285 research outputs found

    Polar Coding for Achieving the Capacity of Marginal Channels in Nonbinary-Input Setting

    Full text link
    Achieving information-theoretic security using explicit coding scheme in which unlimited computational power for eavesdropper is assumed, is one of the main topics is security consideration. It is shown that polar codes are capacity achieving codes and have a low complexity in encoding and decoding. It has been proven that polar codes reach to secrecy capacity in the binary-input wiretap channels in symmetric settings for which the wiretapper's channel is degraded with respect to the main channel. The first task of this paper is to propose a coding scheme to achieve secrecy capacity in asymmetric nonbinary-input channels while keeping reliability and security conditions satisfied. Our assumption is that the wiretap channel is stochastically degraded with respect to the main channel and message distribution is unspecified. The main idea is to send information set over good channels for Bob and bad channels for Eve and send random symbols for channels that are good for both. In this scheme the frozen vector is defined over all possible choices using polar codes ensemble concept. We proved that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions. It is further shown that uniform distribution of the message is the necessary condition for achieving secrecy capacity.Comment: Accepted to be published in "51th Conference on Information Sciences and Systems", Baltimore, Marylan

    Polar Coding for Secure Transmission and Key Agreement

    Get PDF
    Wyner's work on wiretap channels and the recent works on information theoretic security are based on random codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note, the attempt is to overcome this elusive task by employing the polar coding technique of Ar{\i}kan. It is shown that polar codes achieve non-trivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. Next, fading erasure wiretap channels are considered and a secret key agreement scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI). The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading block, which is then exploited with privacy amplification techniques to generate secret keys.Comment: Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2010), Sept. 2010, Istanbul, Turke

    Achieving Secrecy Capacity of the Gaussian Wiretap Channel with Polar Lattices

    Full text link
    In this work, an explicit wiretap coding scheme based on polar lattices is proposed to achieve the secrecy capacity of the additive white Gaussian noise (AWGN) wiretap channel. Firstly, polar lattices are used to construct secrecy-good lattices for the mod-Λs\Lambda_s Gaussian wiretap channel. Then we propose an explicit shaping scheme to remove this mod-Λs\Lambda_s front end and extend polar lattices to the genuine Gaussian wiretap channel. The shaping technique is based on the lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously. As a result, the encoding complexity for the sender and the decoding complexity for the legitimate receiver are both O(N logN log(logN)). The proposed scheme is proven to be semantically secure.Comment: Submitted to IEEE Trans. Information Theory, revised. This is the authors' own version of the pape

    On the Construction of Polar Codes for Achieving the Capacity of Marginal Channels

    Full text link
    Achieving security against adversaries with unlimited computational power is of great interest in a communication scenario. Since polar codes are capacity achieving codes with low encoding-decoding complexity and they can approach perfect secrecy rates for binary-input degraded wiretap channels in symmetric settings, they are investigated extensively in the literature recently. In this paper, a polar coding scheme to achieve secrecy capacity in non-symmetric binary input channels is proposed. The proposed scheme satisfies security and reliability conditions. The wiretap channel is assumed to be stochastically degraded with respect to the legitimate channel and message distribution is uniform. The information set is sent over channels that are good for Bob and bad for Eve. Random bits are sent over channels that are good for both Bob and Eve. A frozen vector is chosen randomly and is sent over channels bad for both. We prove that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions and approaches the secrecy capacity. We further empirically show that in the proposed scheme for non-symmetric binary-input discrete memoryless channels, the equivocation rate achieves its upper bound in the whole capacity-equivocation region

    Construction of lattices for communications and security

    Get PDF
    In this thesis, we propose a new class of lattices based on polar codes, namely polar lattices. Polar lattices enjoy explicit construction and provable goodness for the additive white Gaussian noise (AWGN) channel, \textit{i.e.}, they are \emph{AWGN-good} lattices, in the sense that the error probability (for infinite lattice coding) vanishes for any fixed volume-to-noise ratio (VNR) greater than 2πe2\pi e. Our construction is based on the multilevel approach of Forney \textit{et al.}, where on each level we construct a capacity-achieving polar code. We show the component polar codes are naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We present a more precise analysis of the VNR of the resultant lattice, which is upper-bounded in terms of the flatness factor and the capacity losses of the component codes. The proposed polar lattices are efficiently decodable by using multi-stage decoding. Design examples are presented to demonstrate the superior performance of polar lattices. However, there is no infinite lattice coding in the practical applications. We need to apply the power constraint on the polar lattices which generates the polar lattice codes. We prove polar lattice codes can achieve the capacity \frac{1}{2}\log(1+\SNR) of the power-constrained AWGN channel with a novel shaping scheme. The main idea is that by implementing the lattice Gaussian distribution over the AWGN-good polar lattices, the maximum error-free transmission rate of the resultant coding scheme can be arbitrarily close to the capacity \frac{1}{2}\log(1+\SNR). The shaping technique is based on discrete lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. Then it is straightforward to employ multilevel asymmetric polar codes which is a combination of polar lossless source coding and polar channel coding. The construction of polar codes for an asymmetric channel can be converted to that for a related symmetric channel, and it turns out that this symmetric channel is equivalent to an minimum mean-square error (MMSE) scaled Λ/Λ′\Lambda/\Lambda' channel in lattice coding in terms of polarization, which eventually simplifies our coding design. Finally, we investigate the application of polar lattices in physical layer security. Polar lattice codes are proved to be able to achieve the strong secrecy capacity of the Mod-Λ\Lambda AWGN wiretap channel. The Mod-Λ\Lambda assumption was due to the fact that a practical shaping scheme aiming to achieve the optimum shaping gain was missing. In this thesis, we use our shaping scheme and extend polar lattice coding to the Gaussian wiretap channel. By employing the polar coding technique for asymmetric channels, we manage to construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously. Then we prove the resultant wiretap coding scheme can achieve the strong secrecy capacity for the Gaussian wiretap channel.Open Acces

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore