4,657 research outputs found

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    An integrative approach to assess the behavioral impacts of noise stimuli on the Australian black field cricket, Teleogryllus commodus

    Get PDF
    For acoustically oriented species, elevated levels of ambient sound can interfere with an organism’s ability to detect and assess acoustic signals and cues needed for making important decisions. Ambient noise, defined as any unwanted or non-focal acoustic signal, can impact behavior and decision-making by disrupting auditory sensory perception. As a result, noise in the context of this dissertation can be further delineated as excess sound that hinders a receiver\u27s ability to detect and distinguish acoustic signals. Noise consists of either airborne or substrate-borne modalities or both. While many studies focus on the impact of airborne noise, many species have evolved the ability to detect both airborne and substrate-borne sounds. This bias towards airborne stimuli has left researchers with only a partial understanding of the impact of noise on animal behavior. Taking an integrative approach, this dissertation identifies the impacts of multisensory noise on the behavior of the Australian black field cricket (Teleogryllus commodus). First, I established the sensitivity of the auditory system to airborne sonic (1-20 kHz), airborne ultrasonic (\u3e20 kHz), and substrate-borne stimuli (50-1600 Hz). I also determined that noise regardless of modality or bandwidth (sonic, ultrasonic, and substrate vibrations) has a significant impact on female phonotaxis. Finally, I tested how each noise type influences female choice regarding male calling phenotype and found that all noise types and bandwidths disrupt the mate choice process. I identified two possible causes for these shifts in behavior: energetic and informational masking. Energetic masking occurs when noise energetically overlaps with the signal and prevents detection of the signal. Informational masking occurs when the noise does not energetically overlap with the signal but still interferes with the female’s ability to extract information. The findings of this dissertation demonstrate the complexities of noise and its impacts on animal behavior, emphasizing the need to consider the sensory sensitivity of animals in studying the effects of noise. By furthering our understanding of how different noise types inform how animals interact with their environment, we can better determine the constraints and adaptations of living in an increasingly noisy world

    APHONIC: Adaptive thresholding for noise cancellation in smart mobile environments

    Get PDF
    We propose a signal-channel, adaptive threshold selection technique for binary mask construction, namely APHONIC, (AdaPtive tHreshOlding for NoIse Cancellation) for smart mobile environments. Using this mask, we introduce two noise cancellation techniques that perform robustly in the presence of real-world interfering signals that are typically encountered by mobile users: a violin busker, a subway and busy city square sounds. We demonstrate that when the power of the time-frequency components of the voice of a mobile user does not significantly overlap with the components of the interference signal, the threshold learning and noise cancellation techniques significantly improve the Signal-to-Interference Ratio (SIR) and the Signal-Distortion Ratio (SDR) of the recovered voice. When a mobile user\u27s speech is mixed with music or with the sounds of a city square, or subway station, the speech energy is captured by a few large magnitude coefficients and APHONIC improves the SIR by greater than 20dB and the SDR by up to 5dB. The robustness of the threshold selection step and the noise cancellation algorithms is evaluated using environments typically experienced by mobile phone users. Listening tests indicate that the interference signal is no longer audible in the denoised signals. We outline how this approach could be used in many mobile voice-driven applications

    Electrophysiologic assessment of (central) auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Get PDF
    Session 5aPP - Psychological and Physiological Acoustics: Auditory Function, Mechanisms, and Models (Poster Session)Cleft of the lip and/or palate is a common congenital craniofacial malformation worldwide, particularly non-syndromic cleft lip and/or palate (NSCL/P). Though middle ear deficits in this population have been universally noted in numerous studies, other auditory problems including inner ear deficits or cortical dysfunction are rarely reported. A higher prevalence of educational problems has been noted in children with NSCL/P compared to craniofacially normal children. These high level cognitive difficulties cannot be entirely attributed to peripheral hearing loss. Recently it has been suggested that children with NSCLP may be more prone to abnormalities in the auditory cortex. The aim of the present study was to investigate whether school age children with (NSCL/P) have a higher prevalence of indications of (central) auditory processing disorder [(C)APD] compared to normal age matched controls when assessed using auditory event-related potential (ERP) techniques. School children (6 to 15 years) with NSCL/P and normal controls with matched age and gender were recruited. Auditory ERP recordings included auditory brainstem response and late event-related potentials, including the P1-N1-P2 complex and P300 waveforms. Initial findings from the present study are presented and their implications for further research in this area —and clinical intervention—are outlined. © 2012 Acoustical Society of Americapublished_or_final_versio

    Sequential grouping constraints on across-channel auditory processing

    Get PDF

    Speaker discrimination in multisource environments auralized in real rooms

    Get PDF
    With the recent development of audio in modern VR/AR systems and the increasing capability of synthesizing natural sound fields over headphones with head tracking, the question of the ability of our hearing system to discriminate multiple concurrent sound sources has become important again. We must understand how psychoacoustical and psychophysical limitations of the hearing system cope with novel technologies of virtual acoustics that can simulate an almost unlimited number of sound sources. Previous research has shown that the capacity of human hearing to discriminate a reference sound source is limited when there is background noise, a reverberant surrounding, or when other, disturbing sound sources simultaneously mask the reference source. A set of listening tests based on the cocktail-party effect was designed to determine the intelligibility of speech emitted by a reference sound source, with one to six disturbing sound sources simultaneously emitting speech from different directions around the listener. The tests were repeated in three test rooms with different acoustical properties, and two test signals were used: logatomes and regular spoken sen-tences with specific keywords. The results have revealed the changes in speech intelligibility scores in relation to the number of disturbing sources, their positions, and acoustical properties of test rooms
    • …
    corecore