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Abstract

Wyner’s work on wiretap channels and the recent works on information theoretic security are based on random

codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note,

the attempt is to overcome this elusive task by employing the polar coding technique of Arikan. It is shown that

polar codes achieve non-trivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their

low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding

technique achieves the secrecy capacity. Extension of the coding technique to the multiple-access channels with a

degraded eavesdropper is discussed. Finally, fading erasure wiretap channels are considered and a secret key agreement

scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI).

The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading

block, which is then exploited with privacy amplification techniques to generate secret keys.

I. INTRODUCTION

The notion of information theoretic secrecy was introduced by Shannon to study secure communication over

point-to-point noiseless channels [1]. This line of work was later extended by Wyner [2] to noisy channels. Wyner’s

degraded wiretap channel assumes that the eavesdropper channel is a degraded version of the one seen by the

legitimate receiver. Under this assumption, Wyner showed that the advantage of the main channel over that of the

eavesdropper, in terms the lower noise level, can be exploited to transmit secret bits using random codes. This

keyless secrecy result was then extended to a more general (broadcast) model in [3] and to the Gaussian setting

in [4]. Recently, there has been a renewed interest in wireless physical layer security (see, e.g., Special Issue on

Information Theoretic Security, IEEE Trans. Inf. Theory, June 2008 and references therein). However, designing

practical codes to achieve secrecy for any given main and eavesdropper channels remained as an elusive task.
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In [5], the authors constructed LDPC based wiretap codes for certain binary erasure channel (BEC) and binary

symmetric channel (BSC) scenarios. In particular, when the main channel is noiseless and the eavesdropper channel

is a BEC, [5] presented codes that approach secrecy capacity. For other scenarios, secrecy capacity achieving code

design is stated as an open problem. Similarly, [6] considers the design of secure nested codes for the noiseless

main channel setting (see also [7]).

This work considers secret communication over a binary-input degraded wiretap channel. Using the polar coding

technique of Arikan [8], we show that non-trivial secrecy rates are achievable. According to our best knowledge,

this coding technique is the first provable and practical (having low encoding and decoding complexity) secrecy

encoding technique for this set of channels. In the special case of the symmetric main and eavesdropper channels,

this technique achieves the secrecy capacity of the channel 1. The results are also extended to the multiple-access

setting, where the coding scheme is shown to achieve non-trivial secrecy rates for both users. Finally, we consider

fading wiretap channels and propose a key agreement scheme where the users only assumed to have the statistical

knowledge of the eavesdropper CSI. The enabling observation is that by blindly using the scheme over many fading

blocks, the users will eventually create an advantage over Eve, which can then be exploited to generate secret keys

using privacy amplification techniques.

II. NOTATIONS

Throughout this paper, vectors are denoted by xN
1 = {x1, · · · , xN} or by x̄ if we omit the indices. Random

variables are denoted with capital letters X , which are defined over sets denoted by the calligraphic letters X . For

a given set A ⊂ {1, · · · , N}, we write xA to denote the sub-vector {xi : i ∈ A}. Omitting the random variables,

we use the following shorthand for probability distributions p(x) , Pr(X = x), p(x|y) , Pr(X = x|Y = y).

III. POLAR CODES

Consider a binary-input DMC (B-DMC) given by W (y|x), where x ∈ X = {0, 1} and y ∈ Y for some finite set

Y . The N uses of W is denoted by WN (yN
1 |xN

1 ). The symmetric capacity of a B-DMC W is given by

I(W ) ,
∑

x∈X

∑

y∈Y

1
2
W (y|x) log2


 W (y|x)∑

x′∈X
1
2W (y|x′)


 , (1)

which is the mutual information I(X; Y ) when the input X is uniformly distributed. The Bhattacharyya parameter

of W is given by

Z(W ) ,
∑

y∈Y

√
W (y|0)W (y|1), (2)

which measures the reliability of W as it is an upper bound on the probability of ML decision error on a single

use of the channel.

1We acknowledge that the concurrent work [9] independently established the result that polar codes can achieve the secrecy capacity of the

degraded wiretap channels, when both main and eavesdropper channels are binary-input and symmetric (Corollary 7 of this note).
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Polar codes is recently introduced by Arikan [8]. These codes can be encoded and decoded with complexity

O(N log(N)), while achieving an overall block-error probability that is bounded as O(2−Nβ

) for any fixed β < 1
2

([8], [10]). In [8], channel polarization is used to construct codes (polar codes) that can achieve the symmetric

capacity, I(W ), of any given B-DMC W . Channel polarization consists of two operations: Channel combining and

channel splitting. Let uN
1 be the vector to be transmitted. The combined channel is represented by WN and is given

by

WN (yN
1 |uN

1 ) = WN (yN
1 |uN

1 BNF⊗n), (3)

where BN is a bit-reversal permutation matrix, N = 2n, and F ,


 1 0

1 1


. Note that the actual channel input

here is given by xN
1 = uN

1 BNF⊗n. The channel splitting constructs N binary input channels from WN , where the

transformation is given by

W
(i)
N (yN

1 , ui−1
1 |ui) ,

∑

uN
i+1∈XN−i

1
2N−1

WN (yN
1 |uN

1 ). (4)

The polarization phenomenon is shown by the following theorem.

Theorem 1 (Theorem 1 of [8]): For any B-DMC W , N = 2n for some n, and δ ∈ (0, 1),

lim
N→∞

|{i ∈ {1, · · · , N} : I(W (i)
N ) ∈ (1− δ, 1]}|

N
= I(W ),

and

lim
N→∞

|{i ∈ {1, · · · , N} : I(W (i)
N ) ∈ [0, δ)}|

N
= 1− I(W ).

In order to derive the rate of the channel polarization, the random process Zn is defined in [8] and in [10].

Basically,

Pr{Zn ∈ (a, b)} =
|{i ∈ {1, · · · , N} : Z(W (i)

2n ) ∈ (a, b)}|
N

(5)

The rate of the channel polarization is given by the following.

Theorem 2 (Theorem 1 of [10]): For any B-DMC W and for any given β < 1
2 ,

lim
n→∞

Pr{Zn < 2−2nβ} = I(W ).

Now, the idea of polar coding is clear. The encoder-decoder pair, utilizing the polarization effect, will transmit

data through the subchannels for which Z(W (i)
N ) is near 0. In [8], the polar code (N, K,A, uAc) for B-DMC W

is defined by xN
1 = uN

1 BNF⊗n, where uAc is a given frozen vector, and the information set A is chosen such that

|A| = K and Z(W (i)
N ) < Z(W (j)

N ) for all i ∈ A, j ∈ Ac. The frozen vector uAc is given to the decoder. Arikan’s

successive cancellation (SC) estimates the input as follows: For the frozen indices ûAc = uAc . For the remaining

indices s.t. i ∈ A; ûi = 0, if W
(i)
N (yN

1 , ûi−1
1 |0) ≥ W

(i)
N (yN

1 , ûi−1
1 |1) and ûi = 1, otherwise. With this decoder, it

is shown in [8] that the average block error probability over the ensemble (consisting of all possible frozen vector

choices) of polar codes is bounded by

Pe(N) ≤
∑

i∈A
Z(W (i)

N ).
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We now state the main result of [8] using the bound given in [10].

Theorem 3 (Theorem 2 of [10]): For any given B-DMC W with I(W ) > 0, let R < I(W ) and β ∈ (0, 1
2 ) be

fixed. Block error probability for polar coding under SC decoding (averaged over possible choices of frozen vectors)

satisfies

Pe(N) = O(2−Nβ

).

Sketch of the proof: For any given β ∈ (0, 1
2 ) and ε > 0, we can define the sequence of polar codes by

choosing the information indices as

AN = {i ∈ {1, · · · , N} : Z(W (i)
N ) ≤ 1

N
2−Nβ}.

Then, from the above theorems, for sufficiently large N , we can achieve the rate

R =
|AN |
N

≥ I(W )− ε

with average block error probability (averaged over the possible choices of uAc
N

)

Pe(N) ≤
∑

i∈AN

Z(W (i)
N ) ≤ 2−Nβ

under SC decoding. (See also [11].)

This result shows the existence of a polar code (N, K,A, uAc) achieving the symmetric capacity of W . We

remark that, any frozen vector choice of uAc will work for symmetric channels [8]. For our purposes, we will

denote a polar code for B-DMC W with C(N,F , uF ), where the frozen set is given by F , Ac. Note that, A
denotes the indices of information transmission for the polar code, whereas F is the set of frozen indices.

A. Polarization for degraded channels

In [11], the following lemma is proven

Lemma 4 (Lemma 4.7 of [11]): Let W : X → Y and W ′ : X → Y ′ be two B-DMCs such that W is degraded

w.r.t. W ′, i.e., there exists a channel W ′′ : Y ′ → Y such that

W (y|x) =
∑

y′∈Y′
W ′(y′|x)W ′′(y|y′).

Then, W
(i)
N is degraded w.r.t. W ′(i)

N and Z(W (i)
N ) ≥ Z(W ′(i)

N ).

IV. SECURE TRANSMISSION OVER WIRETAP CHANNEL

A discrete memoryless wiretap channel with is denoted by

(X ,W (ym, ye|x),Ym × Ye),

for some finite sets X ,Ym,Ye. Here the symbols x ∈ X are the channel inputs and the symbols (ym, ye) ∈
Ym ×Ye are the channel outputs observed at the main decoder and at the eavesdropper, respectively. The channel

is memoryless and time-invariant:

p(ymi, yei|xi
1, ym

i−1
1 , ye

i−1
1 ) = W (ymi, yei|xi).
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We assume that the transmitter has a secret message M which is to be transmitted to the receiver in N channel

uses and to be secured from the eavesdropper. In this setting, a secret codebook has the following components:

1) The secret message set M. The transmitted messages are assumed to be uniformly distributed over these

message sets.

2) A stochastic encoding function f(.) at the transmitter which maps the secret messages to the transmitted

symbols: f : m → XN
1 for each m ∈M.

3) Decoding function φ(.) at receiver which maps the received symbols to estimate of the message: φ(Ym
N
1 ) =

{m̂}.

The reliability of transmission is measured by the following probability of error.

Pe =
1
|M|

∑

(m)∈M
Pr

{
φ(Ym

N
1 ) 6= (m)|(m) is sent

}

The secrecy is measured by the mutual information leakage rate to the eavesdropper

1
N

I
(
M ;Ye

N
1

)
.

We say that the rate R is an achievable secrecy rate, if, for any given ε > 0, there exists a secret codebook such

that,

1
N

log(|M|) = R

Pe ≤ ε

1
N

I
(
M ;Ye

N
1

) ≤ ε (6)

for sufficiently large N .

Consider a degraded binary-input wiretap channel, where, for the input set X = {0, 1}, the main channel is given

by

Wm(ym|x) (7)

and the symmetric eavesdropper channel is

We(ye|x) =
∑

ym∈Ym

Wm(ym|x)Wd(ye|ym). (8)

Here, the degradation is due to the channel Wd(ye|ym).

Note that, due to degradation, polar codes designed for the eavesdropper channel can be used for the main

channel. For a given sufficiently large N and β ∈ (0, 1
2 ), let

Am = {i ∈ {1, · · · , N} : Z(Wm
(i)
N ) ≤ 1

N
2−Nβ},

and

Ae = {i ∈ {1, · · · , N} : Z(We
(i)
N ) ≤ 1

N
2−Nβ}.
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Now, consider a polar code Cm , C(N,Fm, uFm) for the main channel with some uFm . Due to Lemma 4, we have

Ae ⊂ Am and hence Fm ⊂ Fe. Now, for any given length |Fe| − |Fm| vector v̄m and uFm
, we define the vector

uFe
(v̄m) with uFm

(v̄m) = uFm
and uFe\Fm

(v̄m) = v̄m. Then, the code Ce(v̄m) , C(N,Fe, uFe
(v̄m)) will be a

symmetric capacity achieving polar code for the eavesdropper channel We for any v̄m if the eavesdropper channel

is symmetric (as any frozen vector choice for symmetric channels will work [8]). This implies that the code for

the main channel can be partitioned as Cm = ∪v̄mCe(v̄m). This observation, when considered over the ensemble

of codes, enables us to construct secrecy achieving polar coding schemes, even if the eavesdropper channel is not

symmetric, as characterized by the following theorem.

Theorem 5: For a binary-input degraded wiretap channel, the perfect secrecy rate, I(Wm)− I(We), is achieved

by polar coding.

Proof:

Encoding: We map the secret message to be transmitted to v̄m and generate a random vector v̄r, according to

uniform distribution over X , of length |Ae|. Then, the channel input is constructed with xN
1 = uN

1 BNF⊗n, where

is the frozen vector of the polar code Cm, uFe\Fm
= v̄m, and uAe

= v̄r. The polar code ensemble is constructed

over all different choices of frozen vectors, i.e., uFm .

Decoding: The vectors v̄m and v̄r can be decoded with the SC decoder described above with error probability

Pe = O(2−Nβ

) (averaged over the ensemble) achieving a rate R = |v̄m|
N = I(Wm)− I(We) for sufficiently large

N .

Security: Lets assume that the vector v̄m is given to the eavesdropper along with uFm . Then, employing the SC

decoding, the eavesdropper can decode the random vector v̄r with Pe = O(2−Nβ

) averaged over the ensemble.

Utilizing the Fano’s inequality and average it over the code ensemble seen by the Eve, i.e. over V̄m and UFm , we

obtain

H(V̄r|V̄m, UFm , Ye
N
1 ) ≤ H(Pe) + N log(|X |)Pe ≤ Nε(N), (9)

where ε(N) → 0 as N →∞.

Then, the mutual information leakage to the eavesdropper averaged over the ensemble can be bounded as follows.

I(M ;Ye
N
1 |UFm) = I(V̄m;Ye

N
1 |UFm) (10)

= I(V̄m, V̄r; Ye
N
1 |UFm)− I(V̄r;Ye

N
1 |V̄m, UFm) (11)

(a)
= I(UN

1 ; Ye
N
1 )−H(V̄r) + H(V̄r|V̄m, UFm , Ye

N
1 ) (12)

(b)

≤ I(XN
1 ; Ye

N
1 )−H(V̄r) + H(V̄r|V̄m, UFm , Ye

N
1 ) (13)

(c)

≤ NI(We)− |Ae|+ H(V̄r|V̄m, uFm , Ye
N
1 ) (14)

(d)

≤ NI(We)− |Ae|+ Nε(N), (15)

where in (a) we have UN
1 each entry with i.i.d. uniformly distributed, (b) follows from data processing inequality,

(c) is due to I(XN
1 ; Ye

N
1 ) =

N∑
i=1

I(XN
1 ;Yei|Ye

i−1
1 ) ≤

N∑
i=1

H(Yei) − H(Yei|Xi) = NI(Xi; Yei) with a uniformly
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distributed Xi, and (d) follows from (9) with ε(N) → 0 as N →∞. As |Ae|
N → I(We) as N gets large, we obtain

1
N

I(V̄m;Ye
N
1 |UFm

) ≤ ε (16)

for a given ε > 0 for sufficiently large N . As the reliability and secrecy constraints are satisfied averaged over the

ensemble, there exist a polar code with some fixed uFm
achieving the secure rate I(Wm)− I(We).

Note that in the above result, the code satisfying the reliability and the secrecy constraints can be found from the

ensemble by an exhaustive search. However, as block length increases, almost all the codes in the ensemble will do

equally well. If the eavesdropper channel is symmetric, then the secrecy constraint is satisfied for any given frozen

vector uFm
and the code search is only for the reliability constraint. If the eavesdropper channel is not symmetric,

a prefix channel can be utilized to have this property.

Corollary 6: For non-symmetric eavesdropper channels, the channel can be prefixed with some p(x|x′) such that

the resulting eavesdropper channel

W ′
e(ye|x′) =

∑

ym∈Ym

p(x|x′)Wm(ym|x)Wd(ye|ym)

is symmetric. Then, using the scheme above, the secret rate

R = I(W ′
m)− I(W ′

e)

is achievable, where W ′
m(ym|x′) = p(x|x′)Wm(ym|x).

Finally, we note that the scheme achieves the secrecy capacity and any code in the ensemble, i.e., any fixed uFm ,

will satisfy both the reliability and secrecy constraints, if the main and eavesdropper channels are symmetric.

Corollary 7: For a binary-input degraded wiretap channel with symmetric main and eavesdropper channels, polar

coding achieves the secrecy capacity, i.e., C(Wm)− C(We), of the channel.

V. SECURE TRANSMISSION OVER MULTIPLE-ACCESS CHANNEL

A discrete memoryless two-user multiple access channel with an eavesdropper (MAC-E) is denoted by

(X1 ×X2,W (ym, ye|x1, x2),Ym × Ye),

for some finite sets X1,X2,Ym,Ye. Here the symbols (x1, x2) ∈ X1 ×X2 are the channel inputs and the symbols

(ym, ye) ∈ Ym × Ye are the channel outputs observed at the main decoder and at the eavesdropper, respectively.

The channel is memoryless and time-invariant:

p(ymi, yei|x1
i
1, x2

i
1, ym

i−1
1 , ye

i−1
1 ) = W (ymi, yei|x1i, x2i).

We assume that each transmitter k ∈ {1, 2} has a secret message Mk which is to be transmitted to the receiver

in N channel uses and to be secured from the eavesdropper. In this setting, secret codebooks have the following

components:

1) The secret message set Mk; k = 1, 2. The transmitted messages are assumed to be uniformly distributed over

these message sets.
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2) A stochastic encoding function fk(.) at transmitter k which maps the secret messages to the transmitted

symbols: fk : mk → Xk
N
1 for each mk ∈Mk; k = 1, 2.

3) Decoding function φ(.) at receiver which maps the received symbols to estimates of the messages: φ(Ym
N
1 ) =

{m̂1, m̂2}.

The reliability of transmission is measured by the following probability of error.

Pe =
1

|M1||M2|
∑

(m1,m2)∈M1×M2

Pr
{
φ(Ym

N
1 ) 6= {m1, m2}|(m1,m2) is sent

}

The secrecy is measured by the mutual information leakage rate to the eavesdropper

1
N

I
(
M1,M2; Ye

N
1

)
.

We say that the rate tuple (R1, R2) is achievable for the channel, if, for any given ε > 0, there exists a secret

codebook such that,

1
N

log(|M1|) = R1

1
N

log(|M2|) = R2,

Pe ≤ ε,

and

1
N

I
(
M1,M2; Ye

N
1

) ≤ ε (17)

for sufficiently large N .

Finally, we note that the secrecy requirement imposed on the full message set implies the secrecy of individual

messages. In other words, 1
nI(M1,M2; Ye

N
1 ) ≤ ε implies 1

nI(Mk; Ye
N
1 ) ≤ ε for k = 1, 2.

We focus on a binary-input degraded MAC-E, where the main channel is given by

Wm(ym|x1, x2) (18)

and the eavesdropper channel is

We(ye|x1, x2) =
∑

ym∈Ym

Wm(ym|x1, x2)Wd(ye|ym). (19)

Here, the degradation is due to the channel Wd(ye|ym). Utilizing the scheme given in the previous section together

with a successive cancelation scheme for decoding messages, we obtain the following result.

Corollary 8: For a binary-input degraded MAC-E, we define

W1m(ym|x1) ,
∑
x2

p(x2)Wm(ym|x1, x2)

W1e(ye|x1) ,
∑

x2,ym

p(x2)Wm(ym|x1, x2)Wd(ye|ym)

W2m(ym, x1|x2) , p(x1)Wm(ym|x1, x2)

W2e(ye, x1|x2) ,
∑
ym

p(x1)Wm(ym|x1, x2)Wd(ye|ym)

February 24, 2010 DRAFT
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for uniform input distributions p(x1) and p(x2). Then, the secret rate pair

R1 = I(W1m)− I(W1e) (20)

R2 = I(W2m)− I(W2e) (21)

is achieved by polar coding.

Proof: Please refer to Appendix B.

Note that another rate pair that is obtained by reversing the indices above is achievable. The overall region can

be stated as the time sharing of the two rate pairs. Here, as noted in the previous section, the secrecy constraint is

satisfied w.h.p. for any code pair in the ensembles of users as block length gets large (if an exhaustive search over the

ensembles is not possible). But, if the channels W1e and W2e defined in the theorem are symmetric, and sum of the

capacity of these channels is equal to the sum capacity of Eve, i.e.,
{

max
p(x1)p(x2)

I(X1, X2;Ye)
}

= I(W1e)+I(W2e),

then (using this at step (a) of (55)) we can show that any code pair in the ensembles satisfy the reliability and

secrecy constraints.

VI. SECRET KEY AGREEMENT OVER FADING WIRETAP CHANNELS

In this section, we focus on the following key agreement problem: Alice, over fading wiretap channel, would

like to agree on a secret key with Bob in the presence of passive eavesdropper Eve. For simplicity, we focus on

the special case of binary erasure main and eavesdropper channels, and the results can be extended to arbitrary

binary-input channels using the result of Section IV.

Fading blocks are represented by i = 1, · · · ,ML and each block has N channel uses. Random variables

over blocks are represented with the following bar notation. Ȳ
(l;m)
e denotes the observations of Eve over the

fading block m of the super block l, the observations of Eve over super block l ∈ [1, L] is denoted by ¯̄Y (l)
e =

Ȳ
(l;1···M)
e , {Ȳ (l;1)

e · · · Ȳ (l;M)
e }, and Eve’s total observation over all super blocks is denoted by Y ∗

e = ¯̄Y (1···L)
e =

{ ¯̄Y (1)
e , · · · , ¯̄Y (L)

e }.

Main and eavesdropper channels are binary erasure channels and are denoted by W
(i)
m and W

(i)
e , respectively.

Here, the channels Wm and We are random, outcome of which result in the channels of each block. Instantaneous

eavesdropper CSI is not known at the users, only the statistical knowledge of it is assumed. The channels are

assumed to be physically degraded w.r.t. some order at each block 2. Note that, in this setup, eavesdropper channel

can be better than the main channel on the average.

We utilize the proposed secrecy encoding scheme for the wiretap channel at each fading block. Omitting the

block indices, frozen and information bits are denoted as uFM
and uAM

, respectively. Information bits are uniformly

distributed binary random variables and are mapped to uAM . Secret and randomization bits among these information

bits are denoted by V̄m and V̄r, respectively. Frozen bits are provided both to main receiver and eavesdropper at

2Remarkable, a random walk model with packet erasures can be covered with this model. Also, parallel channel model is equivalent to this

scenario.
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each block. (We omitted writing this side information below as all zero vector can be chosen as the frozen vector

for the erasure channel [8].) Note that Alice and Bob do not know the length of V̄
(i)
m at fading block i. In particular,

there may not be any secured bits at a given fading block.

At this point, if the eavesdropper is degraded, we have

1
N

H(V̄ (i)
m ) = C(W (i)

m )− C(W (i)
e ) (22)

1
N

H(V̄ (i)
r ) = C(W (i)

e ) (23)

1
N

H(V̄ (i)
r |Ȳ (i)

e , V̄ (i)
m ) ≤ ε, (24)

where the last inequality follows from Fano’s inequality, if V̄
(i)
m is given to Eve by an oracle, for sufficiently large

N . Otherwise, if the main receiver is degraded, we have

H(V̄ (i)
m ) = 0 (25)

1
N

H(V̄ (i)
r ) = C(W (i)

m ) (26)

1
N

H(V̄ (i)
r |Ȳ (i)

e ) ≤ ε, (27)

for sufficiently large N .

Considering the resulting information accumulation over a block, we obtain the followings.

1
N

H(V̄ (i)
m ) = [C(W (i)

m )− C(W (i)
e )]+, (28)

and
1
N

H(V̄ (i)
r ) = min{C(W (i)

m ), C(W (i)
e )}, (29)

where the former denotes the amount of secure information generated at block i (here the secrecy level is the

bound on the mutual information leakage rate), and the latter denotes the remaining information. Note that these

entropies are random variables as channels are random over the blocks. Remarkable, this scheme converts the

fading phenomenon to the advantage of Alice and Bob (similar to the enabling observation utilized in [12]).

Exploiting this observation and coding over LM fading blocks, the proposed scheme below creates advantage

for the main users: As L, M, N get large, information bits, denoted by W ∗, are w.h.p. reliably decoded at the

Bob, H(W ∗) → LMN E [C(Wm)], and H(W ∗|Y ∗
e ) → LMN E [[C(Wm)− C(We)]+]. This accomplishes both

advantage distillation and information reconciliation phases of a key agreement protocol [13]. Now, a third phase

(called as privacy amplification) is needed to distill a shorter string K from W ∗, about which Eve has only a

negligible amount of information. The privacy amplification step can be done with universal hashing as considered

in [13]. We first state the following definitions and lemma regarding universal hashing, and then formalize the main

result of this section in the following theorem.

Definition 9: A class G of functions A → B is universal if, for any x1 6= x2 in A, the probability that g(x1) =

g(x2) is at most 1
|B| when g is chosen as random from G according to the uniform distribution.
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There are efficient universal classes, e.g., to map n bits to r bits, class of linear functions given by r×n matrices

needs rn bits to describe [14]. Note that hash function should have complexity as 1) it will be revealed to each

user, and 2) Alice and Bob will compute g(W ∗). There are more efficient classes with polynomial time evaluation

complexity and O(n) description complexity [14].

Generalized privacy amplification, proposed in [13], is based on the following property of universal hashing.

Lemma 10 (Theorem 3, [13]): Let X ∈ X be a random variable with distribution PX and Rényi entropy R(X) =

− log2 E[PX(X)]. Let G be a random choice (according to uniform distribution) of a member of universal class

of hash functions X → {0, 1}r, and let Q = G(X). Then

H(Q|G) ≥ R(Q|G) ≥ r − log2

(
1 + 2r−R(X)

)
≥ r − 2r−R(X)

ln 2

Exploiting the proposed coding scheme, which creates advantage in favor of Bob over multiple fading realizations

of the channel, we use the universal hashing described above and obtain the following result.

Theorem 11: For any ε, ε∗ > 0, let

n = L M N (E [C(Wm)]− ε∗) ,

and

r = L M N
(
E

[
[C(Wm)− C(We)]+

]− ε∗
)
.

Then, for sufficiently large L, M and N , Alice and Bob can w.h.p. agree on the random variable W ∗ , ¯̄W (1···L)

of length n over LM fading blocks (i.e., Pr{W ∗ 6= Ŵ ∗} ≤ ε, where Ŵ ∗ denotes the estimate at Bob); and choose

K = G(W ∗) as their secret key, where G is chosen uniformly random from universal class of hash functions

{0, 1}n → {0, 1}r, satisfying

I(K;Y ∗
e , G) ≤ ε,

where Y ∗
e , ¯̄Y (1···L)

e denotes the Eve’s total received symbols.

Proof:

We repeat the described scheme over LM fading blocks. Due to the construction above, we have

1
N

H(V̄ (i)
m )− ε1 ≤ 1

N
H(V̄ (i)

m |Ȳ (i)
e ) ≤ 1

N
H(V̄ (i)

m ), (30)

where 1
N H(V̄ (i)

m ) = [C(W (i)
m ) − C(W (i)

e )]+ and ε1 → 0 as N gets large (follows from the fact that conditioning

does not increase entropy and the security of the information carried in V̄m), and

1
N

H(V̄ (i)
r |Ȳ (i)

e , V̄ (i)
m ) ≤ ε2, (31)

where ε2 → 0 as N →∞ (follows from Fano’s inequality).

We now consider the total information accumulation and leakage. Let W ∗ = ¯̄W (1···L) , {V̄ (l;m)
m , V̄

(l;m)
r ,∀l ∈

[1, L],∀m ∈ [1,M ]} and denote the estimate of it at Bob as Ŵ ∗. We obtain that, there exist N1,M1, s.t. for any

N ≥ N1 and M ≥ M1

H(W ∗) ≥ LMN (E [C(Wm)]− ε∗) , (32)
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and

Pr{W ∗ 6= Ŵ ∗} ≤ LM2−Nβ

, (33)

for some β ∈ (0, 1
2 ) due to the polar coding result and the union bound.

Considering all the observations accumulated at the Eve as Y ∗
e , ¯̄Y (1···L)

e , we write

H(W ∗|Y ∗
e ) =

L∑

l=1

H( ¯̄W (l)| ¯̄Y (l)
e ) =

LM∑

i=1

H(V̄ (i)
m |Ȳ (i)

e ) + H(V̄ (i)
r |Ȳ (i)

e , V̄ (i)
m ) (34)

Focusing on a particular super block, omitting the index (l) in ( ¯̄W (l), ¯̄Y (l)
e ), and using (30) and (31) in (34), we

obtain

MN
(
E

[
[C(Wm)− C(We)]+

]− ε4
) ≤ H( ¯̄W | ¯̄Ye) (35)

≤ MN
(
E

[
[C(Wm)− C(We)]+

]
+ ε5

)
, (36)

where ε4 and ε5 vanishes as M, N get large.

In order to translate H(W ∗|Y ∗
e ) to Rényi entropy to use Lemma 10 in our problem, we resort to typical sequences,

as for a uniform random variable both measures are the same. Considering ( ¯̄W (1), · · · , ¯̄W (L), ¯̄Y (1)
e , · · · , ¯̄Y (L)

e ) as L

repetitions of the experiment of super block random variables ( ¯̄W, ¯̄Ye), we define the event T based on typical sets

as follows [15]: Let δ > 0. T = 1, if the sequences ¯̄w(1···L) and ( ¯̄w(1···L), ¯̄y(1···L)
e ) are δ-typical; and ¯̄y(1···L)

e is such

that the probability that ( ¯̄w′(1···L)
, ¯̄y(1···L)

e ) is δ-typical is at least 1− δ, which is taken over ¯̄w′(1···L) according to

p( ¯̄W ′(1···L)|¯̄y(1···L)
e ). Otherwise, we set T = 0 and denote δ0 , Pr{T = 0}. Then, by Lemma 6 of [15], as L →∞

Lδ0 → 0 and Lδ → 0, (37)

and

R( ¯̄W (1···L)| ¯̄Y (1···L)
e = ¯̄y(1···L)

e , T = 1) ≥ L(H( ¯̄W | ¯̄Ye)− 2δ) + log(1− δ). (38)

We continue as follows.

R( ¯̄W (1···L)| ¯̄Y (1···L)
e = ¯̄y(1···L)

e , T = 1) ≥ L(H( ¯̄W | ¯̄Ye)− 2δ) + log(1− δ)

≥ LMN

(
E

[
[C(Wm)− C(We)]+

]− ε4 − 2δ

MN
+

log(1− δ)
LMN

)

= LMN
(
E

[
[C(Wm)− C(We)]+

]− δ∗
)
, (39)

where δ∗ → 0 as M, N →∞.

Thus, for the given ε∗ > 0, there exists M2, N2 s.t. for M ≥ M2 and N ≥ N2, ε∗
2 ≥ δ∗. We let r =
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LMN (E [[C(Wm)− C(We)]+]− ε∗) and continue as follows.

H(K|Y ∗
e , G) ≥ H(K|Y ∗

e , G, T )

= Pr{T = 1}H(K|Y ∗
e , G, T = 1) + Pr{T = 0}H(K|Y ∗

e , G, T = 0)
(a)

≥ (1− δ0)
∑

y∗e∈Y∗e
H(K|Y ∗

e = y∗e , G, T = 1)P (Y ∗
e = y∗e |T = 1)

(b)

≥ (1− δ0)


r −

∑

y∗e∈Y∗e

2r−R(W∗|Y ∗e =y∗e ,T=1)

ln 2
P (Y ∗

e = y∗e |T = 1)




(c)

≥ (1− δ0)
(

r − 2−LMN(ε∗−δ∗)

ln 2

)
(40)

where in (a) δ0 is s.t. Lδ0 → 0 as L →∞, (b) is due to Lemma 10 given above, (c) is due to (39) and the choice

of r. Here, for the given ε > 0, there exists M3, N3 s.t. for M ≥ M3 and N ≥ N3, 2−LMN( ε∗
2 )

ln 2 ≤ ε
2 . Hence, we

obtain

I(K; Y ∗
e , G) = H(K)−H(K|Y ∗

e , G) (41)

≤ δ0r +
2−LMN(ε∗−δ∗)

ln 2
(42)

≤ δ0LMN +
2−LMN(ε∗−δ∗)

ln 2
(43)

(a)

≤ δ0LMN +
2−LMN( ε∗

2 )

ln 2
(44)

(b)

≤ δ0LMN +
ε

2
, (45)

where (a) holds if M ≥ M2 and N ≥ N2 and (b) holds if M ≥ M3 and N ≥ N3.

Now, we choose some M ≥ max{M1,M2,M3}. For this choice of M , we choose sufficiently large L and

sufficiently large N such that N ≥ max{N1, N2, N3} and

δ0LMN ≤ ε

2
(46)

LM2−Nβ ≤ ε, (47)

which holds as δ0L → 0 as L →∞ in (37). (In fact, due to [15, Lemma 4 and Lemma 6], for any ε′ > 0, we can

take δ0L ≤ ε′
L as L gets large.) Therefore, for this choice of L,M, N , we obtain the desired result from (32), (33),

(45), due to (46) and (47):

H(W ∗) ≥ LMN (E [C(Wm)]− ε∗) (48)

Pr{W ∗ 6= Ŵ ∗} ≤ ε (49)

I(K; Y ∗
e , G) ≤ ε (50)

In addition, for this choice of L,M,N , we bound H(K) ≥ r − ε due to (40), which shows that the key is

approximately uniform.

Few remarks are now in order.
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1) The results do not depend on random coding arguments. Coding is low complex: a) Any code in the

ensemble will work (frozen bits can be set to all zero vector), b) Overall encoding and decoding complexity

is O(LMN log(N)) for a total number of LMN channel uses, c) Code construction has O(N) complexity for

each block, as the main channel is erasure channel [8].

2) Existing code designs in the literature and also the previous sections of this work assume that Eve’s channel is

known at Alice and Bob. In the above scheme, Alice and Bob only need the statistical knowledge of eavesdropper

CSI. Also, the main channel is not necessarily stronger than the eavesdropper channel, which is not the case for

degraded wiretap settings.

3) In the above scheme, instead of hash function and Rényi entropy, extractor functions and min-entropy can be

used [15]. Similar to above, we can obtain

H∞(W ∗|Y ∗
e = y∗e , T = 1) ≥ LMN(E[[C(Wm)− C(We)]+]− δ∗),

as min-entropy and entropy are same if the random variable is uniformly distributed. Now by Lemma 9 of [15],

for any ∆ > 0 and sufficiently large L, there exist an extractor g : {0, 1}n × {0, 1}d → {0, 1}r with d ≤ ∆n s.t.,

if V is uniformly distributed over {0, 1}d then

H(K = E(W ∗, V )|Y ∗
e = y∗e , g, V, T = 1) ≥ r − 2−n1/2−o(1)

.

Note that extractors can be efficient compared to universal hashing. For example, while the randomly chosen hash

function may require n bits to describe, the extractor can be described with d ≤ ∆n bits with small ∆. If the chosen

(hash or extractor) function has to be communicated through the same channel, this property can be exploited to

increase the key renewal rate.

4) If the inverse of the hash (or extractor) functions can be computed easily, then this scheme can be used for

secure message transmission. The enabling idea is to randomly select the transmitted input (here, information bits

of the polar code) among the set g−1(K), where K here denotes the message that we would like to transmit. Then,

Bob can recover the message that is secured from the Eve with the above scheme.

5) The result can be extended to the multi-eavesdropper scenario. If the eavesdroppers do not collude, we can

use the worst average leakage, i.e., r = min
We

LMN(E[[C(Wm) − C(We)]+] − ε∗), for the key. If they collude,

assuming that there exist a physical degradation order among them, we can use the best eavesdropper channel for

each fading block in the expression, i.e., r = LMN(E[[C(Wm)− C(W ∗
e )]+]− ε∗) where the expectation is over

the statistics of the best eavesdropper denoted by W ∗
e .

6) The above scheme can be used for the wiretap channel of Section IV by setting M = 0 to achieve strong

secrecy (assuring arbitrarily small information leakage) instead of the weak notion (making the leakage rate small).

See also [15].

7) The results can be extended to arbitrary binary-input channels along the same lines, using the result of

Section IV. In such a setting, the above theorem would be reformulated with n = LMN(E[I(Wm)] − ε∗) and

r = LMN(E[[I(Wm) − I(We)]+] − ε∗). However, the code construction complexity of such channels may not

scale as good as that of the erasure channels [8].
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VII. DISCUSSION

In this work, we consider polar coding for binary-input point-to-point and multiple-access channels with a

degraded eavesdropper. It is shown that polar coding can be utilized to achieve non-trivial secrecy rates for both

channels. The results might be extended to arbitrary discrete memoryless channels using the techniques given in [16]

(see Appendix A). In addition, results for the multiple-access channels might be enhanced using the rate-splitting

technique proposed in [17]. We note that, polar coding for multiple-access channels is recently considered in [18],

where the authors show that MAC can be polarized into five different extremal channels. This observation is used

to achieve rate pairs on the dominant face of the rate region obtained by uniform inputs in [18]. This technique

can be utilized in the secrecy setting by taking advantage of the extremal channels of the main channel over the

eavesdropper channel. The second focus of this work is the secret key agreement over wireless channels, where

we showed that Alice and Bob can create advantage over Eve by using the polar coding scheme at each fading

block, which is then exploited with privacy amplification techniques to generate keys. This result is interesting in

the sense that part of the key agreement protocol is established information theoretically over fading channels by

only requiring statistical knowledge of eavesdropper CSI at the users.
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APPENDIX A

OTHER POLAR CODE RESULTS

A. Polarization for an arbitrary DMC

Recently, the channel polarization result of [8] has extended to arbitrary discrete memoryless channels in [16].

These extended result shows polar codes achieving the symmetric capacity of the q-ary DMC W given by

I(W ) ,
∑

x∈X

∑

y∈Y

1
q
W (y|x) logq


 W (y|x)∑

x′∈X
1
q W (y|x′)


 , (51)

where |X | = q.

B. Polar codes with non-uniform input distributions

The following method, given in [19], is used in [11] and [16] to construct polar codes with non-uniform input

distributions. Let X and X ′ be two finite sets with |X ′| = m. Then, any distribution p(x) for x ∈ X for which

mp(x) is an integer ∀x can be implemented by a uniform distribution on X ′ and a deterministic map f : X ′ → X .

Using this map, we define the augmented channel W ′(y|x′) = W (y|f(x′)). Then, the symmetric capacity of W ′,

I(W ′), is equal to I(X; Y ) with input distribution p(x). This technique can be used to approach the true capacity

of any DMC by approximating the capacity achieving input distribution by a rational p(x) and using the above

channel augmentation technique ( [16]).

APPENDIX B

PROOF OF THEOREM 8

We define W1m, W1e, W2m, and W2e as given in the theorem.

For a given sufficiently large N and β ∈ (0, 1
2 ), let

A1m = {i ∈ {1, · · · , N} : Z(W1m
(i)
N ) ≤ 1

N
2−Nβ},

and

A1e = {i ∈ {1, · · · , N} : Z(W1e
(i)
N ) ≤ 1

N
2−Nβ}.

Now, consider a polar code C1m , C(N,F1m, u1F1m
) for the channel W1m with some u1F1m

, where F1m = Ac
1m.

Due to Lemma 4, we have A1e ⊂ A1m and hence F1m ⊂ F1e. Now, for any given length |F1e| − |F1m| vector

v̄1m and u1F1m
, we define the vector u1F1e

(v̄1m) with u1F1m
(v̄1m) = u1F1m

and u1F1e\F1m
(v̄1m) = v̄1m. Then,

the code C1e(v̄1m) , C(N,F1e, u1F1e
(v̄1m)) will be a symmetric capacity achieving polar code for the channel

W1e averaged over the ensemble.

We similarly define A2m, A2e, C2m, and C2e for channels W2m and W2e by replacing the subscript 1 with 2

everywhere above.

Encoding: A code is chosen uniformly from the ensemble by choosing u1F1m
i.i.d. according to uniform

distribution. User 1 maps the secrecy message to be transmitted to v̄1m and generate a random vector v̄1r, according
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to uniform distribution over X1, of length |A1e|. Then, the channel input is constructed with x1
N
1 = u1

N
1 BNF⊗n,

where u1F1m
is the frozen vector of the polar code C1m, u1F1e\F1m

= v̄1m, and u1A1e
= v̄1r.

User 2 maps the secrecy message to be transmitted to v̄2m and generate a random vector v̄2r, according to

uniform distribution over X2, of length |A2e|. Then, the channel input is constructed with x2
N
1 = u2

N
1 BNF⊗n,

where the vector u2
N
1 is designed for channels W2m and W2e along the similar lines given above.

Decoding: The main receiver, having u1F1m
, decodes both V̄1m and V̄1r over the channel W1m (considering

the other user’s input, x2, as noise) with the SC decoder for polar codes with error probability Pe = O(2−Nβ

)

(averaged over the ensemble) achieving a rate R1 = |v̄1m|
N = I(W1m)− I(W1e) for sufficiently large N .

After having x1
N
1 , it can decode both V̄2m and V̄2r over the channel W2m (given the knowledge of u2F2m

) with

the SC decoder for polar codes with error probability Pe = O(2−Nβ

) (averaged over the ensemble) achieving a

rate R2 = |v̄2m|
N = I(W2m)− I(W2e) for sufficiently large N .

Security: Employing the SC decoding, the eavesdropper can decode the random vector V̄1r over the channel

W1e with error probability Pe = O(2−Nβ

) (averaged over V̄1m and U1F1e
). Utilizing the Fano’s inequality, similar

to the proof of Theorem 5, we therefore have

H(V̄1r|V̄1m, U1F1m
, Ye

N
1 ) ≤ Nε1(N), (52)

where ε1(N) → 0 as N →∞.

In addition, given the knowledge of x1
N
1 (say by an oracle), the eavesdropper can decode V̄2r over the channel

W2e with error probability Pe = O(2−Nβ

) (averaged over V̄2m and U2F2e
). Utilizing the Fano’s inequality, we

therefore have

H(V̄2r|V̄2m, U2F2m
, x1

N
1 , Ye

N
1 ) ≤ Nε2(N), (53)

where ε2(N) → 0 as N →∞.

Combining the two above, we have

H(V̄1r, V̄2r|V̄1m, V̄2m, U1F1m
, U2F2m

, Ye
N
1 )

(a)

≤ H(V̄1r|V̄1m, U1F1m
, Ye

N
1 )

+H(V̄2r|V̄1m, V̄2m, U1F1m
, U2F2m

, V̄1r, Ye
N
1 )

(b)
= H(V̄1r|V̄1m, U1F1m

, Ye
N
1 )

+
∑

x1
N
1 ∈X×N

1

H(V̄2r|V̄2m, U2F2m
, X1

N
1 = x1

N
1 , Ye

N
1 )

(c)

≤ Nε(N), (54)

where (a) is due to the fact that conditioning does not increase entropy and (b) is due to the fact that X1
N
1 is

determined by V̄1m, V̄1r, and U1F1m
; and {V̄1m, V̄1r, U1F1m

} → X1
N
1 → Ye

N
1 form a Markov chain; (c) follows

from (52) and (53) with some ε(N) → 0 as N →∞.
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Then, the mutual information leakage to the eavesdropper averaged over the ensemble of codes can be bounded

as follows.

I(M1,M2;Ye
N
1 |U1F1m

, U2F2m
) = I(V̄1m, V̄2m;Ye

N
1 |U1F1m

, U2F2m
)

= I(V̄1m, V̄2m, V̄1r, V̄2r; Ye
N
1 |U1F1m

, U2F2m
)

−I(V̄1r, V̄2r;Ye
N
1 |V̄1m, V̄2m, U1F1m

, U2F2m
) (55)

≤ I(X1
N
1 , X2

N
1 ; Ye

N
1 )−H(V̄1r, V̄2r)

+H(V̄1r, V̄2r|V̄1m, V̄2m, U1F1m
, U2F2m

, Ye
N
1 )

(a)

≤ N {I(W1e) + I(W2e)} − |A1e| − |A2e|+ Nε(N),

where in (a) we have I(X1
N
1 , X2

N
1 ; Ye

N
1 ) =

N∑
i=1

I(X1
N
1 , X2

N
1 ;Yei|Ye

i−1
1 ) ≤ NI(X1, X2; Ye) due to the fact that

conditioning does not increase entropy; with uniformly distributed channel inputs. As

lim
N→∞

|A1e|+ |A2e|
N

= I(W1e) + I(W2e), (56)

due to the code construction, and ε(N) → 0 as N →∞ from (54), we obtain that

1
N

I(M1,M2; Ye
N
1 |U1F1m

, U2F2m
) ≤ ε (57)

for any given ε > 0 for sufficiently large N .

Therefore, after an expurgation argument, we can find a code at each user satisfying the reliability and secrecy

constraints and achieving the reported rates given in the theorem.
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