security-critical service such

as access control. Techniques to increase a network resilience include segmentation [35], dynamic

composition [36], diversity [32, 37], deception [38], and dynamic reconstruction [39]. Segmenta-

tion [35] aims to limit the attack surface of a potential attack by logically or physically separating

the network critical components. Dynamic composition [36] is the ability to dynamically provide

new capabilities to the network. Diversity [32,37] is the action of using heterogeneous logical sep-

aration of physical components in a network. The goal is to limit the attacks exploiting common

vulnerabilities. Deception [38] is the action of misleading or confusing attackers in order to hide

the critical assets of a network. Dynamic reconstitution [39] is the ability to reconfigure a network

in order to render it resilient to ongoing and future attacks or faults while maintaining continuity of

operations. One approach to implement a dynamic reconstitution of a network is through Moving

Target Defense.

The concept of simple random random walk was first introduced in [40]. The random walk

concept is used in many network applications and the main purpose is to perform node sampling.

Random walk-based sampling is simple, local, and robust. At present, there are many algorithms

that use random walk as an integrated subroutine. Some of the network applications that use

random walks are token management [41,42], load balancing [43], small-world routing [44], search

[45–47], information propagation and gathering [48] and network topology construction [49, 50].

Random walks have also been used in distributed systems to provide dynamic control in a uniform

and efficient way [51]. The paper of [52] describes a broad range of network applications that
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can benefit from random walks in dynamic and decentralized settings. A fast and efficient way to

perform random sampling in an arbitrary network is shown in [53]. In this thesis, we are using

random walk to sample or choose a subset of nodes from a reliable distributed fully connected

network that take part in the election protocol in a fast and efficient way.

In this work, we have designed a secure one-way hash commitment based moving target de-

fense protocol for security-critical services that can tolerate byzantine faults, which is new con-

tribution in this problem space. The chapter 4 and its results 5 are part of the paper [54] that

is accepted in MTD 2018 ACM conference. We further design and implement the random walk

protocol that brings in more uncertainty and randomness in the system that chooses a leader for

hosting the service in this thesis.
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Chapter 3

System Architecture

In this chapter, we describe system architecture of each server hosted in the fully connected

distributed network. Each server implements several modules to test our solution.

3.1 Architecture Overview

Figure 3.1 shows a network of four access control reference monitors. Each server is imple-

mented with four modules,

• ACM - Access Control Module

• EM - Election Module

• FD - Fault Detector Module

• DSA - Digital Signature Algorithm Module

Node 2

ACM
EM
FD

DSA 

ACM
EM
FDNode 3

DSA

ACM
EM
FDNode 4

DSA

Client Client Client

ACM
EM
FDNode 1

DSA

Figure 3.1: System Implementation Architecture
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These modules are implemented using Java programming language. Every node in the network

is connected to all other nodes to form a fully connected distributed network using Java socket

programming. The LAN network used to build this system and is assumed to be reliable.

3.2 Client

The clients are the endpoint entity whose main objective is to send requests to the access control

service. Using the help of service discovery protocol, these requests are redirected to the node that

hosts the access control service for that particular election term. The node replies back to the each

client with its response.

3.3 Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is used by every node to digitally sign and

verify the messages exchanged within the distributed system. The strength per key bit is known to

be substantially higher in elliptic curve DSA [55]. The public keys of each node is shared with all

other nodes taking part in the protocol and this is done during the system configuration. Every node

that broadcasts messages during the election algorithm are digitally signed with its own private key.

When another node receives the message, it first verifies the message with the sender node’s public

key. This way the communication between the nodes are secured.

3.4 Fault Detection Module

The Fault Detector Module is designed to closely monitor the behavior of all the nodes that

provide the access control service. This module implements phase timeouts, message format ver-

ification algorithm and task validation schemes. This module is responsible for verification and

validation of messages received by other nodes. All data and observations are shared with the

election module for further processing and decision making.
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3.5 Election Module

The Election Module implements the leader election protocol described in chapter 4. The

module is responsible for maintaining the communications between other nodes and coordinate the

election seamlessly. All the messages received as a part of the election process are carefully verified

by the fault detector module and then received by the election module. All the outgoing messages

are constructed according the protocol format and sent to DSA module for further processing.

3.6 Access Control Module

This module implements all the components of the access control reference monitor. It is

responsible to process the clients’ access requests, decide based on the policies described and

prepare the response that is sent back to the client.

An access control service is also implemented on each server in this module. This service is

activated when the node is chosen by the distributed consensus to serve the election term. It is

responsible for receiving requests from clients and send the responses back to the clients using

java socket programming. The service is deactivated when the node completes its term of service.
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Chapter 4

Solution for Small Networks

The first goal of our thesis is to propose a consensus algorithm that works in a compromised

environment and resilient to byzantine faults. In this chapter, we aim to design an efficient moving

target defense protocol that would move the target of the attack within a distributed network with-

out any service interruption. Our approach begins with designing a Distributed Leader Election

Protocol where all the nodes in the network communicate and coordinate to choose a leader with

quick turn-around time, is able to detect faults and exclude malicious nodes from interrupting the

critical service. The protocol follows four stages of complex computations, message verification

and time-outs to maintain honest participation of each node taking part in the algorithm. The pro-

posed Commit and Reveal approach is used in the protocol to bring in trust within all the nodes

and fault detectors are implemented to monitor the behavior of each node in the network. After all

the message communication, coordination and verification, the nodes agree to choose one leader

that hosts the critical service for a given time period or an Election term. Once the term completes,

all the nodes wake up to re-start the protocol to choose the next leader.

At first, the thread model is discussed to lay out the capabilities of the adversaries and the

limitations of the protocol. We will describe all the components of the protocol in this chapter,

later discuss our observations and results of this protocol in the next chapter 1.

4.1 Technical Challenges and Solutions

The first challenge is the choice of random numbers by each node taking part in the leader

election protocol. The protocol is designed to choose a smallest of all the random number choices

of the nodes. As explained in the problem statement, this algorithm is working in a compromised

1A version of this chapter will be published in 5th ACM Workshop on Moving Target Defense (MTD 2018)

October 15, 2018, ACM, 2018, A Secure Hash Commitment Approach for Moving Target Defense of Security-critical

Services, Dieudonne Mulamba, Athith Amarnath, Bruhadeshwar Bezawada and Indrajit Ray.
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environment, where some of the nodes might be controlled by the attacker and might not conform

to the protocol honestly. Therefore, such malicious nodes might wait until the other nodes reveal

their random values and then choose a smaller value than these nodes to win the election. To avoid

this problem, a commitment based protocol is designed in such a way that each node in the protocol

requires to first commit to a particular random value in one round and then reveal the value in the

next round. This way we can avoid "wait-and-see" attacks by the misbehaving nodes controlled by

the attacker.

The second challenge is to design an efficient commitment scheme [56] that the node oper-

ates within the time limits of the chosen critical service. To mitigate this challenge, a one-way

hash based commitment scheme is designed that uses secure one-way hash functions and public

parameters. Here, every node taking part in the algorithm chooses a random value and publishes

its publicly-verifiable one-way hash, i.e., the "commit" value in the first communication round.

During the second communication round, the node publishes, i.e., "reveals", the random value and

the other public parameters used to generate the "commit" value, which can be used to verify the

commit value shared in the first communication round. Finally, the algorithm chooses the node

that published the smallest hash value as the winner. This form of distributed consensus is used to

choose the winner without any dependency on the central authority.

The third and final challenge is that, this protocol should be designed to work in a compromised

environment. The protocol should be resilient to the nodes exhibiting byzantine behavior and try

to compromise or disrupt the service by breaking the consensus protocol. To achieve this, we have

devised a fault detector mechanism in our protocol that monitors all the nodes and detect malicious

or byzantine behavior of other nodes. All the observations are shared with the rest of the nodes

as one round within an election to avoid nodes making malicious decisions. Once the majority of

nodes vote against a node being malicious, it will be placed in a faulty node list and would not be

allow to participate or become the leader in the future.
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4.2 Threat Model

Byzantine failures [20] are a type of failures that can affect a computer system and cause it

to behave in a arbitrary way. These failures can be caused either by wear and tear of physical

components leading to failure of the system or by a generic adaptive adversary who intends to

compromise the system. In this thesis, we are protecting the critical service on hosted on a server

and move the service at regular intervals to reduce the window of opportunity for attacks.

We assume that the adversary has the ability to enumerate the vulnerabilities of the service with

respect to the server configuration and can launch the described attack. To launch an attack, we

assume that the attacker requires certain time-window to learn about the vulnerabilities of server

and then enumerate them to launch the attack. Considering that the servers are heterogeneous, the

attacker’s effort to enumerate vulnerabilities of one server cannot be the same as to another server.

Finally, we assume that that network model consists of a minimum of 4 or more nodes. This

is to tackle the issues with the Byzantine Generals Problem [20]. The consensus is achievable in

a distributed system if and only if the number of faulty nodes in the system is: (1) less than one-

third of the total number of nodes; and (2) less than one-half of the connectivity of the system’s

network [57]. Hence, we assume that there are at most ⌊n−1
3
⌋ nodes (n - total nodes) that are

faulty or malicious in a distributed network that run the leader election protocol. When the faulty

or malicious nodes are greater than k = ⌊n−1
3
⌋ nodes, the network fails to obtain consensus and

this must be avoided. Moreover, higher the value of n, the network is more resilient to byzantine

failures. In other words, a distributed network is k-resilient, where k = ⌊n−1
3
⌋.

Furthermore, through periodic service audits or anomaly detection approaches, the network

administrator detects a compromised server and fortifies or patches the vulnerabilities of the server.

4.3 Public Parameters

All the nodes are initialized with two public-parameters for the Hash commitment phase of our

protocol. The first public parameter is a large integer Q, which is used for modulo the result of

one-way hash function at each node to reduce the size and is a fixed value throughout. The second
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public parameter is P , a critical component of the protocol and is one of the inputs to a hash

function H along with the random value chosen by a node. P plays the role of public randomness

in our protocol, which is a difficult property in distributed systems [58].

Lets assume {S1, S2, · · · , Sn} are the set of n heterogeneous servers that are taking part in the

leader election algorithm. Let Q denote a public parameter that is configured and common to all

the nodes. Let P i denote another public-value that is used in a particular election round i. For

each subsequent round, a node locally updates the P i value used in the previous election round as

follows: P i+1 = P i + 1. Nodes are allowed to use older values of P i and the P i value used in

the first phase is shared with all nodes in the second phase for verification. However, if a node is

using an older P i value that has not been incremented beyond a certain system defined threshold,

then the other nodes will consider the inputs of this node as faulty and ignore them. We use the

notation P i
j represents the local value of P in Sj node for ith round, where Sj , ∀1 ≤ j ≤ n. The

key property of this parameter is that it is incremented after each election session to provide the

necessary randomness for the one-way hash computations.

4.4 Secure One-Way Hash Commitment

A pseudo-random one-way hash function H is a function that takes in a message x and return a

fixed-size alphanumeric string which is called a Hash value X = H(x). This function is computa-

tionally easy to calculate a hash for any given data. However, it is extremely difficult to reverse the

hash function H(x) to get x. Moreover, two messages that are slightly different generate unique

hash values. This function is the core concept behind the security of our protocol.

In the existing consensus protocols [2, 21, 29], the general approach is for the nodes to declare

a random value and then agree on the lowest value among those published. This approach can be

broken by a malicious node controlled by an attacker, waiting for inputs from other nodes before

declaring its own value. If the attacker controls a sufficient number of nodes, the probability of a

malicious node winning the election is high. Moreover, considering our network model, where the

nodes being connected by a reliable broadcast channel, the attacker has instant access to inputs of
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all the nodes. To address this problem, we have designed a commit and reveal approach, where the

nodes first commit a value C to other nodes in the network and then reveal a valueR that generated

C. We are using a secure one-way hash function H such as SHA-256, to calculate the commit value

C. using the random valueR.

Let assume {S1, S2, · · · , Sn} are the set of n heterogeneous servers that are taking part in the

leader election protocol. Let H : {0, 1}∗ → {0, 1}t denote a strong pseudo-random one-way hash

function that takes any length input and generates a fixed t-bit output. Each node Sj , ∀1 ≤ j ≤ n

calculates the One-way Hash Commit Value Cj such that,

Cj = H(Rj, P
i
j ) mod Q

Each node Sj , broadcasts its commit value, Cj , and the public value local to the node Sj for

i-th election term, P i
j , used in the hash computation above to the rest of the network.

Once the commit phase is complete, each node Sj broadcasts the Reveal value Rj and P i
j

used in the hash computation to the network. Once the Reveal Value is received by all the other

nodes, each node Sj , compares all the received commit values {Cj}, and verifies the integrity of

these values by recomputing the hash values based on the respective random value, Rj , and the

public value, P i
j , pairs. Among the correctly verified hash values, the node selects the smallest

hash value amongst all the values and confirms the corresponding publishing node as the winner.

A possible attack on the hash commitment approach explained above is that a node fixes the

value of P and calculates the best values that result in the lowest hash values over multiple election

terms using brute-force. To prevent this, we define a certain stale threshold, which is the maximum

difference of a node’s copy of P from any other node’s copy of P . This threshold reduces the attack

surface of an attacker and, the brute-force attack will no longer be a feasible option. In our security

analysis, we show that this parameter helps in achieving strong security guarantees in our protocol.
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4.5 Leader Election Protocol

4.5.1 Overview

The goal of our protocol is to keep "moving" the service, which is the attack target, from one

server node to another and change the attackers surface to increase the cost of an attack and disrupt

any ongoing ones. We start with the assumption that one or more nodes, but no more than ⌊n−1
3
⌋

nodes, might be partially compromised by an attacker. In this section, we are going to talk about

different stages of the leader election protocol and its operation in detail. There are 4 main phases

in our protocol, COMMIT, ESTIMATE, CONFIRM and FAULT DETECTION phase. Algorithm 1

describes all the four phases of the leader election protocol in the form of a state machine.

4.5.2 Commit Phase

This phase is the beginning of every election term where each node selects a random value

independently and computes a one-way hash on the random value using the semantics of the One-

way hash commit step of the commitment technique explained above, which is called as commit

value C. This value is digitally signed to create a COMMIT message and broadcasted to all the

remaining node servers. The figure 4.1 shows the timing diagram of the COMMIT phase.

p

q

r

s

COMMIT

Time

Figure 4.1: COMMIT phase Timing Diagram

After the COMMIT message broadcast, each node server then starts a timer G and uses this

value to wait for the next protocol phase to start. During this wait period, it is expected that each
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Algorithm 1: Leader Election Protocol at Sc

Input: Election term Number E ← 0, Lsuspect ← {φ}, Lfaulty ← {φ}
S = {S1, · · · , Sn} where Sm = (Sm, σSm

, P E

m[· · · ]), P
E

m[· · · ] is the list of past P values

I = [· · · ] where Ij = (Cj,Rj, P
E

j , Sj), reset for each election term E
registerflag ← false, state← COMMIT
n← Total number of nodes in the network, k = ⌊n−1

3
⌋, Ω← Election Term

Output: Sc protocol output variable registerflag
loop

switch (state)

case COMMIT:

E ← E + 1, For random numberRc, Calculate Cc = H(Rc, P
E

c ) mod Q
Broadcast {Sc COMMIT E {C}}σSc

to all nodes, Start Timer G
if Timeout(G) and n− k COMMIT messages received then

state = ESTIMATE
end if

case ESTIMATE:

Broadcast {Sc ESTIMATE {Rc, P
E

c }}σSc
to all nodes, Start Timer G

if Timeout(G) and n− k ESTIMATE messages received then

state = CONFIRM
end if

case CONFIRM:

Smin = node with minimum Cmin, given by Algorithm 3

Broadcast {Sc CONFIRM (Smin) LIST [I]}σSc
to all nodes, Start Timer G

if Timeout(G) and n− k CONFIRM messages received then

validate(I) using Algorithm 2

state = SUSPECT
end if

case SUSPECT:

Broadcast {Sc SUSPECT LIST [(1, S1), · · · , (k, Sk)]}σSc
to all nodes

Start Timer G
if Timeout(G) and n− k SUSPECT messages received then

if Smin == Sc then

state = LEADER
else

state = IDLE
end if

end if

case IDLE:

Sleep (Ω)

registerflag ← false , state = COMMIT
case LEADER:

registerflag ← true , state = IDLE
end switch

end loop

21



node server receives all COMMIT values from other nodes taking part in this protocol. This

round completes when the timer expires and moves to the next round.

4.5.3 Estimate Phase

At the end of the timeout of the COMMIT phase, each node sends out an ESTIMATE

message containing the random valueR and public value P used for generating the commit value

C in the COMMIT phase and starts a new timer G for this phase. We call this phase as the

ESTIMATE phase and it is an implementation of the Reveal step of the commitment technique

explained above. The figure 4.2 shows the timing diagram of the ESTIMATE phase. Also, the

p
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s

COMMIT

Time

ESTIMATE

Figure 4.2: ESTIMATE Phase Timing Diagram

node stores the random valuesR received from other nodes along with their respective C values.

After the ESTIMATE message broadcast, each node server then starts a timer G and uses

this value to wait for the next protocol phase to start. During this wait period, it is expected that

each node server receives all ESTIMATE values from other nodes taking part in this protocol.

This round completes when the timer expires and moves to the next round.

4.5.4 Confirm Phase

After the completion of the ESTIMATE phase, the nodes validate the respective {C,R, P}

pairs from different nodes using the algorithm 2. Figure 4.3 shows the timing diagram for the

CONFIRM phase.
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Algorithm 2: Validate the List I at Sc

Input: I = {I1, · · · , In} where Im = (Cm,Rm, P
E

m, Sm)
Lsuspect ← {φ}

Let V alid = {φ}
for Im ∈ {1, ..., n} do

if [Cm == H(Rm, P
E

m) mod Q] then

V alid = V alid
⋃

Im
else

Lsuspect = Lsuspect

⋃
Sm

end if

end for

p
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COMMIT

Time

ESTIMATE CONFIRM

Figure 4.3: CONFIRM Phase Timing Diagram

Algorithm 3: Minimum Commit Value at Sc

Input: I = {I1, · · · , In} where Im = (Cm,Rm, P
E

m, Sm)
Output: Si publishing minimum Ci

Let Imin = I1,
⇒ Smin = S1 and Cmin = C1

for It ∈ {1, ..., |V alid|} do

if Cmin > Ct then

Imin = It
Cmin = Ct

end if

end for

Return Smin;
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Using Algorithm 3, each node selects the minimum hash value from among the valid values

and returns the Smin of the correspondingR. At the end of the computation, each node broadcasts,

the winning node identifier, the list of hash values and the corresponding sender identifiers, to the

rest of the network.

After receiving the CONFIRM message with the minimum hash value and list of hash values,

each node verifies the digital signatures on the received messages and then, performs the validation

step by checking if: {Cj == H(Rj, P
i
j ) mod Q}, for the node Sj in election session i. The leader

of the election is the node that advertised the smallest value in the Commit phase and marked by at

least n
2

other nodes.

4.5.5 Fault Detection Phase

During the fault detection phase, every node broadcasts the node identifiers added in their re-

spective suspect list. The nodes added into this list are nodes that advertised inconsistent values

during the first 3 phases or did not follow the protocol or failed to verify the source during sig-

nature verification. The inconsistent values are considered to be sent by Byzantine nodes that are

compromised by the attacker. Figure 4.4 shows the timing diagram for the SUSPECT phase.

Figure 4.4: Leader Election Protocol Timing Diagram

Using the list of received hash values in the CONFIRM phase, each node determines in-

consistent messages by misbehaving nodes and creates a suspect list, which is broadcasted to the

rest of the network in a SUSPECT message. Next, each node compares all the received suspect
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Algorithm 4: Fault Detection Algorithm

Input: L1, · · · , Ln where Lm = {Sa, · · · , Sm}
Output: {Lfaulty where ∀S ∈ Lfaulty each S is in at least |n− k| Lis

Lfaulty = {φ}
k = ⌊n−1

3
⌋

THRESHOLD = ⌊n− k⌋

for Li ∈ L1, ..., n} do

for Sj ∈ Li do

COUNT = 1

if [(Sj ∈ Lp) AND (p 6= i) AND (COUNT 6= THRESHOLD)] then

COUNT = COUNT + 1

if [COUNT == THRESHOLD AND Sj 6∈ Lfaulty] then

Lfaulty = Lfaulty

⋃
Sj

Break;

end if

end if

end for

end for

Return Lfaulty

nodes’ lists, including its own, and identifies the nodes that are identified as suspect by a threshold

majority of the nodes. The threshold majority is given by ⌊n − k⌋ where k = ⌊n−1
3
⌋. All suspect

nodes satisfying the threshold majority are placed in the fault list, as shown in Algorithm 4, and

their inputs are ignored for the life time of the algorithm. The administrator is able to patch up

the server and fortifies them so that server can be included in the protocol manually. At the end of

this phase, each node sets the time to the election term and waits until the current leader’s term is

complete.

4.5.6 Message Formats

There are four main messages in our protocol: COMMIT,ESTIMATE,CONFIRM and

SUSPECT . We use S to denote a node-identifier field, C to denote the hash commitment value

field, P to denote the public-parameter field, and R to denote the random value field. We use σSc

to denote the private-key signature of a message by the sending node Sc where c means "current

sending node". Let E be the current election term number.
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The COMMIT phase parameter has only one field, {C}. The message format is as follows

{Sc COMMIT E {Cic}}σSc

Here, Cic represents the commit value C of node Sc for ith election term.

The current election term number E is shared by all nodes to verify whether the node is partic-

ipating in the current election term.

The ESTIMATE phase parameter contains only two fields: {R,P}. The message format is

as follows

{Sc ESTIMATE {Ri
c, P

i
c}}σSc

The CONFIRM message is composed of two fields: the node identifier of the node that

published the lowest C and, the list of all the C values and corresponding Ss received by this

node.The format is as follows:

{Sc CONFIRM (Smin) LIST [(S1, C1,R1, P
i
1), · · · , (Sn−1, Cn−1,Rn−1, P

i
n−1)]}σSc

where n is the maximum number of nodes in the system.

Finally, the SUSPECT message contains the Ss of suspected faulty nodes:

{Sc SUSPECT LIST [(1, S1), · · · , (k, Sk)]}σSc

where n is the maximum number of nodes in the system.

4.5.7 Time-outs

In our protocol, every phase of the protocol is terminated by a properly chosen time-out value:

G. This time-out value is common to all the 4 phases in the algorithm. This time-out value is

chosen by measuring the time required for the nodes to perform local computations, prepare the
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messages with results and broadcast them to the rest of the network. The main requirement of this

time-out for each phase is to provide just enough time to perform necessary computations. This

inhibits any malicious node from manipulating the protocol in an unfair manner. If a malicious

node is waiting for inputs from all the nodes in the network, the time-out proves beneficial in

detecting the malicious node. Consider a malicious node that tries to brute-force the best random

value to win the election, if the node is unable to do so within the time-out value, then it is put

in the fault list. In our protocol, we choose the time-outs within a ∆-fraction of the estimated

round-trip network delay, RTDelay, such that

Gp = (RTDelay +∆ ∗RTDelay + f(n))where0 < ∆ ≤ 1

, to ensure that such "wait-and-see" behavior of nodes is detected.

Also, f is a network dependent time function that accounts for the size of the network and the

type of broadcast capability of the network. Finally, we do not assume that the nodes are tightly

synchronized and allow staggering of timeouts across the network.

4.6 Security Analysis

In this section, we consider theoretical and practical attack scenarios to discuss the security of

our protocol. For theoretical analysis, we consider an Adaptive Byzantine Adversary who has the

ability to modify the inputs to the protocol by (partially) controlling a threshold number of servers,

not necessarily the same, in any given session. For practical situations, we consider two kinds of

attacks: brute-force and clone attacks.

4.6.1 Adaptive Byzantine Adversary

The definition of an adaptive adversary A in the context of our protocol is as follows:

Definition 1: An adaptive Byzantine adversary A is a Byzantine adversary who has access to

all the inputs and results of the protocol for a polynomial q number of election sessions, i.e.,

the attacker knows all the hash commit values, the random values and the winning values. The
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adversary is also in control of some of the inputs, not more than k = ⌊n−1
3
⌋, which is required for

a safe quorum to be achieved. We denote the adversary storage by: A = {A1, A2, · · · , Aq} where

Ai = {(C
i
1, R

i
1, P

i
1, S

i
1), · · · , (C

i
n, R

i
n, P

i
n, S

i
n)} denotes the ith protocol session’s input-output

pairs.

ǫ-advantage. The ǫ-advantage is the advantage probability of an adversary to win the election in

any election session while being in control of k servers. Ideally, ǫ-advantage should be no more

than 1
k
.

Theorem 1 (ǫ-security). Assuming the presence of a strong pseudo-random function, our protocol

is ǫ-secure against Byzantine adversaries where ǫ ≤ 1
k

and k = ⌊n−1
3
⌋, and the stale threshold of

the public parameter P is ≤ q.

Proof. We base our proof on two important assertions and show that the adversary advantage does

not increase based on the history of the interactions and the strategy used.

Assertion 1. The protocol is history independent as long as the public parameter P is incremented

by the honest majority.

This assertion is made based on the properties of the pseudo-random one-way hash function

H, i.e., given a set of (Rm, P
i
m) input pairs for a node Sm for ith election round, the output Cm is

independent of all past rounds. For each round, the value of P is incremented and R is randomly

chosen with bigger seed. If the adversary controls or predicts theR space, then the adversary does

not gain any additional advantage from knowing the output history of the hash function H because

the honest majority increment P after every qth round. Moreover, this assertion states that the

ǫ-advantage is not cumulative and forces the adversarial nodes to increment P after the qth round

to ensure that the adversarial inputs are acceptable.

Assertion 2. Within a given session, the adversarial advantage is not increased due to attack

strategies used.

To increase advantage, there are two simple attack strategies for an adversary: (a) Use all k

compromised servers to select an input that is better than a particular target server that the attacker

ǫ-estimates to be the winner, and (b) Use each of k servers to target all the honest servers with a
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divide-and-conquer approach, i.e., each compromised server targets a distinct subset of the honest

servers.

For the first attack strategy, the advantage of the adversary is ǫ for selecting an input better than

the target server. However, there are still n− k − 1 honest servers that will pick their inputs inde-

pendently at random and hence, the probability of a winner from this coalition is 1
n−k−1

. Therefore,

the final advantage of the adversary in winning the election is: ǫ × (1 − 1
n−k−1

), which is smaller

than ǫ.

For the second attack strategy, assume that the attacker divides the network into B = {B1, · · · ,

Bk} where |B| = ⌈n−k
k
⌉, coalitions and assigns one server to each coalition Bi. But now, each

compromised server only has (ǫ/k) advantage of winning the election against a given coalition,

Bi. To compute the cumulative adversary advantage, we observe that, the adversary advantage

within each coalition is independent of the results in the other coalitions. Therefore, the adversarial

advantage in a single coalition Bi is no better than ((ǫ/k)/|Bi|) = (ǫ/k)/(n−k
k
) = ǫ

n−k
, which is

again less than ǫ.

These attacks are a good baseline for modeling real-world adversaries as other strategies can be

modeled similarly. Therefore, based on these two assertions, our protocol remains ǫ-secure under

the conditions of monotonically increasing P , regardless of the adversarial strategies.

4.6.2 Brute Force Attack

An adversary might try to win the election by brute-forcing the random number space and

keeping the P fixed up to the stale threshold. There are two reasons why this attack is likely to

fail. First, though the attacker controlled servers do not increment P , the honest majority of nodes

will increment P . As a result, the attacker’s brute-force on the random numbers will result in H

outputs that are different from the honest majority’s H outputs, even for the same random numbers.

Therefore, the likelihood of the attacker’s random numbers being the winning choices is as good as

the honest majority’s choice of random numbers. Second, some nodes in the honest majority may

not update their P value due to various reasons like down time or lack of synchrony. Even in this
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scenario, brute-forcing is unlikely to be successful because it is more than likely that these honest

nodes will still have a P that is different from the attacker’s servers. Furthermore, the honest nodes

might be out of synchrony with respect to P for at most one or two election sessions. Once the

election starts and when these nodes start receiving COMMIT messages, these nodes will update

their P values according to the higher P values seen in the COMMIT messages. Therefore, the

attacker will have no additional advantage even if some of the honest nodes are not in synchrony

with the remaining honest majority. Hence, based on the above two reasons, brute-force attack is

not a practical option for an adversary against our protocol.

4.6.3 Clone Attacks

A more feasible attack on our protocol is a message "clone" attack, in other words, an attacker

server "waits-and-sees" for the honest servers’ inputs-outputs and "clones" these messages. This

attack is as follows: an adversary waits for the commit values, the Cs, from other servers and picks

the smallest C value. The adversary announces this value to the rest of the network. Now, for

the next step, the attacker has two choices to complete the Estimate phase, (a) either the attacker

brute-forces the random number space and finds a suitable random number matching the C value

it has advertised, or (b), the attacker repeats the "wait-and-see" step and announces the winning

random number. If successful, in either attempts, there will be two winning nodes, the attacker

node and the "cloned" node.

First, we consider the brute-force scenario and show that it can be addressed with properly

chosen timeouts. Note that, if the attacker is successful then the attacker has essentially followed

the protocol steps correctly and is a valid winner. However, brute-forcing an input based on the

output H is a time-consuming operation as it involves computing a H output and reducing it modulo

Q, till the desired modulo value is found. As a result, there are no guarantees of finding a suitable

random value within the timeout of the current protocol phase. Therefore, an attacker is unlikely

to choose this option to be successful in the clone attack.
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The second scenario can be addressed with an additional tie-breaking round. The remaining

nodes can randomly choose one of the winning nodes as the leader and announce it to the rest of

the network. The node that gets the majority votes will be the winner of the election. While this

mitigation step is likely to allow an attacker server to be a leader, the probability is still bounded by:

1
2(n−k)

, as remaining honest majority of n−k nodes will choose either nodes with equal likelihood.

Timeouts can prevent this attack as the attacker has to wait for almost all the nodes in the network

to send their values. In practice, such waiting will timeout the attacker and put the attacker in a

faulty node as desired.

A modified version of this attack, that may not timeout, is that the attacker clones the input-

output messages of a selected honest server across all sessions. But this attack has a far less

likelihood of winning as the attacker’s winning chances are only as good as the honest server

selected. However, clone attack still remains one of the limitations of our protocol at present and

there is a possible solution for this through log analysis. As the attacker is assumed to be in (partial)

control of k nodes and, if the same nodes keep winning the election, a statistical analysis of the

past logs will reveal this pattern and all the suspected nodes will be decommissioned and fortified.

Also, any attempts by the attacker to remain under the radar of the statistical analysis is likely to

reduce the impact of the attacker in the long run.
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Chapter 5

Small Networks - Evaluations and Discussion

5.1 Experimental Setup

To measure and validate the protocol, we implemented a network with fifty HP-Z440-XeonE5-

1650v4 servers, running Fedora 26, each with 8 cores, 3.6 GHz clock, and 16 GB RAM, commu-

nicating over a LAN network with 1 Gbps capacity2. The protocol was implemented in Java with

Apache Maven Build Environment. Apache Maven build environment was used to maintain the

project dependencies as well as to deploy the final jar file for simulation. The software was config-

ured to read config.properties file to setup the simulation environment. The config.properties file

contained all the network address information of each node, timeout values, public parameters and

digital signature keys as an input to all nodes in the network. The protocol communication used

blocking server-client TCP communication design with a fully connected distributed network was

implemented to replicated the broadcast capabilities of the LAN. We used Apache Log4j2 logging

service (https://logging.apache.org/log4j/2.x/), which uses asynchronous loggers, to log the node

activities. We used OpenSLP 2.0.0 [12] Java implementation to register the leader that provides the

access control request. The service location protocol (SLP) is used to publish/broadcast the leader

service to all the clients. The simple access control service was designed using the Balana XACML

implementation. The Policy Enforcement Point (PEP) was built as a wrapper to communicate to

the client as well as maintain access to resources. All nodes were equipped with self signed public-

key private-key pairs and used the Elliptic-Curve DSA signature algorithm with 256-bit keys. The

secure one-way hash function chosen was SHA-256, the public-parameter P was a 512-bit integer

and the modulo reducer Q was a 256-bit integer. The configurations of the number of nodes per

2A version of this chapter will be published in 5th ACM Workshop on Moving Target Defense (MTD 2018)

October 15, 2018, ACM, 2018, A Secure Hash Commitment Approach for Moving Target Defense of Security-critical

Services, Dieudonne Mulamba, Athith Amarnath, Bruhadeshwar Bezawada and Indrajit Ray.
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election term were: 5, 10, . . . , 50, and each experiment was averaged over 50 to 200 trials. The

election term of a winning server was arbitrarily chosen to be 120 seconds.

5.2 Performance Analysis

5.2.1 Timing Analysis

The minimum time required to choose a new leader is the time required by the system to con-

verge onto a leader. The goal is to keep this value as low as possible while maintaining the security

requirement and consensus. By achieving this, we can assure service continuity and aliveness with

very minimum down time during migration. Figure 5.1, 5.2 and 5.3 shows the summary of the

performance of the protocol and its phases. In Figure 5.1(a), we show the minimum average time

for leader election, which shows a minimum time of 25 ms for 5 nodes and about 250 ms for 50

nodes. In Figure 5.1(b), we show the average election time for each network configuration, which

varies from 10s of milliseconds, for 5 nodes, to about 400 ms, for 50 nodes. In Figure 5.2(a), the

average time taken for detecting Byzantine faults was in the range of 5 to 70 ms as the number

of nodes increased from 5 to 50. In Figure 5.2(b),5.3(a) and 5.3(c) the execution times of the key

phases of our protocol is shown over 50 iterations, which include the timeout values, the message

transmission times and the computation required for each phase. The Commit and Estimate

phases averaged from 10 ms up to 90 ms for 5 up to 50 server configurations, respectively.

The execution times amount to 0.008−0.3%, of the election term which is manually calibrated

to 120 seconds. This shows that our protocol is fast and efficient. This also provides more leverage

for the system administrator to adjust the election term according the minimum time required to

explore vulnerabilities and break the system. Out of the four phases, the Confirm phase required

more time as it includes the validation of the committed C values from various nodes and selecting

the minimum of the valid values.
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5.2.2 Leader Distribution

In Figure 5.4 and 5.5 , we show the number of times a node is elected as leader across 200

election terms for server configuration of 5, 10, 25, and 50 nodes. From these plots, we can

see that the leader is distributed across the spectrum of nodes taking part in the algorithm. This

means that any given node is equally likely to be the leader and our protocol maintains uniform

distribution of leader elected for a given amount of election terms.

The leader distribution on scatter plots in Figure 5.6 and 5.7 shows that there are many instances

of the same node elected as a leader more than once. However, the plots show a distribution where

there is not regular pattern over 200 iterations. This clearly demonstrates that our approach is

successful in choosing leader uniformly at random.

5.2.3 Failure Scenarios

The test-bed was designed considering various failure scenarios. When the leader fails after

being elected, the protocol follows a policy of no-service for that election term. This could be

avoided by leader periodically sending "heart-beat" or "alive" messages to all other nodes in the

network. If nodes do not receive the messages for certain amount of time during the election term,

they trigger a new election. However, this is additional complexity that is not considered in our

protocol.

We have considered different failure scenarios: node failures during protocol phases, and

leader failures. When the node fails in between the protocol phases, other nodes would imme-

diately detect the faulty node and vote to exclude from the protocol. When a node fails before,

after the election or within the election term, the other honest nodes would detect the faulty node

in the next election term and place it in the faulty list. The system administrator manually fixes

the nodes and adds it back to the network. For leader failure scenarios, when the leader fails dur-

ing the election term, the server node is put in faulty node in the next election and other nodes

continue to choose the next leader. If the leader node fails right after the CONFIRM phase, the

service is down for one election term and the faulty node is voted out in the next election term.

41



Moreover, any deviations in the values shared by nodes during the phases of the protocol is also

immediately detected by other nodes and excluded from the protocol by adding it to the faulty list.

Message constructs and signature verification is tightly coupled with the fault detector and any

deviations would lead the node being added to the faulty list. This is how we have designed and

tested different failure scenarios in our protocol.
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Chapter 6

General Solution for Large Enterprise Networks

In the previous chapter, we explained the leader election protocol and its constructs. The

protocol solves the problem of selecting a leader node after reaching a consensus by all the nodes

taking part in the protocol. However, as the number of nodes taking part in the election protocol

increases, the communication complexity increases as well as the protocol takes longer time to

elect a leader (refer to section 6.5.3). Moreover, a node is chosen within a fixed set of node servers

communicating and coordinating over a network that is exposed to the outside world. An attacker

could patiently unveil all the nodes taking part in the protocol and plan the attack by enumerating

the nodes one by one. This can lead to a total compromise of the system.

To resolve this issue, we describe another protocol that chooses a subset of nodes that are

allowed to take part in the leader election protocol. Using the concept of Random Walk [59], each

selected node in the network is delegated a task of choosing another node uniformly at random to

include in the subset. This process goes on until the predefined number of node servers are added

in a subset. All the nodes in the subset wait until the current leader’s election term is completed to

start the next leader election protocol. We name this protocol as Random Walk Protocol.

In this chapter, we describe the random walk protocol and its constructs in detail. In the next

chapter we discuss the results and the performance analysis of random walk protocol.

6.1 Technical Challenges and Solutions

The first challenge is to choose a subset of nodes M , such that the nodes are selected uniformly

at random in the distributed network. A central authority cannot be used to choose the subset

because of its vulnerability to manipulation and attacks. To resolve this, the nodes are delegated

the act of choosing the next node in the subset and this serialized process needs to start from a

verifiable source to avoid attackers manipulating the subset to win the election. Using the public

parameters, one-way hash used in the leader election protocol, and modulo arithmetic to choose the
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next node, we are able to resolve this challenge. Once the winner or "Leader" node is confirmed

by the election protocol, it would start the process of random walk by choosing the first node in the

subset. The leader would then delegate the random walk process to the chosen node T1 to continue

this process. The node T1 chooses the next node T2 in the subset and delegates the random walk

process. This act of delegation continues until the total number of m nodes are present in the

subset. Here, the leader is a verifiable source to start the random walk process because the leader

is known to all other nodes during the end of the election protocol. This way we could solve the

challenge of choosing the subset of nodes uniformly at random in a distributed fashion.

The second challenge is to make sure that subset does not include invalid nodes, i.e., without

being chosen, the nodes do not include themselves to be part of the election process. To deal with

is, we have designed a verifiable delegated message signature scheme that helps traced back to the

origin of random walk process. Every node that takes part in this process would publish all the

public parameters used to choose the next node in the subset, include the delegating message and

its signature from the previous node that delegated this process, sign the encapsulated message and

send it to next chosen node as the part of delegation to continue the random walk. The next node

receiving this message would first, verify the signature, public parameters and then continue with

the random walk process until the total number of m nodes are present in the subset. This way the

source of the delegation can be verified and assures that an invalid node cannot be included in the

subset.

The third challenge is to make sure that the protocol converges within the election term of the

leader. If the subset is not created within the election term, this would break in the chain leading

to denial of service. Also if the node is faulty or down at the time of random walk delegation,

the delegating node needs to take some countermeasures to continue the random walk process.

To make sure the algorithm converges with the election term, we introduced timeouts to monitor

the random walk delegation process. Once the node, delegates the random walk process to the

next chosen node, the delegating node would wait for a predefined time for an acknowledgement

message from the delegated node. If the delegating node does not receive the acknowledgement
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message within the predefined time, the node would re-run the random walk process to choose

another node as the next delegated node to continue the random walk process. The fourth and the

final challenge is not allow faulty and malicious nodes to be part of the subset. This is achieved by

the fault detector mechanism used in the leader election protocol. During the random walk process,

a node needs to make sure that the next chosen nodes is not included in the fault list. Moreover, all

the observations made during the random walk process is shared with the other nodes during the

leader election protocol to decide if the nodes are faulty and vote to add them to the fault list.

6.2 Threat Model

The threat model is similar to the model defined for the leader election protocol. We assume

that the skilled adversary is able to enumerate the server vulnerabilities and launch the attack. An

attacker would require a certain amount of time to explore the vulnerabilities in the server. Also

the attacker would require time to device the attack and launch them.

We are also assuming that the network consists of a minimum of 4 or nodes according to the

byzantine consensus protocol [10]. But the assumption here is slightly different than the one made

for the leader election protocol. In the leader election protocol described in chapter 4, we assume

that for a network with n nodes, the protocol can handle a maximum of k = ⌊n−1
3
⌋ faulty nodes.

In this case, the total number of nodes n is fixed by the system administrator and resiliency k is

evaluated using the formula k = ⌊n−1
3
⌋. Here, we can say that the leader election protocol is

resilient to k faults.

Suppose the system administrator builds a system by fixing the resiliency value k. If a system

is designed of be resilient against k faults, then a minimum of n = 3k+1 nodes need to participate

in the algorithm. For example, if the system is required to withstand k = 33 faulty nodes, there

must be n = 3 · 33 + 1 = 100 nodes participating in the protocol.

Hence, the main assumption for the random walk protocol is as follows: For a network of n

nodes, the number of malicious nodes in the network is always less than or equal to k, where k is

the resiliency value of the system with n nodes fixed by the system administrator. With this, the
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minimum number of nodes required in the subset M is given by m = 3k+1, where m < n. Here,

we are choosing the minimum number of nodes required in the subset M to withstand up to k

faulty or malicious nodes. This makes sure that for all election terms, the leader election protocol

can withstand up to k faulty or malicious nodes in the subset M .

For example, let the total number of nodes n in the network be 100. If the system administrator

decides the resiliency value k to be 10, the minimum number of nodes in the subset to be chosen

is m = 3 · 10 + 1 = 31 nodes, which is less than n = 100 nodes in the network.

Furthermore, a skilled adversary has prior knowledge on the history of random walk messages

and is able to brute-force them by controlling one or more nodes in the network, at the most k

nodes in the network. The attackers intent is to somehow include the malicious node in the subset

so that the malicious node can get chosen as a leader or to disrupt the system operation by stalling

the random walk protocol.

6.3 Public Parameters

The main goal of this protocol is to choose a subset of M servers: {T1, T2, · · · , Tm} ⊂ N ,

where {S1, S2, · · · , Sn} are the set of N heterogeneous servers. Like in the previous protocol,

every node server taking part in the algorithm is initialized with two public parameters, 1) Let P

denote a large public value used in a particular election round i, 2) n be the total number of node

servers in the network taking part in the algorithm.

In the random walk protocol, we are going to make use of the large public value P . If a node

participates in the election round, P is updated after the round, say P i. If this node is chosen again

to take part in the leader election protocol, this value P i is used in this protocol as one of the inputs

to the one way hash function H along with the random value chosen by the node. After the hash

operation is completed, the value of P i is incremented as follows: P i+1 = P i + 1. The nodes are

allowed to use older values of P i and these values are shared as a part of the delegated message

verification scheme. Just like in the leader election protocol, a threshold is maintained beyond
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which a node with older P i value is treated as faulty. We use the notation P i
k represents the local

value of P in Tk node for ith round, where Tk, ∀1 ≤ k ≤ m in the subset M .

The resiliency of the system k is fixed by the system administrator. With this value, the mini-

mum number of nodes in the subset M is calculated using the formula m = 3k+1, where m < n,

the total nodes in the network. Higher the resiliency value k, more the minimum number of nodes

required in the subset to take part in the leader election algorithm.

6.4 Walk Function

This function is responsible to choose the next node added to the subset of m servers: {T1, T2,

· · · , Tm} ⊂ N . The function is only called by the delegated node Tk, ∀1 ≤ k ≤ m once the

delegation message is received by the previous node Tk−1. This function uses a pseudo-random

one-way hash function H similar to that of the hash commitment scheme in the previous chapter.

The property of being extremely difficult to reverse the hash function, lesser collusion with higher

bit-order hash function and less computation time helps the protocol converge faster. This is an

important security feature against attackers who are trying to break the protocol. We are using

a secure one-way hash function H such as SHA- 256, to calculate the next chosen node Tk+1,

∀1 ≤ k ≤ m using the random value V . The random value V is different than the random valueR

used in the leader election protocol.

Let assume {S1, S2, · · · , Sn} are the set of n heterogeneous servers that are taking part in

the leader election algorithm. The random walk protocol has to choose a subset of m servers:

{T1, T2, · · · , Tm} ⊂ n. Let H : {0, 1}∗ → {0, 1}t denote a strong pseudo-random one-way hash

function that takes any length input and generates a fixed t-bit output. Each delegated node in the

subset Tk, ∀1 ≤ k ≤ m calculates the One-way Hash Walk Function to choose the next node

Tk+1 such that,

Tk+1 = H(Vk, P
i
k) mod n+ 1
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The Tk+1 result from the walk function also need to conform to all the following conditions.

• Tk+1 result is not same as the current node identifier Tk.

• Tk+1 result is not same as the current Leader L.

• Tk+1 result is not previously added to the subset M to avoid duplication, i.e., {Tk+1} 6∈M

• Tk+1 result is not in the faulty list of the Leader Election protocol.

If any of the above conditions fail, the node updates the public value P , generates another

random value V and calculates a new Tk+1 using the walk function H. In the second condition, the

protocol does not allow the leader to be re-elected in the next consecutive election term. This is

because the leader of the current term does not allow itself or other chosen node to add the current

leader L to the subset of the next election term. This avoids one node winning two consecutive

election terms.

Each delegated node that chooses the next node Tk+1 would transmit the delegation message

with random value Vk and public value P i
k used in the walk function for verification. The chosen

node would then verify the origin of the message using the delegated message signature scheme

and continue with random walk protocol until m required number of nodes are added to the subset.

6.5 Random Walk Protocol

6.5.1 Overview

The goal of this protocol is to choose a verifiable subset of nodes in a distributed network

using random walk. This subset of nodes then take part in the leader election protocol to choose

a leader that hosts the service for that election term. The extra step of choosing a subset of nodes

is performed in order to increase the unpredictability of where the service is hosted and reduce the

scaling problems and server enumeration.

During the start of the service hosting, the first leader is provided by the system configuration.

The leader hosts the service and then starts the random walk process. Lets consider a node with
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1 6WALK1 
{6} 

L 

Figure 6.1: Random Walk First Message

identification number 1 to be the leader configured that starts the random walk protocol. Lets

assume that the total number of nodes in the network n is 10. Lets say that the resiliency k

is chosen as 1 for this example. Hence the number of nodes in the subset M is calculated as

m = 3 · 1 + 1 = 4. Node 1 computes the next chosen node T1 using the walk function explained

in section 6.4 and sends the WALK1 message to node 6 as shown in the figure 6.1.

1 6WALK1 
{6} 

L 

4 {6,4} 
WALK2 

ACK2 

Figure 6.2: Random Walk Second Message and Acknowledgment

Once the node 6 receives the WALK1 message, the node would first verify the source of the

message and authenticity of the WALK1 delegation message. Once the verification process is

completed, the node would choose the next node T2 using the walk function. For example, the

next node chosen is 4. The subset with chosen identification numbers and required information is

packed in the second WALK2 message and sent to node 4 to continue the process. As a part of

acknowledgement to the delegating node 1, the node creates an ACK2 message with the chosen

node along with other information and send it to node 1 as show in the figure 6.2.

1 6WALK1 
{6} 

L 

4 

ACK2 

8 {6,4} 
WALK2 

{6,4,8} 
WALK3 

ACK3 

Figure 6.3: Random Walk Third Message and Acknowledgment
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1 6WALK1 
{6} 
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ACK2 

8 2 {6,4} 
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{6,4,8} 
WALK3 

{6,4,8,2} 
WALK4 

ACK4 ACK3 

Figure 6.4: Random Walk Fourth Message and Acknowledgment

Node 4 after receiving the WALK2 message would repeat the process of verification, chooses

the next node 8 and sends the WALK3 delegation message. It would also send the ACK3 message

to node 6 as shown in the figure 6.3. Node 8 performs the same operation and chooses the next

node 2 as shown in the figure 6.4.

1 6WALK1 
{6} 

L 

4 

ACK2 

8 2 {6,4} 
WALK2 

{6,4,8} 
WALK3 

{6,4,8,2} 
WALK4 

ACK4 FINISH ACK3 

{6,4,8,2} 
FINISH 

Figure 6.5: Finalization and Broadcast

When node 2 receives the WALK4 message, it validates that the random walk process com-

pleted the process of choosing m = 4 nodes {6, 4, 8, 2} in the subset M . This node would broad-

cast a FINISH message containing the subset to all other nodes in the network as shown in the

figure 6.5. All the other nodes in the network would verify the message and the subset.

Now that the subset is chosen and broadcasted to the rest of the network, every node in the

subset prepares to start the election once the leader node completes its term. The leader election

protocol on the subset would choose the next leader for election term. That leader would then start

the random walk protocol to choose the next subset.

Now that the leader election protocol is executed only on the subset, all the protocol message

exchanges occur within the nodes of the subset. During the Fault Detection phase of the protocol
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explained in chapter 4 section 4.5.5, the suspected nodes are voted out and added to the fault list.

This fault list is broadcasted to all the nodes in the network. This is to maintain the uniformity

of the fault list across all nodes in the network and help nodes exclude faulty nodes during the

random walk protocol.

6.5.2 Delegated Message Signature Scheme

The scheme defines a message format that the delegating node uses to create the WALK

and ACK message. This message format encapsulates the delegation message from the previous

delegating node as proof of delegation. This scheme is used by every delegated node to verify

the source, validate the walk function result shared by the delegating node as well as other nodes

chosen in the subset. In this section, we are going to talk about this scheme in detail.

There are 3 main messages in this protocol: WALK,ACK and FINISH . We use T to denote

the node-identifier field, P to denote the public-parameter field, and V to denote the random value

field. We use σTk
to denote the private-key signature of a message by the sending node Tk where k

means "current sending node".

The WALK message parameter has 3 fields, {T,V , P}. The message from the previous del-

egating node is encapsulated with the message sent to the next delegated node. Lets consider the

overview to explain the scheme, figure 6.1 shows that the leader node 1 selects node 6 and adds to

subset M . It then sends the WALK1 message to node 6. The message format is as follows.

WALK1 = {TL WALK {T1,VTL
, P 1

TL
}}σTL

where in this case, TL is the leader node 1, T1 is node 6 which is the result of the walk function

T1 = H(VTL
, P 1

TL
) mod n + 1. Here, n is the total number of nodes in the network, VTL

is the

random value chosen by leader node 1, and P 1
TL

is the public value used by the leader node 1 for

the 1st election term. After the hash operation is completed, the value of P 2
TL

is incremented as

follows: P 2
TL

= P 1
TL

+ 1.
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Once the node 6 receives the WALK1 message, it first verifies the signature and the walk

function result. Once verified, it would then choose a random value VT1
and calculate the next

chosen node T2 = H(VT1
, P 1

T1
) mod n+ 1. It would then create the following WALK2 message

and send the message to node 4 as shown in the figure 6.2.

WALK2 = {T1 WALK {T1, T2,VT1
, P 1

T1
}[WALK1]}σT1

Here, we can see that the delegating WALK1 message received from leader node 1 is encapsulated

within [].

The ACK message is similar to that of walk message except the encapsulation of delegating

WALK message received from leader node 1.

ACK2 = {T1 ACK {T1, T2,VT1
, P 1

T1
}}σT1

Node 4 receives the WALK2 messages, verifies the source and walk function result, creates

the following WALK3 message as shown below and sends it to the next chosen node 8. Also, it

creates the ACK3 message as shown below and sends it as an acknowledgement to its delegating

node 6 as shown in the figure 6.3.

WALK3 = {T2 WALK {T1, T2, T3,VT2
, P 1

T2
}[WALK2]}σT2

ACK3 = {T2 ACK {T1, T2, T3,VT2
, P 1

T2
}}σT2

Node 8 performs the same operation, creates the following messages and sends WALK4 mes-

sage to node 2 and ACK4 message to node 4 as shown in the figure 6.4. The message formats are

as follows.

WALK4 = {T3 WALK {T1, T2, T3, T4,VT3
, P 1

T3
}[WALK3]}σT3

ACK4 = {T3 ACK {T1, T2, T3, T4,VT3
, P 1

T3
}}σT3
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As the random walk process completes, the last chosen node 2, sends the FINISH message

to all the nodes in the network. With the encapsulation strategy mentioned above, the FINISH

message would contain all the WALK messages for verification. This delegated message signa-

ture scheme is able to verify all the nodes chosen in the subset M and will lead the verification to

the starting point, i.e., the leader. Following is the message format for FINISH message.

FINISH = {T4 FINISH [{T3 WALK {T1, T2, T3, T4,VT3
, P 1

T3
}

[{T2 WALK {T1, T2, T3,VT2
, P 1

T2
}[WALK2]}σT2

]}σT3
]}σT4

or

FINISH = {T4 FINISH [WALK4]}σT4

In general, the message formats for WALK,ACK and FINISH are as follows.

WALKk = {Tk−1 WALK {T1, T2 · · ·Tk,VTk−1
, P i

Tk−1
}[WALKk−1]}σTk−1

WALKk−1 = {Tk−2 WALK {T1, T2 · · ·Tk−1,VTk−2
, P i

Tk−2
}[WALKk−2]}σTk−2

WALKk−2 = {Tk−3 WALK {T1, T2 · · ·Tk−2,VTk−3
, P i

Tk−3
}[WALKk−3]}σTk−3

WALK2 = {T1 WALK {T1, T2,VT1
, P 1

T1
}[WALK1]}σT1

WALK1 = {TL WALK {T1,VTL
, P i

TL
}}σTL

ACKk = {Tk−1 ACK {T1, T2 · · ·Tk,VTk−1
, P i

Tk−1
}}σTk−1

ACKk−1 = {Tk−2 ACK {T1, T2 · · ·Tk−1,VTk−2
, P i

Tk−2
}}σTk−2

ACKk−2 = {Tk−3 ACK {T1, T2 · · ·Tk−2,VTk−3
, P i

Tk−3
}}σTk−3

ACK2 = {T1 ACK {T1, T2,VT1
, P i

T1
}}σT1
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FINISH = {Tk FINISH [WALKk]}σTk

ACK1 message does not exist because the Leader node is the one that starts the random walk

protocol and delegates the WALK1 message to T1 node. Algorithm 5 is the pseudo code for

verifying each chosen node in the WALK message.

Algorithm 5: Delegated Message Signature Verification Algorithm

Input: W = {W1, · · · ,Wk} where Wj = {Tj,VTj−1
, P i

Tj−1
} after processing the

encapsulated message

Output: WALK message V ALID or NOT V ALID

Let V alid = {φ}
for Wj ∈ {1, ..., k} do

if [Tj == H(VTj−1
, P i

Tj−1
}) mod n+ 1] then

V alid = V alid
⋃

Tj

end if

end for

6.5.3 Communication Complexity Analysis

From the leader election protocol described in chapter 4, the communication complexity is

given by the number of messages exchanged in the network to elect a leader for each election term.

Every node sends and receives n messages in each round of the protocol. Hence, there are n2

message exchanges in each round. There are 4 rounds described in the algorithm. Therefore, The

value is calculated as 4n2, where n is the total number of nodes in the network. As the number of

nodes participating in the algorithm increases, the number of messages exchanged also increases

exponentially. From the results of the leader election protocol describes in chapter 5, the time

required to elect a leader also increases linearly with respect to the number of nodes participating

in the protocol in section 5.2.1.
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Considering the random walk protocol choosing a subset of m nodes from a network of n

nodes, we show that the communication complexity is minimized as compared to all n nodes

participating in the leader election protocol.

We know that number of nodes in the subset m is given by

m = 3k + 1,m < n,where k is fixed

Number of message exchanges by running the leader election protocol on the subset M with

m nodes is given by

Number of Message Exchanges = 4m2

Random Walk protocol includes sequential messages exchanges between the chosen and the fi-

nal broadcast. There are mWALK messages, (m−1)ACK messages and n FINISH messages

exchanged during the random walk protocol.

Hence, the total message exchange is given by

Total number of Message Exchanges = 4m2 + (2m− 1) + n

The total message exchanges by choosing a subset and executing the leader election protocol

within that subset is always less than all the nodes in the network participating in the election

protocol. Lets illustrate this with an example.

Lets say n = 100, if all nodes participate in the election protocol, the number of messages

exchanges is given by 4 · 1002 = 40000

If k = 10, m can be calculated as 3 · 10 + 1 = 31. The total number of messages exchanges

by choosing the subset is 4 · 312 + 2 · 31 − 1 + 100 = 4005, which is ≈ 10% of the number of

messages exchanges when all the nodes in the network participate in the election protocol.
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6.5.4 Time-Outs

In this protocol, time-out value: Z is used to make sure that the delegated node continues the

random walk protocol by waiting for the ACK message. This time-out value is common to all

the nodes in the network and provided using the system configuration. It is chosen by measuring

the time required for the nodes to perform local computations, prepare the messages with results

and broadcast them to the rest of the network. In our protocol, we choose the time-outs within a

∆-fraction of the estimated round-trip network delay, RTDelay, such that

Zp = (RTDelay +∆ ∗RTDelay + f(n)) where 0 < ∆ ≤ 1

Also, f is a network dependent time function that accounts for the size of the network and the

type of broadcast capability of the network.

6.5.5 Fault Detection

The fault detection in this algorithm works in conjunction with the fault detection phase of

the leader election algorithm. When a delegating node does not receive an ACK message from

the delegated node, the node would re-run the walk function and update the public value. A new

WALK message is created and sent the new delegated node to continue the random walk process.

The faulty node is added to the suspected list and the information is shared with the network

during the fault detection phase. The node that is added to suspected node list from the random

walk protocol is not erased after each election term. When majority of the nodes in the network

vote to exclude the faulty node, the node is then put to a faulty node list and excluded from both

the protocols.

6.6 Security Analysis

In this section, we are going to discuss the attack scenarios described the threat model and

talk about the security of our protocol. For this analysis, we consider an Adaptive Byzantine
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Adversary who has the ability to modify the inputs to the protocol by (partially) controlling a

threshold number of servers, not necessarily the same, in any given session.

6.6.1 Adaptive Byzantine Adversary

The definition of an adaptive adversary A in the context of our protocol is as follows:

Definition 1: An adaptive Byzantine adversary A is a Byzantine adversary who has access to all

the inputs and results of the protocol for a polynomial q number of random walk subset sessions,

i.e., the attacker knows all the public values, random values and corresponding node values in

the subset. The adversary is also in control of some of the inputs, not more than j = ⌊m−1
3
⌋,

which is required for a safe quorum to be achieved. We denote the adversary storage by: A =

{A1, A2, · · · , Aq} where Ai = {(T
i
1,VT i

L
, P i

TL
), · · · , (T i

1. · · · , T
i
k,V

i
Tk−1

, P i
Tk−1

)} denotes the ith

protocol session’s input-output pairs.

With this, we analyze the security threats in random walk.

Lemma 1 (Node chosen are always random). Assuming the presence of a strong pseudo-random

function, our protocol ensures that the next node chosen Tk, ∀1 ≤ k ≤ m ⊂ N and always chosen

uniformly at random.

Proof. We show that our protocol results in random nodes chosen nodes, history independent

and adversary advantage does not increase based on the history of the interactions and the strategy

used.

Out protocol uses a pseudo-random hash function H takes in 2 inputs (V , P ), where V is a

random number chosen by the delegating node and P is the large public value, i.e., updated after

every hash function execution. The property of the hash function i.e., given a set of (Vk, P
i
k)

input pairs for a node Sk for ith election round, the output Tk is independent of all past rounds.

After each Hash function execution, the value of P is incremented and V is randomly chosen with

bigger seed. If the adversary controls or predicts the V space, then the adversary does not gain any

additional advantage from knowing the output history of the hash function H because the honest
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majority increment P after every hash function execution and V is randomly chosen before the

hash execution.

Lemma 2 (Unauthorized node do not participate in the election or become part of the random walk

subset). All the nodes included in subset of M node: {T1, T2, · · · , Tm} ⊂ N are publicly verifiable

and unauthorized node cannot participate or take part in the election protocol.

Proof. This is ensured by the delegated message signature scheme. Every delegating node pub-

lishes the (V , P ) used in the hash function H that chooses the next node T in the subset. The

delegating node would also append the WALK message received from the previous delegating

node as a proof of verification. The last chosen node in the subset would broadcast a FINISH

message to all the nodes in the network with all the messages encapsulated so that all nodes can

publicly verify each node that is added to the subset. If a malicious node replays this message, the

updated P values would rule out the chance of malicious node being verified as a chosen node.

Moreover, the random subset is started by the leader of the previous election. At any given mo-

ment, the random walk messages can be traced back to the leader of the previous election term and

the leader is known by all the nodes in the network. Hence, there is no way that an unauthorized

node can participate in the election or become a part of random walk subset.

Lemma 3 (Random walk protocol continuity). The random walk protocol ensures that the protocol

does not stall due to node failures and makes sure that a subset is chosen for the next election round.

Proof. Every delegating node starts maintains a timer with a time-out value: Z, i.e., used to

make sure that the delegated node continues the random walk protocol by waiting for the ACK

message. Once the delegating node Tk−1 sends the WALK message to the delegated node Tk, the

delegated node verifies the source of the WALK message, chooses another node Tk+1 using the

walk function and sends the WALK message to Tk+1. Also, the node Tk sends an ACK with

the chosen node and related public parameters back to the delegating node Tk−1. This needs to

occur within the time-out value Z. If the delegated node Tk fails to send the ACK message within

the time-out value Z, Tk−1 rolls back and chooses another node by updating the public value P
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and choosing another random value V . This ensures that the random walk protocol continues and

finalizes the subset.

Lemma 4 (Random walk protocol not affected by byzantine faults). The protocol is not affected

by the byzantine faults detected by the leader election protocol.

Proof. The random walk protocol used the fault detectors list used in the leader election protocol.

When the delegating node chooses the next node in the subset, it would check if the the node is

present in the faulty node list. If yes, it would update the P value and re-run the walk function

until a valid node is chosen. If a chosen node is down when the WALK message is sent, the node

is added to the suspected list and in the information is shared during the SUSPECT phase of the

leader election protocol.
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Chapter 7

Large Enterprise Networks - Evaluations and

Discussion

7.1 Experimental Setup

The network implemented to test, measure and validate the random walk protocol is similar to

the one used for testing the leader election protocol. A network of fifty HP-Z440-XeonE5-1650v4

servers, running Fedora 26, each with 8 cores, 3.6 GHz clock, and 16 GB RAM, communicating

over a LAN network with 1 Gbps capacity was used to test the random walk protocol. All nodes

were equipped with self signed public-key private-key pairs and used the Elliptic-Curve DSA sig-

nature algorithm with 256-bit keys. The protocol communication used blocking server-client TCP

communication design as the broadcast capabilities of the LAN are not utilized due to departmen-

tal restrictions. We used 20 nodes network with 3, 4, 5 and 6 node subset selection configuration

and 50 node network with 5, 10, 15 and 20 node subset selection configuration over 50 to 200 trials.

Every subset selected for each election were recorded along with the time required to choose the

subset as well as the computation time of the walk function.

7.2 Performance Analysis

7.2.1 Walk Function Computation Time

The minimum computation times to choose the random nodes are shown in the figure 7.1

and 7.2. These plots measure the walk function explained in the previous chapter. The minimum

computation time to choose a random node in each delegated node is collected and added as shown

in the figure 7.1 for 20 and 50 node network. This plot shows that as the number of nodes in

the subset increases, the time required for the walk function increases linearly. Moreover, the
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walk function calculates the next node in microseconds. This proves the walk function has little

overhead on the total time required to choose a random subset.
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Figure 7.1: Minimum computation time to choose random nodes

Figure 7.2 shows the average time the network nodes require to choose one random node per

election term for 50 and 100 iterations. This is captured by averaging all the walk function com-

putation time from the nodes in the subset. From these plots we can conclude that average compu-

tation time to choose a random node is within the range of 40 microseconds and 80 microseconds,

irrespective of the number of nodes in the network and percentage of total nodes in the subset.
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Figure 7.2: Average Time to choose a random node over (a) 50 iterations (b) 100 iterations
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7.2.2 Total Subset Finalization Time

The total subset finalization time are shown in the figure 7.3 and 7.4 . These plots show the total

time required by the nodes in the network to finalize the subset that take part in the next election

term. This value is critical with respect to the election term period because the subset needs to

be finalized before the election term ends. The time required to finalize a subset is calculated

by adding the time required to execute the walk function, random walk message creation with

signature and verification of the acknowledge message from all the delegated nodes in each term.

Figure 7.3 shows the minimum time required to choose a subset for 20 and 50 node network. There

is a slight exponential relationship between the number of nodes in the subset to the time required

to finalize the subset.
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Figure 7.3: Minimum Subset Finalization time

Figure 7.4 shows the total time the network nodes require to finalize the subset per election

term for 50 and 100 iterations. From these plots we can conclude that the protocol requires about
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Figure 7.4: Subset finalization time over (a)50 iterations (b)100 iterations
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20 to 25 milliseconds per node added to the subset. This performance proves that the protocol can

scale up to networks with higher number of nodes and higher number of subset configuration.

7.2.3 Node Distribution in a Subset

The figure 7.5 and 7.6 shows the number of times a node is chosen in to the subset for next

election term over 200 iterations. Figure 7.5 shows the number of times a node is added to the

subset in 20 node network with 4 node subset capacity over 200 iterations. Figure 7.5(a) and figure

7.6(b) shows the number of times a node is added to the subset in 50 node network with 15 and 20

node subset capacity over 200 iterations respectively.
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Figure 7.5: Node Distribution in a subset over 200 iterations for 20 total nodes with 4 node subset capacity

For a 20 node network with 4 node subset capacity, the ideal probability of a node chosen in the

subset over 200 iterations is 40
(20×0.2)×200

= 0.05. In figure 7.5 (a), we can see that the probabilities

are 0.045, 0.0425, 0.055, 0.04875, 0.06, 0.0575, 0.04, 0.04, 0.065, 0.06375, 0.0475, 0.0575, 0.04375,

0.0475, 0.04125, 0.04625, 0.04875, 0.0525, 0.05 and 0.0475. These values are very close to the
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Figure 7.6: Distribution of a Node in a subset over 200 iterations (a) 50 total nodes with 15 node subset

capacity (b) 50 total nodes with 20 node subset capacity
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ideal probability of 0.05. This proves that all the nodes are equally likely to be chosen into the

subset for participating in the next election.

7.2.4 Leader Distribution

The figure 7.7 and 7.8 shows the number of times a node is chosen as leader of over 200

iterations. Figure 7.7 shows the leader distribution for a 20 node network with 4 node subset

capacity over 200 iterations. Figure 7.8 (a) and figure 7.8 (b) shows the leader distribution for a 50

node network with 15 and 20 subset capacity over 200 iterations respectively.
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Figure 7.7: Leader Distribution of a Node over 200 iterations over 20 total nodes with 4 node subset capacity
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Figure 7.8: Leader Distribution of a Node over 200 iterations (a) 50 total nodes with 15 node subset capacity

(b) 50 total nodes with 20 node subset capacity
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(a) 20 node Network without Random Walk Protocol.
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(b) 20 node Network with Random Walk Protocol 30% subset capacity

Figure 7.9: Leader Distribution of a Node over 200 iterations for a 20 node network (a) without Random Walk Protocol (b) with Random Walk

Protocol choosing 15 node subset
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(a) 50 node Network without Random Walk Protocol.
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(b) 50 node Network with Random Walk Protocol 40% subset capacity

Figure 7.10: Leader Distribution of a Node over 200 iterations for a 50 node network (a) without Random Walk Protocol (b) with Random Walk

Protocol choosing 20 node subset
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For a 20 node network with 4 node subset capacity, the ideal probability of a node chosen as a

leader is 1
20

= 0.05. In figure 7.7, we can see that the probabilities are 0.055, 0.055, 0.04, 0.055,

0.045, 0.04, 0.03, 0.05, 0.06, 0.05, 0.055, 0.05, 0.05, 0.07, 0.055, 0.05, 0.06, 0.06, 0.04 and 0.03.

These values are very close to the ideal probability of 0.05. Hence, we can say that the random

walk maintains the uniform leader distribution of the Leader Election protocol for a given network.

Moreover, the random walk protocol, does not allow the leader to be re-elected in the next consec-

utive election term because the leader of the current term does not allow itself to be added to the

subset of the next election term.

7.2.5 Average Computation Time

The computation time measured is the time required by a delegated node to create the random

walk message with signature and verification of acknowledge message for one election term. The

minimum computation time per node is shown in the figure 7.11. All the computation times re-

quired by the nodes in the subset are averaged over 50 iterations and 100 iterations are shown the

figure 7.12 (a) and 7.12 (b).

Figure 7.11 shows the minimum computation time per node for 20 and 50 node network. There

is linear relationship between the minimum computation time to the time required to finalize the

subset. Figure 7.12 (a) and 7.12 (b) shows the average computation time required per node over 50

and 100 iterations for 20 and 50 node network. From these plots we can conclude that the protocol

requires about 1 to 2 milliseconds computation time per node in the subset. This performance

proves that the protocol can scale up to higher node networks with lesser computation overhead.

7.2.6 Failure Scenarios

The random walk protocol implementation was designed considering various failure scenarios.

The different failure scenarios we considered are: delegated node failures during the random

walk protocol and leader failures. When the delegated node fails in between the random walk

protocol, delegating node would immediately detect the faulty node and vote to exclude from the

protocol. The delegating node would update the public parameters and choose another node to
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Figure 7.11: (a) Minimum Computation Time per Node

delegate the random walk. If the delegated node fails to send an acknowledgment message before

the timeout, the delegating node would update the public parameters and continue the random

walk by choosing another node. All the nodes in the system would accept the subset with updated

public parameters and continue with the leader election protocol. If the leader node fails to start the

random walk process, the previous leader would start the random walk process to continue leader

election protocol and maintain the aliveness of the service. Moreover, any deviations in the values

shared by nodes during the phases of the protocol is also immediately detected by other nodes

and excluded from the protocol by adding it to the faulty list. Message constructs and signature

verification is tightly coupled with the fault detector and any deviations would lead the node being

added to the faulty list. This is how we have designed and tested different failure scenarios in our

protocol.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this work, we addressed the problem of protecting critical services from attackers who use

system vulnerabilities using the concept of moving target defense. First we sketched a moving tar-

get defense architecture aiming to defend an access control reference monitor. This design allows

the access control service to be periodically and randomly moved to the next point of service in

the distributed network. Using one-way hash commitment values and choosing a random subset of

nodes that participate in the election, we have described an efficient moving target defense algo-

rithm that chooses the next point of service with uniform randomness. Moving the point of service

ensures that the attack surface is changed periodically and adversary effort of service vulnerability

enumeration is wasted on the current server. The advantages of one-way hash functions provide

security advantages to both leader election protocol such that the attacker has no better advantage

of winning the election than any honest node in the network. The one-way hash functions used in

random walk protocol provides quick turnaround time in honestly building the subset that take part

in the election protocol.

We have implemented a prototype test bed of fifty servers for an access control monitor. The

leader election protocol shows that the next leader can be chosen within a few hundred milliseconds

with the consensus of all the nodes taking part in the algorithm. The random walk protocol is able

to choose a subset of m servers within (20 − 25) × m milliseconds which lets the election term

of 120 seconds adjustable according to the security standards set by the system administrator. Our

extensive experimental results show that the average probability of a node being the winner of an

election is close to the ideal probability.
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8.2 Limitations

One of the limitations of the leader election protocol is that, when the leader stops providing

the critical service during the election term, this fault is not detected by other nodes in network.

Hence, the service is down for at most one election term and the clients are not able to access the

service.

Our protocol uses fast hashing algorithms like SHA256. With the advancements in computing

power, it is shown that fast hashing algorithms are vulnerable to brute force attacks [60]. The

attackers are able to break the SHA256 algorithm faster than before. Breaking the hash function

can lead to a compromise in our system. To avoid this, slower hashing functions like bcrypt hashing

algorithm [61] can be used in our protocols. Slower hashing algorithm does not promise a secure

protocol. It helps in slowing down the brute force attacks as it takes time break the algorithm.

8.3 Future Work

Our future work is to consider the different attack strategies possible and expand the protocol

to work for larger networks. Another direction is to consider the churn in the network and adapt

the design of both the protocols to handle churn in the distributed network seamlessly. Addition of

heartbeat messages or "alive" messages to make sure the leader is up and providing service to the

clients is another approach being considered to seamlessly provide service without any down time.

Finally, we would like to explore the usage of the protocol for realistic workloads on different kinds

of services besides access control and explore the service specific challenges in such deployments.
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