112,816 research outputs found

    Actin cytoskeleton-dependent regulation of corticotropin-releasing factor receptor heteromers

    Get PDF
    Stress responses are highly nuanced and variable, but how this diversity is achieved by modulating receptor function is largely unknown. Corticotropin-releasing factor receptors (CRFRs), class B G protein–coupled receptors, are pivotal in mediating stress responses. Here we show that the two known CRFRs interact to form heteromeric complexes in HEK293 cells coexpressing both CRFRs and in vivo in mouse pancreas. Coimmunoprecipitation and mass spectrometry confirmed the presence of both CRF1R and CRF2βR, along with actin in these heteromeric complexes. Inhibition of actin filament polymerization prevented the transport of CRF2βR to the cell surface but had no effect on CRF1R. Transport of CRF1R when coexpressed with CRF2βR became actin dependent. Simultaneous stimulation of cells coexpressing CRF1R+CRF2βR with their respective high-affinity agonists, CRF+urocortin2, resulted in approximately twofold increases in peak Ca2+responses, whereas stimulation with urocortin1 that binds both receptors with 10-fold higher affinity did not. The ability of CRFRs to form heteromeric complexes in association with regulatory proteins is one mechanism to achieve diverse and nuanced function

    The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity

    Get PDF
    The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus

    A pharmacological cocktail for arresting actin dynamics in living cells.

    Get PDF
    The actin cytoskeleton is regulated by factors that influence polymer assembly, disassembly, and network rearrangement. Drugs that inhibit these events have been used to test the role of actin dynamics in a wide range of cellular processes. Previous methods of arresting actin rearrangements take minutes to act and work well in some contexts, but can lead to significant actin reorganization in cells with rapid actin dynamics, such as neutrophils. In this paper, we report a pharmacological cocktail that not only arrests actin dynamics but also preserves the structure of the existing actin network in neutrophil-like HL-60 cells, human fibrosarcoma HT1080 cells, and mouse NIH 3T3 fibroblast cells. Our cocktail induces an arrest of actin dynamics that initiates within seconds and persists for longer than 10 min, during which time cells maintain their responsivity to external stimuli. With this cocktail, we demonstrate that actin dynamics, and not simply morphological polarity or actin accumulation at the leading edge, are required for the spatial persistence of Rac activation in HL-60 cells. Our drug combination preserves the structure of the existing cytoskeleton while blocking actin assembly, disassembly, and rearrangement, and should prove useful for investigating the role of actin dynamics in a wide range of cellular signaling contexts

    Regulation of the Actin Cytoskeleton Organization in Yeast by a Novel Serine/Threonine Kinase Prk1p

    Get PDF
    Normal actin cytoskeleton organization in budding yeast requires the function of the Pan1p/ End3p complex. Mutations in PAN1 and END3 cause defects in the organization of actin cytoskeleton and endocytosis. By screening for mutations that can suppress the temperature sensitivity of a pan1 mutant (pan1-4), a novel serine/threonine kinase Prk1p is now identified as a new factor regulating the actin cytoskeleton organization in yeast. The suppression of pan1-4 by prk1 requires the presence of mutant Pan1p. Although viable, the prk1 mutant is unable to maintain an asymmetric distribution of the actin cytoskeleton at 37°C. Consistent with its role in the regulation of actin cytoskeleton, Prk1p localizes to the regions of cell growth and coincides with the polarized actin patches. Overexpression of the PRK1 gene in wild-type cells leads to lethality and actin cytoskeleton abnormalities similar to those exhibited by the pan1 and end3 mutants. In vitro phosphorylation assays demonstrate that Prk1p is able to phosphorylate regions of Pan1p containing the LxxQxTG repeats, including the region responsible for binding to End3p. Based on these findings, we propose that the Prk1 protein kinase regulates the actin cytoskeleton organization by modulating the activities of some actin cytoskeleton-related proteins such as Pan1p/End3p

    NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction

    Get PDF
    In plants movement of the endoplasmic reticulum (ER) is dependent on the actin cytoskeleton. However little is known about proteins that link the ER membrane and the actin cytoskeleton. Here we identified a novel protein, NETWORKED 3B (NET3B), which is associated with the ER and actin cytoskeleton in vivo. NET3B belongs to a superfamily of plant specific actin binding proteins, the NETWORKED family. NET3B associates with the actin cytoskeleton in vivo through an N-terminal NET actin binding (NAB) domain, which has been well-characterized in other members of the NET family. A three amino acid insertion, Val-Glu-Asp, in the NAB domain of NET3B appears to lower its ability to localize to the actin cytoskeleton compared with NET1A, the founding member of the NET family. The C-terminal domain of NET3B links the protein to the ER. Overexpression of NET3B enhanced the association between the ER and the actin cytoskeleton, and the extent of this association was dependent on the amount of NET3B available. Another effect of NET3B overexpression was a reduction in ER membrane diffusion. In conclusion, our results revealed that NET3B modulates ER and actin cytoskeleton interactions in higher plants

    A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions

    Get PDF
    AbstractMorphogenesis of influenza virus is a poorly understood process that produces two types of enveloped virion: ∼100-nm spheres and similar diameter filaments that reach 20 μm in length. Spherical particles assemble at plasma membrane lipid rafts in a process independent of microfilaments. The budding site of filamentous virions is hitherto uncharacterised but their formation involves the actin cytoskeleton. We confirm microfilament involvement in filamentous budding and show that after disruption of cortical actin by jasplakinolide, HA, NP, and M1 redistributed around β-actin clusters to form novel annular membrane structures. HA in filamentous virions and jasplakinolide-induced annuli was detergent insoluble at 4°C. Furthermore, in both cases HA partitioned into low buoyant density detergent-insoluble glycolipid domains, indicating that filamentous virions and annuli contain reorganised lipid rafts. We propose that the actin cytoskeleton is required to maintain the correct organisation of lipid rafts for incorporation into budding viral filaments

    Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction

    Full text link
    Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings.Comment: Revtex, 35 pages, 13 Postscript figures included, in press with New Journal of Physics, Special Issue on The Physics of the Cytoskeleto
    corecore