4,705 research outputs found

    A toolbox for animal call recognition

    Get PDF
    Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems

    Convolutional Gated Recurrent Neural Network Incorporating Spatial Features for Audio Tagging

    Get PDF
    Environmental audio tagging is a newly proposed task to predict the presence or absence of a specific audio event in a chunk. Deep neural network (DNN) based methods have been successfully adopted for predicting the audio tags in the domestic audio scene. In this paper, we propose to use a convolutional neural network (CNN) to extract robust features from mel-filter banks (MFBs), spectrograms or even raw waveforms for audio tagging. Gated recurrent unit (GRU) based recurrent neural networks (RNNs) are then cascaded to model the long-term temporal structure of the audio signal. To complement the input information, an auxiliary CNN is designed to learn on the spatial features of stereo recordings. We evaluate our proposed methods on Task 4 (audio tagging) of the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. Compared with our recent DNN-based method, the proposed structure can reduce the equal error rate (EER) from 0.13 to 0.11 on the development set. The spatial features can further reduce the EER to 0.10. The performance of the end-to-end learning on raw waveforms is also comparable. Finally, on the evaluation set, we get the state-of-the-art performance with 0.12 EER while the performance of the best existing system is 0.15 EER.Comment: Accepted to IJCNN2017, Anchorage, Alaska, US

    Acoustic Scene Classification by Implicitly Identifying Distinct Sound Events

    Full text link
    In this paper, we propose a new strategy for acoustic scene classification (ASC) , namely recognizing acoustic scenes through identifying distinct sound events. This differs from existing strategies, which focus on characterizing global acoustical distributions of audio or the temporal evolution of short-term audio features, without analysis down to the level of sound events. To identify distinct sound events for each scene, we formulate ASC in a multi-instance learning (MIL) framework, where each audio recording is mapped into a bag-of-instances representation. Here, instances can be seen as high-level representations for sound events inside a scene. We also propose a MIL neural networks model, which implicitly identifies distinct instances (i.e., sound events). Furthermore, we propose two specially designed modules that model the multi-temporal scale and multi-modal natures of the sound events respectively. The experiments were conducted on the official development set of the DCASE2018 Task1 Subtask B, and our best-performing model improves over the official baseline by 9.4% (68.3% vs 58.9%) in terms of classification accuracy. This study indicates that recognizing acoustic scenes by identifying distinct sound events is effective and paves the way for future studies that combine this strategy with previous ones.Comment: code URL typo, code is available at https://github.com/hackerekcah/distinct-events-asc.gi

    Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

    Full text link
    Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speechThis work has been supported by project “DSSL: Redes Profundas y Modelos de Subespacios para Deteccion y Seguimiento de Locutor, Idioma y Enfermedades Degenerativas a partir de la Voz” (TEC2015-68172-C2-1-P), funded by the Ministry of Economy and Competitivity of Spain and FEDE

    Modelling of Sound Events with Hidden Imbalances Based on Clustering and Separate Sub-Dictionary Learning

    Full text link
    This paper proposes an effective modelling of sound event spectra with a hidden data-size-imbalance, for improved Acoustic Event Detection (AED). The proposed method models each event as an aggregated representation of a few latent factors, while conventional approaches try to find acoustic elements directly from the event spectra. In the method, all the latent factors across all events are assigned comparable importance and complexity to overcome the hidden imbalance of data-sizes in event spectra. To extract latent factors in each event, the proposed method employs clustering and performs non-negative matrix factorization to each latent factor, and learns its acoustic elements as a sub-dictionary. Separate sub-dictionary learning effectively models the acoustic elements with limited data-sizes and avoids over-fitting due to hidden imbalances in training data. For the task of polyphonic sound event detection from DCASE 2013 challenge, an AED based on the proposed modelling achieves a detection F-measure of 46.5%, a significant improvement of more than 19% as compared to the existing state-of-the-art methods

    Eventness: Object Detection on Spectrograms for Temporal Localization of Audio Events

    Full text link
    In this paper, we introduce the concept of Eventness for audio event detection, which can, in part, be thought of as an analogue to Objectness from computer vision. The key observation behind the eventness concept is that audio events reveal themselves as 2-dimensional time-frequency patterns with specific textures and geometric structures in spectrograms. These time-frequency patterns can then be viewed analogously to objects occurring in natural images (with the exception that scaling and rotation invariance properties do not apply). With this key observation in mind, we pose the problem of detecting monophonic or polyphonic audio events as an equivalent visual object(s) detection problem under partial occlusion and clutter in spectrograms. We adapt a state-of-the-art visual object detection model to evaluate the audio event detection task on publicly available datasets. The proposed network has comparable results with a state-of-the-art baseline and is more robust on minority events. Provided large-scale datasets, we hope that our proposed conceptual model of eventness will be beneficial to the audio signal processing community towards improving performance of audio event detection.Comment: 5 pages, 3 figures, accepted to ICASSP 201
    corecore