670 research outputs found

    End-to-End Audiovisual Fusion with LSTMs

    Full text link
    Several end-to-end deep learning approaches have been recently presented which simultaneously extract visual features from the input images and perform visual speech classification. However, research on jointly extracting audio and visual features and performing classification is very limited. In this work, we present an end-to-end audiovisual model based on Bidirectional Long Short-Term Memory (BLSTM) networks. To the best of our knowledge, this is the first audiovisual fusion model which simultaneously learns to extract features directly from the pixels and spectrograms and perform classification of speech and nonlinguistic vocalisations. The model consists of multiple identical streams, one for each modality, which extract features directly from mouth regions and spectrograms. The temporal dynamics in each stream/modality are modeled by a BLSTM and the fusion of multiple streams/modalities takes place via another BLSTM. An absolute improvement of 1.9% in the mean F1 of 4 nonlingusitic vocalisations over audio-only classification is reported on the AVIC database. At the same time, the proposed end-to-end audiovisual fusion system improves the state-of-the-art performance on the AVIC database leading to a 9.7% absolute increase in the mean F1 measure. We also perform audiovisual speech recognition experiments on the OuluVS2 database using different views of the mouth, frontal to profile. The proposed audiovisual system significantly outperforms the audio-only model for all views when the acoustic noise is high.Comment: Accepted to AVSP 2017. arXiv admin note: substantial text overlap with arXiv:1709.00443 and text overlap with arXiv:1701.0584

    Survey of deep representation learning for speech emotion recognition

    Get PDF
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual eort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated \textit{deep representation learning} where hierarchical representations are automatically learned in a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER

    Improving the Generalizability of Speech Emotion Recognition: Methods for Handling Data and Label Variability

    Full text link
    Emotion is an essential component in our interaction with others. It transmits information that helps us interpret the content of what others say. Therefore, detecting emotion from speech is an important step towards enabling machine understanding of human behaviors and intentions. Researchers have demonstrated the potential of emotion recognition in areas such as interactive systems in smart homes and mobile devices, computer games, and computational medical assistants. However, emotion communication is variable: individuals may express emotion in a manner that is uniquely their own; different speech content and environments may shape how emotion is expressed and recorded; individuals may perceive emotional messages differently. Practically, this variability is reflected in both the audio-visual data and the labels used to create speech emotion recognition (SER) systems. SER systems must be robust and generalizable to handle the variability effectively. The focus of this dissertation is on the development of speech emotion recognition systems that handle variability in emotion communications. We break the dissertation into three parts, according to the type of variability we address: (I) in the data, (II) in the labels, and (III) in both the data and the labels. Part I: The first part of this dissertation focuses on handling variability present in data. We approximate variations in environmental properties and expression styles by corpus and gender of the speakers. We find that training on multiple corpora and controlling for the variability in gender and corpus using multi-task learning result in more generalizable models, compared to the traditional single-task models that do not take corpus and gender variability into account. Another source of variability present in the recordings used in SER is the phonetic modulation of acoustics. On the other hand, phonemes also provide information about the emotion expressed in speech content. We discover that we can make more accurate predictions of emotion by explicitly considering both roles of phonemes. Part II: The second part of this dissertation addresses variability present in emotion labels, including the differences between emotion expression and perception, and the variations in emotion perception. We discover that it is beneficial to jointly model both the perception of others and how one perceives one’s own expression, compared to focusing on either one. Further, we show that the variability in emotion perception is a modelable signal and can be captured using probability distributions that describe how groups of evaluators perceive emotional messages. Part III: The last part of this dissertation presents methods that handle variability in both data and labels. We reduce the data variability due to non-emotional factors using deep metric learning and model the variability in emotion perception using soft labels. We propose a family of loss functions and show that by pairing examples that potentially vary in expression styles and lexical content and preserving the real-valued emotional similarity between them, we develop systems that generalize better across datasets and are more robust to over-training. These works demonstrate the importance of considering data and label variability in the creation of robust and generalizable emotion recognition systems. We conclude this dissertation with the following future directions: (1) the development of real-time SER systems; (2) the personalization of general SER systems.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147639/1/didizbq_1.pd

    DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning

    Get PDF
    Microphones are remarkably powerful sensors of human behavior and context. However, audio sensing is highly susceptible to wild fluctuations in accuracy when used in diverse acoustic environments (such as, bedrooms, vehicles, or cafes), that users encounter on a daily basis. Towards addressing this challenge, we turn to the field of deep learning; an area of machine learning that has radically changed related audio modeling domains like speech recognition. In this paper, we present DeepEar – the first mobile audio sensing framework built from coupled Deep Neural Networks (DNNs) that simultaneously perform common audio sensing tasks. We train DeepEar with a large-scale dataset including unlabeled data from 168 place visits. The resulting learned model, involving 2.3M parameters, enables DeepEar to significantly increase inference robustness to background noise beyond conventional approaches present in mobile devices. Finally, we show DeepEar is feasible for smartphones by building a cloud-free DSP-based prototype that runs continuously, using only 6% of the smartphone’s battery dailyThis is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2750858.280426

    Attention-based Multi-modal Sentiment Analysis and Emotion Detection in Conversation using RNN

    Get PDF
    The availability of an enormous quantity of multimodal data and its widespread applications, automatic sentiment analysis and emotion classification in the conversation has become an interesting research topic among the research community. The interlocutor state, context state between the neighboring utterances and multimodal fusion play an important role in multimodal sentiment analysis and emotion detection in conversation. In this article, the recurrent neural network (RNN) based method is developed to capture the interlocutor state and contextual state between the utterances. The pair-wise attention mechanism is used to understand the relationship between the modalities and their importance before fusion. First, two-two combinations of modalities are fused at a time and finally, all the modalities are fused to form the trimodal representation feature vector. The experiments are conducted on three standard datasets such as IEMOCAP, CMU-MOSEI, and CMU-MOSI. The proposed model is evaluated using two metrics such as accuracy and F1-Score and the results demonstrate that the proposed model performs better than the standard baselines
    • …
    corecore