718 research outputs found

    Innovative Method of the Power Analysis

    Get PDF
    This paper describes an innovative method of the power analysis which presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications) and contact smart cards. The proposed method analyzes power consumption of the AES (Advanced Encryption Standard) algorithm with neural network, which successively classifies the first byte of the secret key. This way of the power analysis is an entirely new approach and it is designed to combine the advantages of simple and differential power analysis. In the extreme case, this feature allows to determine the whole secret key of a cryptographic module only from one measured power trace. This attribute makes the proposed method very attractive for potential attackers. Besides theoretical design of the method, we also provide the first implementation results. We assume that the method will be certainly optimized to obtain more accurate classification results in the future

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    SoK: Acoustic Side Channels

    Full text link
    We provide a state-of-the-art analysis of acoustic side channels, cover all the significant academic research in the area, discuss their security implications and countermeasures, and identify areas for future research. We also make an attempt to bridge side channels and inverse problems, two fields that appear to be completely isolated from each other but have deep connections.Comment: 16 page
    corecore