4,369 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    802.11s QoS Routing for Telemedicine Service

    Get PDF
    The merits of 802.11s as the wireless mesh network standard provide a lowcost and high independent scalability telemedicine infrastructure. However,challenges in degradation of performance as hops increase and the absent of Quality of Service (QoS) provision need to be resolved. The reliability and timely manner are the important factor for successful telemedicine service. This research investigates the use of 802.11s for telemedicine services. A new model of 802.11s based telemedicine infrastructure has been developed for this purpose. A non deterministic polynomial path selection is proposed to provide end-to-end QoS provisioning in 802.11s. A multi-metric called QoS Price metric is proposed as measurement of link quality. The QoS Price is derived from multi layers values that reflect telemedicine traffic requirement and the resource availability of the network. The proposed solution has modified the path management of 802.11s and added resource allocation in distributed scheme.DOI:http://dx.doi.org/10.11591/ijece.v4i2.559

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version

    Leveraging Communicating UAVs for Emergency Vehicle Guidance in Urban Areas

    Get PDF
    International audienceThe response time to emergency situations in urban areas is considered as a crucial key in limiting material damage or even saving human lives. Thanks to their "bird's eye view" and their flexible mobility, Unmanned Aerial Vehicles (UAVs) can be a promising candidate for several vital applications. Under these perspectives, we investigate the use of communicating UAVs to detect any incident on the road, provide rescue teams with their exact locations, and plot the fastest path to intervene, while considering the constraints of the roads. To efficiently inform the rescue services, a robust routing scheme is introduced to ensure a high level of communication stability based on an efficient backbone, while considering both the high mobility and the restricted energy capacity of UAVs. This allows both predicting any routing path breakage prior to its occurrence, and carrying out a balanced energy consumption among UAVs. To ensure a rapid intervention by rescue teams, UAVs communicate in an ad hoc fashion with existing vehicles on the ground to estimate the fluidity of the roads. Our system is implemented and evaluated through a series of experiments. The reported results show that each part of the system reliably succeeds in achieving its planned objective
    corecore