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Abstract

In this thesis, we propose a new class of lattices based on polar codes, namely polar

lattices. Polar lattices enjoy explicit construction and provable goodness for the ad-

ditive white Gaussian noise (AWGN) channel, i.e., they are AWGN-good lattices, in

the sense that the error probability (for infinite lattice coding) vanishes for any fixed

volume-to-noise ratio (VNR) greater than 2πe. Our construction is based on the

multilevel approach of Forney et al., where on each level we construct a capacity-

achieving polar code. We show the component polar codes are naturally nested,

thereby fulfilling the requirement of the multilevel lattice construction. We present a

more precise analysis of the VNR of the resultant lattice, which is upper-bounded in

terms of the flatness factor and the capacity losses of the component codes. The pro-

posed polar lattices are efficiently decodable by using multi-stage decoding. Design

examples are presented to demonstrate the superior performance of polar lattices.

However, there is no infinite lattice coding in the practical applications. We need

to apply the power constraint on the polar lattices which generates the polar lattice

codes. We prove polar lattice codes can achieve the capacity 1
2
log(1 + SNR) of the

power-constrained AWGN channel with a novel shaping scheme. The main idea is

that by implementing the lattice Gaussian distribution over the AWGN-good polar

lattices, the maximum error-free transmission rate of the resultant coding scheme

can be arbitrarily close to the capacity 1
2
log(1 + SNR). The shaping technique is

based on discrete lattice Gaussian distribution, which leads to a binary asymmetric
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channel at each level for the multilevel lattice codes. Then it is straightforward to

employ multilevel asymmetric polar codes which is a combination of polar lossless

source coding and polar channel coding. The construction of polar codes for an

asymmetric channel can be converted to that for a related symmetric channel, and

it turns out that this symmetric channel is equivalent to an minimum mean-square

error (MMSE) scaled Λ/Λ′ channel in lattice coding in terms of polarization, which

eventually simplifies our coding design.

Finally, we investigate the application of polar lattices in physical layer security.

Polar lattice codes are proved to be able to achieve the strong secrecy capacity of the

Mod-Λ AWGN wiretap channel. The Mod-Λ assumption was due to the fact that a

practical shaping scheme aiming to achieve the optimum shaping gain was missing.

In this thesis, we use our shaping scheme and extend polar lattice coding to the

Gaussian wiretap channel. By employing the polar coding technique for asymmetric

channels, we manage to construct an AWGN-good lattice and a secrecy-good lattice

with optimal shaping simultaneously. Then we prove the resultant wiretap coding

scheme can achieve the strong secrecy capacity for the Gaussian wiretap channel.
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CHAPTER 1

Introduction

T
He fundamental theorem of channel coding is undoubtedly the most important

result of information theory which started with Claude Shannon’s 1948 land-

mark paper [1]. A fast-decodable, structured code that could achieve the capacity

(the Shannon limit) of well-understood channels such as the AWGN channel is the

“holy grail" of coding theory. After more than 60 years, by standing on the shoulders

of giants we propose a lattice coding scheme based on polar codes to achieve this

final destination.

We then apply the above theory to the physical layer security. The issues of data

confidentiality and security have taken on an increasingly important role in current

communication systems. Traditionally, security is viewed as an independent design

addressed above the physical layer, and all widely used cryptographic protocols are

designed and implemented assuming the physical layer has already been established

and provides an error-free link. Given that data security is so critically important,

it is reasonable to argue that security measures should be implemented at all layers.

Furthermore, with the emergence of ad-hoc and decentralized networks, higher-layer

techniques, such as encryption and key distribution, are complex and difficult to
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implement. The wireless network especially needs the physical layer security due to

its broadcast nature of wireless medium. Therefore my research also focuses on this

promising area.

1.1 Latices and lattice codes for the AWGN channel

Lattice codes are useful in many communication scenarios with continuous-output

channels, i.e., Gaussian channel. The first thing is to understand the difference be-

tween lattices and lattice codes. In practice, only a finite set of points of a lattice

Λ can be used as a signal constellation in a communication system. This set con-

sists of those points of Λ that are contained in a bounded shaping region S, and is

known as the lattice code C(Λ, S) based on S and Λ. The performance of a lattice

code C(Λ, S) on the AWGN channel depends not only on the underlying lattice Λ

(packing problem, coding gain) [2] but also on the shape of the support region S

(covering problem, shaping gain) [3]. A lattice code is generated by applying the

power constraint to an infinite lattice.

It has been recognized in recent years that, at least for codes of moderate com-

plexity on high-SNR AWGN channels, the problems of coding (packing) and con-

stellation shaping are largely separable [2]. That is, if C = Λ ∩ S is a discrete

constellation consisting of the points in an infinite lattice Λ that lie in a shaping

region S, then when the number of constellations is large the properties of the con-

stellation are largely determined by the properties of Λ. This is also supported by the

fact that the largest shaping gain is only 1.53 dB. In this case, it is usually assumed

that the decoder is unaware of the shaping, i.e., it always decodes to the nearest

lattice point, whether or not this point lies in S. Such a decoder will be called a

lattice decoder. Note that the attractive symmetry properties commonly associated

with lattice codes, such as congruent decoding regions, uniform distance profile,
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and codeword-independent error probability, apply only to a lattice decoder. If us-

ing minimum-distance (maximum-likelihood) decoding rather than lattice (infinite-

constellation) decoding, many of the benefits of lattice structure are lost. Therefore,

assuming infinite constellation can simplify the performance analysis of lattices.

The purpose of this section is to introduce some basic concepts of lattices for

the AWGN channel to the reader. The system model is shown in Figure 1.1. It is a

real channel, meaning that the coordinates of the noise are N i.i.d. random variables

which follow a Gaussian distribution with average 0 and fixed variance σ2. More-

over, the noise is independent of the channel input XN . Intuitively, for any fixed

noise variance σ2, if all the lattice points (codewords) are far away from each other

the communication can be reliable. However, this will require a large transmission

power which is not a good assumption for practical reasons. The transmission power

can not be infinite. There should be a power constraint over all the codewords:

1

N
E
[

‖ XN ‖2
]

≤ P.

Therefore the tradeoff between the maximum reliable transmission rate and the trans-

mission power is an interesting and challenge problem. The best tradeoff is known

as the channel capacity which is a well-known result of Shannon [1] for the AWGN

channel:

C =
1

2
log(1 +

P

σ2
) =

1

2
log(1 + SNR) bits per transmission.

For both theoretical and practical reasons, we take the following two steps to tackle

this problem. First we consider the unbounded codewords as the constellation and

try to find a good structure of lattice points (the shape of its fundamental region)

to deal with the Gaussian noise in Chapter 3. Then a practical shaping scheme for

lattices is proposed in Chapter 4.
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Figure 1.1: Lattices for the AWGN channel.

1.1.1 Lattices

Mathematically, a lattice is defined as a module over a certain ring and embedded in a

vector space over a field. For our purposes, we will only consider real lattices, that is

Z-modules in the Euclidean space. And we will only deal with full rank lattices, that

is n-dimensional lattices in an n-dimensional Euclidean space. They are a discrete

subgroup of Rn which can be described by [4]

Λ = {λ = Bx : x ∈ Z
n},

where the columns of the generator matrix B = [b1, · · · ,bn] are linearly indepen-

dent.

For a vector x ∈ R
n, the nearest-neighbor quantizer associated with Λ isQΛ(x) =

argminλ∈Λ ‖ λ − x ‖. We define the modulo lattice operation by x mod Λ ,

x − QΛ(x) [4]. The Voronoi region of Λ, defined by V(Λ) = {x : QΛ(x) = 0},

specifies the nearest-neighbor decoding region. The Voronoi cell is one example of

fundamental region of the lattice. A measurable set R(Λ) ⊂ R
n is a fundamental

region of the lattice Λ if ∪λ∈Λ(R(Λ) + λ) = R
n and if (R(Λ) + λ) ∩ (R(Λ) + λ

′)

has measure 0 for any λ 6= λ
′ in Λ. The volume of a fundamental region is equal to
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that of the Voronoi region V(Λ), which is given by V (Λ) =| det(B) |. The minimum

distance of a lattice Λ is dmin(Λ) = minx∈Λ | x |.

In this section, we only consider transmitting lattice points without power con-

straint over the AWGN channel. Since a lattice has infinite lattice points, it is known

as infinite constellation (IC) or coding without power constraint which was proposed

by Poltyrev [5]. Although the assumption is not realistic, it can provide some insights

into the construction of good lattice codes for the power-constraint AWGN channel.

If a lattice is "good“ under this framework, it is known as "AWGN-good“ (the for-

mal definition will be given in Chapter 2). This scenario is simpler than the power

constraint case in the sense that the decoding does not take account of the shaping

region. Such a lattice decoder simply returns the closest lattice point to the decoder

input. Due to the symmetry of the lattice, the performance of such a lattice decoder

does not depend on the transmitting lattice points but only depends on the funda-

mental region of the lattice. Therefore both the transmitting (just sending all zeros)

and decoding have been greatly simplified making it appealing for both theoretical

analysis and practical implementation. Here we use a very simple lattice D4 to illus-

trate the framework and its difference with conventional modulations. Again formal

definitions of the lattice constructions from error correcting codes will be introduced

in Chapter 2.

Example 1.1: D4 is famous for the densest packing among 4 dimensional known

lattices. It can be constructed from (N = 4, k = 3) Reed-Muller Code by Construc-

tion A. The lattice partition is Z/2Z. The code formula is

D4 = C(4, 3) + 2Z4.

Each lattice construction from error-correcting codes needs a lattice partition.

This is different with the conventional modulations. The beauty of the lattice system
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Figure 1.2: Lattice partitions induced by the Z
4/2Z4

is that it is able to merge the channel coding and the modulation as one process. The

lattice partition defines the available cosets and how to choose cosets to construct a

lattice depends on the binary codes (a coset of a lattice can be simply regarded as

a shift of this lattice). The process is depicted in Figure 1.2. We call Z and 2Z as

the top lattice and the bottom lattice in this partition tree. There are 23 codewords of

this binary code. Therefore D4 is the combination of the 23 cosets of 2Z4 which are

chosen from 24 cosets by the (4, 3) code (the number of the cosets is | Z4/2Z4 |= 24):

D4 = ∪ci∈C(2Z
4 + ci).

Its generator matrix B is












1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 2












.
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Figure 1.3: The encoding and decoding system of the D4 lattice. The binary code is

the Reed-Muller code with N = 4 and k = 3.

Then the transmitting symbols XN for the AWGN channel are [0, 0, 0, 0], [1, 0, 0,

1], [0, 0, 0, 2], · · · . The encoding and decoding system is shown in Figure 1.3.

1.1.2 Lattice Codes

Since a lattice is infinite, shaping is needed to bound power. The common practice

is to apply a finite shaping region.

Definition 1.1 (Lattice codes): Given a lattice Λ ∈ R
n and a bounded region

S ∈ R
n, a lattice code (or lattice constellation) C is the intersection of Λ and S:

C(Λ, S) = Λ ∩ S.

S is called the shaping region and, if M is the cardinality of the lattice code, its rate

is defined as

RC =
logM

n
.

The power of this lattice code is

P =
∑

λ∈Λ∩S
|λ|2.

Here the shaping region can be generalized to the notion of a shaping technique.
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Figure 1.4: Discrete Gaussian distribution over Z2.

As long as we can control the transmitting power by selecting points from an infinite

lattice, we obtain a lattice code. In this work, we use the probabilistic shaping over

an infinite lattice proposed by [4]. The main idea is that the distribution of each coor-

dinate of the input XN PX(x) is a discrete Gaussian distribution. It is equivalent to a

discrete Gaussian distribution over an N -dimensional lattice (IC). Although the con-

stellation is infinite, both the rate and the transmission power are finite. Specifically,

the rate of such lattice code is the entropy rate of the discrete Gaussian distribution

H(X). The transmission power is the variance of the discrete Gaussian distribution

E[|x|]2 (assume its mean is 0). A discrete Gaussian distribution is shown in Fig-

ure 1.4. The formal definition of the discrete Gaussian distribution will be given in

Chapter 2.

Next we want to show the basic idea of the probabilistic shaping. The encod-

ing process is shown in Figure 1.5. X1:4 = U1:4G. If the distribution of U i for

i = 1, 2, 3, 4 is uniformly distributed, it is easy to verify that the input distribution

PX(x = 0) = PX(x = 1) = 1
2
. If we assign the value of U4 according to the
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Figure 1.5: The encoding process of a polar code with block length N = 4.

following mappings:

U4 =







0 U3 = 0,

1 U3 = 1,

the input distribution will certainly not be PX(x = 0) = PX(x = 1) = 1
2
. This ex-

ample demonstrates that the key of the probability shaping is to find the connections

between the input bits U1:N . This is known as the inverse lossless source coding

problem. Polar codes provide us a convenient tool to find these complicated map-

pings for any target distribution PX and they have been proved to be optimal for this

problem [6, 7]. Assume the target distribution of the input is PX , as the block length

N → ∞, the output of the polar encoding process can generate a vector XN and

the distribution of each coordinate X i for 1 ≤ i ≤ N is arbitrarily close to PX . The

simulation results are shown in Table 1.1. A shaping framework based on the polar

source coding technique is presented in [8]. We will extend the framework to the

multilevel codes to implement a discreet Gaussian distribution in Chapter 4.



1.2. Road to the Capacity of the AWGN channel 29

Table 1.1: The simulation results of polar coding for the inverse lossless source

coding problem. The distribution of each coordinate of XN is getting closer to the

target distribution PX(x = 0) = 0.89, PX(x = 1) = 0.11 as N increases. The

settings of the simulations can be found in [6].

Block length N PX

256 PX(x = 0) = 0.8711, PX(x = 1) = 0.1289
1024 PX(x = 0) = 0.8838, PX(x = 1) = 0.1162
4196 PX(x = 0) = 0.8914, PX(x = 1) = 0.1086
8192 PX(x = 0) = 0.8899, PX(x = 1) = 0.1101

1.2 Road to the Capacity of the AWGN channel

Lattice codes are the counterpart of linear codes over a finite field (Hamming space)

in the Euclidean space. Due to their large alphabets, lattice codes are useful in

a wide range of applications in communications for the continuous channels with

the Gaussian noise, such as theoretically achieving the AWGN channel capacity

[4], information-theoretical security [9], compute-and-forward [10], and distributed

source coding [11] (see [12, 13] for an overview). The story of lattice codes achiev-

ing the channel capacity of the AWGN channel can be traced back to de Buda’s work

at 1975 and followed by some corrections of his work and Poltyrev’s proof [5]. All

these results claimed that the achievable rate of lattice codes is 1
2
log(SNR) rather

than the real channel capacity 1
2
log(1+SNR). This achievable rate can be explained

by the Minkowski-Hlawka theorem. We recommend [14] to readers for a detailed

introduction. After nearly 50 years, Erez and Zamir successfully proved that lattice

codes can achieve this 1
2
log(1+SNR) by using MMSE scaling and Voronio shaping

[15]. But they need AWGN-good lattices and quantization-good lattices, which are

nonconstructive at that time. After another 10 years, Ling and Belfiore proved that

lattice codes can achieve the capacity with only AWGN-good lattices and a discrete

lattice Gaussian shaping [4]. This greatly simplifies the task but still the construction
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is not explicit.

On the other hand, there is a major breakthrough in the binary coding theory.

Polar codes, proposed by Arıkan in [16], can provably achieve the capacity of binary

memoryless symmetric (BMS) channels. Then there are considerable efforts to gen-

eralize polar codes to discrete memoryless channels and to nonbinary polar codes

[17, 18, 19, 20]. An attempt from the theoretical side to construct polar codes for

the AWGN channel was given in [21, 22], based on nonbinary polar codes and on

the technique for the multi-access channel. The polar codes for asymmetric channels

were introduced in [8] which provided an efficient shaping technique for symmetric

polar codes. However, it is still an open problem to construct practical polar codes

to achieve the capacity of the AWGN channel. In this thesis, we propose polar lat-

tices to fulfil this goal, based on a combination of binary polar codes, lattice codes

and discrete lattice Gaussian shaping. The main advantage of lattice Gaussian shap-

ing is that it allows for multi-stage decoding. Our approach is different from the

standard Voronoi shaping which involves a quantization-good lattice [15]. We note

however that the explicit construction of quantization-good lattices is not available

in literature. In contrast, the proposed Gaussian shaping does not require such a

quantization-good lattice, therefore bypassing this difficulty.

1.3 Physical Layer Security

Information-theoretic physical layer security [23] is a technique that exploits the

channel difference between the legitimate receiver and the eavesdropper (passive

attacker) to provide security. Its security comes from information theoretic security.

By adding randomness and modify the conventional channel codes, perfect secrecy

can be ensured under a certain channel condition; in other words, the eavesdropper

cannot obtain any useful information from the received signal. An intuitive example
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is shown here. Assume the confidential message is S and let ξ be a uniform binary

random variable which is independent of S. Let the transmitted message be X =

(ξ, ξ ⊕ S). The addition is modulo two addition. If the eavesdropper only can

decode either coordinate of X due to the limitation of his channel capacity, he gains

no information about S, hence the perfect secrecy has been achieved. The legitimate

receiver, however, can obtain S by adding the two components of X because he has

bigger channel capacity. This scheme shows the basic idea of physical layer security

exploiting the difference of channels (channel capacity in this example) to provide

secrecy.

The advantage of physical layer is that its security is based on the information

theoretic security. It does not impose any restrictions on the computational power of

the eavesdropper. Existing cryptosystems based on the hardness of certain computa-

tional problems are vulnerable to quantum attacks. Namely, if a large-scale quantum

computer is successfully built (which looks increasingly likely in the future), then

some problems such as integer factorization will be solved easily. The consequence

is that existing crypto systems will be considerably easier to break. This puts existing

crypto schemes at high risk.

Therefore, considerable attention has recently been paid on the research of phys-

ical layer security. The theoretical idea was originated from Shannon’s notion of

perfect secrecy [24]. Perfect security can be achieved if the encoding of infor-

mation bits M into a transmitted codeword X is such that the mutual information

I(M ;X) = 0. Later Wyner [23] proved that both robustness to transmission errors

and a prescribed degree of data confidentiality could be attained by channel coding

technology without any key bits if the transmitted channels satisfy some conditions.

Leung-Yan-Cheong extended this conclusion to Gaussian Wiretap Channel in [25].

Since Gaussian channels is the most fundamental channel model in communication

theory, we restrict ourselves to the Gaussian wiretap channel in this work. The sys-
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Figure 1.6: The Gaussian Wiretap channel.

tem model is depicted in Figure 1.6. A practical scenario for this model is that Bob

connects to WIFT inside his room and Eve tries to eavesdrop on conversations out-

side the room. The Rayleigh fading wiretap channel is our future work. Alice wants

to send information to Bob. Eve is an eavesdropper. The channel between Alice and

Bob is called the main channel C1. The channel between Alice and Eve is called

the wiretapper channel C2. Wyner showed that if the difference in terms of channel

capacity between C1 and C2 is positive it is possible to achieve perfect secrecy. Then

Csiszär and Körner [26] showed that the secrecy can be ensured for the cases when

C1 is less noisy than C2 in wiretap channel.

The information theoretic analysis on physical layer security is all about secrecy

capacity. Strong secrecy capacity is a theoretic limit of the transmission rate that can

guarantee both reliability between Alice and Bob and strong secrecy I(M ;ZN)→ 0

between Alice and Eve. This theoretic limit can be a guideline for the practical

coding design as what happened in the channel coding history. An exposition of

progress in this area can be found in [27]. Much attention has been paid on the

research on secrecy capacity of various kinds of channels, including fading wiretap

channels [28], multi-input multi-output (MIMO) wiretap channels [29], multi-access

channels [30], broadcast channels with confidential messages [31], and interference

channels with confidential messages [32]. In this paper, we aim to propose a coding

scheme that can achieve the strong secrecy capacity of the Gaussian wiretap channel.
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1.3.1 Lattice codes for the Gaussian Wiretap Channel

The first wiretap code constructions were proposed in [33], where the nested codes

were proved to achieve the secrecy capacity. The lattice codes have large alpha-

bets. Furthermore, lattice codes have nested structure which are essential to the

coding scheme for secrecy. Therefore we believe lattice codes are good candidates

to provide secrecy. There has been some progress in wiretap lattice coding for the

Gaussian wiretap channel. On the theoretical aspect, the achievable rate for lattice

coding achieving weak secrecy over the Gaussian wiretap channel has been derived

[34]. Furthermore, the existence of lattice codes approaching the strong secrecy ca-

pacity was demonstrated in [9]. On the practical aspect, wiretap lattice codes were

proposed in [35] to maximize the eavesdropper’s decoding error probability.

1.4 Research Challenges and Objectives

1.4.1 Challenges

To some extent, the major issues in the road to secrecy capacity are similar to those

that exist in the path to channel capacity: the random coding arguments used to

prove the achievability of capacity do not provide explicit code constructions. For

the record, in 1993, the remarkable discovery of turbo codes [36] with their as-

sociated iterative decoding phenomenally brought the best performance of known

codes so close to the Shannon limit that probably no one could have expected. It

took nearly 60 years to design a practical code to achieve the channel capacity since

Shannon’s proof. It took even longer to propose the explicit capacity-achieving polar

codes. However, the same thing will not happen in terms of codes for secrecy. This

is because the achievements in the channel coding may help us to construct powerful

codes for secrecy. Note that the codes used for secrecy of course should be different
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with the original channel codes. The channel codes call for the introduction of re-

dundancy to resist the effect of channel noise; on the other hand, creating too much

redundancy is likely to leak some information to the eavesdropper. Therefore the

design of codes for secrecy must take into account both reliability and secrecy.

Compared with the explosive outcome on the information theoretic analysis in

various wiretap channels, the problem of designing practical coding scheme for se-

cure communication over wiretap channels has not received much attention. The

design of codes for secrecy turns out to be surprisingly difficult. Although it has

been proved that polar codes can achieve the secrecy capacity of the binary symmet-

ric wiretap channels, no practical wiretap code constructions can achieve secrecy

capacity of the Gaussian wiretap channel. This great challenge have fostered the de-

velopment of alternative secrecy metrics in Gaussian wiretap channels. For example,

the decoding error probability of the eavesdropper. If the decoding error probabil-

ity of the eavesdropper goes to one, then his probability of correct decision tends

to zero. The most exploited approaches to design practical Gaussian wiretap codes

so far is to use LDPC codes [37] and unimodular lattice codes [35] using this se-

crecy metric. However, the connection between the decoding error probability and

the leakage mutual information is still not clear.

1.4.2 Objectives

In this thesis, the objectives are to address the above issues by solving the challenging

problems below:

(i) What is the role of the MMSE scaling to achieve the capacity of the AWGN

channel? Is it necessary?

(ii) How to construct lattice codes to achieve the capacity of the AWGN channel

1
2
log(1 + SNR) for any given SNR?

(iii) How to construct lattice codes to achieve the strong secrecy capacity for the
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Gaussian wiretap channel?

1.5 Summary of Contributions

We study all above problems by establishing efficient constructions, encoding and

decoding algorithms. The significance of this research is to provide insights and

guidance for building reliable and secure coding scheme in real communication sys-

tems. Our contributions are four-fold:

• The equivalence between Λ/Λ′ channel and the channel generated from the

chain rule of mutual information in terms of polar coding (Lemma 4.6)

• Explicit construction of AWGN-good polar lattices (Theorem 3.1)

• Explicit discrete Gaussian shaping scheme for AWGN-good polar lattices,

which can be proved to achieve the channel capacity of the AWGN channel

1
2
log(1 + SNR) for any SNR (Theorem 4.6)

• Explicit discrete Gaussian shaping scheme for Secrecy-good polar lattices

achieving the strong secrecy capacity of the Gaussian wiretap channel (Theo-

rem 5.1)

1.6 Thesis Organization

The organization of the rest of the thesis is as follows.

In Chapter 2, we provide the literature review for lattice constructions from error-

correcting codes. Chapter 3 presents a proof that polar lattices are AWGN-good. In

regards to the power constraint, Chapter 4 addresses an efficient shaping technique

for polar lattices such that the resultant polar lattice codes can achieve the channel

capacity of the AWGN channel 1
2
log(1 + SNR). In terms of security, Chapter 5
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proves that polar lattice codes can achieve the strong secrecy capacity of the Gaus-

sian wiretap channel. Finally, Chapter 6 concludes the thesis and identifies future

work.



CHAPTER 2

Backgrounds on Lattices

I
N this chapter, we restrict ourselves to the construction of lattices which are

good for AWGN channel coding without power constraint (its formal defini-

tion “AWGN-good" is given in the following sections). This is because such lattices

are the most important lattices in communication systems. There are many other

goodness of lattices, such as quantization-good lattices [38], secrecy-good lattices

[9] and capacity-good lattices [4]. The following is the basics of lattices and the

definition of AWGN-good lattices.

2.1 Basics

For σ > 0, we define the noise distribution of the AWGN channel with zero mean

and variance σ2 as

fσ(x) =
1

(
√
2πσ)x

e−
‖x‖2

2σ2 ,
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for all x ∈ R
n. Given σ, the volume-to-noise ratio (VNR) of an n-dimension lattice

Λ is defined by

γΛ(σ) ,
V (Λ)

2
n

σ2
.

We also need the Λ-periodic function

fσ,Λ(x) =
∑

λ∈Λ
fσ,λ(x) =

1

(
√
2πσ)n

∑

λ∈Λ
e−

‖x−λ‖2

2σ2 ,

for all x ∈ R
n.

We note that fσ,Λ(x) is a probability density function (PDF) if x is restricted to

the the fundamental regionR(Λ). This distribution for x ∈ R(Λ) is actually the PDF

of the Λ-aliased Gaussian noise, i.e., the Gaussian noise after the mod-Λ operation

[39]. It gets flat as σ increases as shown in Figure 2.1. In order to describe such

phenomenon, the flatness factor of a lattice Λ is defined as [9]

ǫΛ(σ) , max
x∈R(Λ)

| V (Λ)fσ,Λ(x)− 1 |,

where fσ,Λ(x)→ 1
V (Λ)

when it approaches uniform distribution.

We define the discrete Gaussian distribution over Λ centered at c as the discrete

distribution taking values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
, ∀λ ∈ Λ,

where fσ,c(Λ) =
∑

λ∈Λ fσ,c(λ). For convenience, we write DΛ,σ = DΛ,σ,0. This

distribution has been proved to achieve the optimum shaping gain when the flatness

factor is small [9].

A sublattice Λ′ ⊂ Λ induces a partition (denoted by Λ/Λ′) of Λ into equivalence
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(a) When σ is small, the effect of aliasing be-

comes insignificant and the Λ-aliased Gaussian

density fσ,Λ(x) approaches the Gaussian distri-

bution. The flatness factor ǫΛ(σ) is large.

(b) When σ is large, fσ,Λ(x) approaches the uni-

form distribution. The flatness factor ǫΛ(σ) is

small.

Figure 2.1: The comparison of the Λ-aliased Gaussian distributions with different

flatness factors.

groups modulo Λ′. The order of the partition is denoted by |Λ/Λ′|, which is equal

to the number of the cosets. If |Λ/Λ′| = 2, we call this a binary partition. Let

Λ1/ · · · /Λr−1/Λr for r ≥ 2 be an n-dimensional lattice partition chain. If only one

level is applied (r = 2), the construction is known as “Construction A”. If multiple

levels are used, the construction is known as “Construction D” [40, p.232]. For each

partition Λℓ/Λℓ+1 (1 ≤ ℓ ≤ r − 1) a code Cℓ over Λℓ/Λℓ+1 selects a sequence of

coset representatives aℓ in a set Aℓ of representatives for the cosets of Λℓ+1. This

construction requires a set of nested linear binary codes Cℓ with block length N and

dimension of information bits kℓ which are represented as [N, kℓ] for 1 ≤ ℓ ≤ r − 1

and C1 ⊆ C2 · ·· ⊆ Cr−1. Let ψ be the natural embedding of FN
2 into Z

N , where F2

is the binary field. Let b1,b2, · · · ,bN be a basis of FN
2 such that b1, · · ·bkℓ span Cℓ.

When n = 1, the binary lattice L consists of all vectors of the form

r−1∑

ℓ=1

2ℓ−1

kℓ∑

j=1

α
(ℓ)
j ψ(bj) + 2r−1l, (2.1)

where α
(ℓ)
j ∈ {0, 1} and l ∈ Z

N .



2.2. AWGN-goodness of Lattices 40

A mod-Λ channel is a Gaussian channel with a modulo-Λ operator in the front

end [39]. The capacity of the mod-Λ channel is [39]

C(Λ, σ2) = log V (Λ)− h(Λ, σ2), (2.2)

where h(Λ, σ2) is the differential entropy of the Λ-aliased noise over V(Λ):

h(Λ, σ2) = −
∫

V(Λ)
fσ,Λ(x) log fσ,Λ(x)dx.

The differential entropy is maximized to log V (Λ) by the uniform distribution over

V(Λ). It is known that the Λ/Λ′ channel (i.e., the mod-Λ′ channel whose input is

drawn from Λ ∩ V(Λ′)) is regular, and the optimum input distribution is uniform

[39]. Furthermore, the Λ/Λ′ channel is a BMS if |Λ/Λ′| = 2 [41]. The capacity of

the Λ/Λ′ channel for Gaussian noise of variance σ2 is given by [39]

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2)

= h(Λ, σ2)− h(Λ′, σ2) + log(V (Λ′)/V (Λ)).

2.2 AWGN-goodness of Lattices

In this section, we give an introduction about the AWGN-goodness of the lattices

(infinite constellation (IC)). It is the best possible tradeoff between the volume of

a lattice and the error probability Pe(L, σ
2) when transmitting in the additive white

Gaussian noise (AWGN) channel without power restriction. It is also known as

achieving the Poltyrev capacity [5] or sphere-bound-achieving lattices [39]. In this

thesis, we adapt these terms under different context accordingly.

Let V (Λ) be the fundamental volume of Λ, which is the volume of the Voronoi

region of Λ. Packing radius rpack

Λ shown in Figure 2.2 is the radius of the largest n-
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Figure 2.2: Geometric picture of lattices [12].

dimensional ball contained in the Voronoi region of Λ. rpack

Λ = dmin(Λ)
2

, where dmin(Λ)

is the minimum distance between two lattice points of Λ.

The effective radius reffec
Λ shown in Figure 2.2 is the radius of a sphere with the

volume V (Λ). It is known [40, p9] that the volume of a unit sphere Vn in R
n is

Vn =
πn/2

Γ(n
2
+ 1)

=







πk

k!
, n = 2k

2nπkk!

n!
, n = 2k + 1

where Γ(t) =
∫∞
0
ut−1e−udu is the gamma function.

Since Vn(r
effec
Λ )n = V (Λ), the effective radius reffec

Λ is

reffec
Λ =

V (Λ)1/n

V
1/n
n

=
V (Λ)1/nΓ(n

2
+ 1)√

π
.

Let σ2 be the variance of the Gaussian noise. Best possible performance is

achieved when the Voronoi regions of the lattice is approximately a sphere as n →

∞. For example, the error probability is lower bounded by the probability that the

noise leaves a sphere with the same volume as a Voronoi region. In other words, as

n grows, the Voronio regions of the optimal lattice becomes closer to a sphere with

squared radius that is equal to the mean squared radius of the noise, nσ2. There-
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fore, a plausible way to describe this goodness with presence of the noise would

be to measure the ratio between the squared effective radius of the lattices and the

expected square noise amplitude [42], i.e.

α2(Λ, σ2) =
(reffec

Λ )2

nσ2
≈ V (Λ)

2
n

2πeσ2
,

where the approximation is obtained by using the Stirling approximation of k! ≈

(k/e)k for even n. This is the volume-to-noise ratio (VNR).

We are concerned with the block error probability of lattices Pe(Λ, σ
2). It is

the probability P{Xn /∈ V(Λ)} that an n-dimensional independent and identically

distributed (i.i.d.) Gaussian noise vector Xn with zero mean and variance σ2 per

dimension falls outside the Voronoi region of Λ.

Then we are ready to introduce the notion of lattices which are good for the

AWGN channel without power constraint:

Definition 2.1 (AWGN-good [12]): A sequence of lattices Λ(n) of increasing

dimension n is AWGN-good if, for any fixed Pe(Λ
(n), σ2) ∈ (0, 1),

lim
n→∞

γΛ(n)(σ) = 2πe

and if, for a fixed VNR greater than 2πe, Pe(Λ
(n), σ2) goes to 0 as n→∞.

2.3 Constructions of AWGN-good lattices from error-

correcting codes

There are many ways to construct lattices. For example, in mathematics, people

construct lattices from sphere packing theory. In cryptography, people construct

lattices from group theory (ring). However, in communications, most lattices are
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constructed from error-correcting codes by the coset codes construction [2]. In other

words, using the codewords of the error-correcting codes to choose cosets which

can be combined to a lattice. The following table is the summary of current lattice

constructions from error-correcting codes. 1

Table 2.1: Lattice constructions from error-correcting codes

Name References Descriptions Lattices

Construction A [43] [40, p137] Single level, binary and non-

binary codes

D4, (8, 4, 4) Hamming Code

and E8, Random mod-p lat-

tices [14] [15], LDA lattices

[44].

Construction B [43] [40, p141] Single level, the weight of the

lattice vector must be divisi-

ble by 4

(8, 1, 8) Repetition Code and

E8, (16, 5, 8) Reed-Muller

codes and Barnes-Wall lattice

Λ16, (24, 12, 8) Golay code

and Leech lattice Λ24,.

Construction D [45] [40, p232] Multilevel, nested binary lin-

ear codes, deals with genera-

tor matrix

Barnes-Wall lattices, Polar

lattices [41], Turbo lattices

[46].

Construction D′ [45] [40, p235] Multilevel, nested binary lin-

ear codes, deals with parity-

check matrix

LDPC lattices [47]

Construction E [48] [40, p236] Multilevel, nested binary lin-

ear codes, higher dimensional

lattice partition

Polar lattices [41]

The following subsections will give a brief introduction of current AWGN-good

practical lattices. All the lattices can be put in the frame known as finite dimensional

infinite constellations [49].

2.3.1 Single level constructions

In this subsection, we focus on Construction A. This is because Construction B is

limited to the class of codes with even Hamming weight of each codeword. More

details of Construction B can be found in [40, p141,p191].

The general definition of ConstructionA can be found at [40, p211]. LetC(N, k, dmin)

be an Fp-linear code of length N , dimension k and rate R = k/N . Let Π : ΛN →
1We do not use Construction B to construct lattices because it requires stringent condition on

the weight of codewords which makes it impractical. We omit Construction C because it generates

nonlattice packing.
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(Λ/Λ′)N be the natural projection, the lattice L generated from Construction A is

defined as:

L = {x ∈ ΛN | Π(x) ∈ C}.

The most simple case for Construction A is Λ/Λ′ = Z/pZ, namely mod-p lattices

[14]. The fundamental volume of such a lattice is

V (L) = pN−k.

The generator matrix for L has the form






Ik Φ(B)

0 pIN−k






where (Ik B) is a k × N generator matrix in systematic form for the code C and

where Φ : Fp → Z is a natural embedding of Fp into Z. The minimum distance of L

is

dmin(L) = min{
√

dmin(C), dmin(Λ
′)} = min{

√

dmin(C), p}.

Remark 2.1: This is why Construction A with p = 2 cannot be successful for

large dimension (the coding gain θ(L) =
d2min(L)

V (L)2/N
cannot be very large). The mini-

mum distance of the mod-p lattices can be improved if using a more powerful code

C and a larger finite field size p. Another direction is to use a set of nested binary

codes for the multilevel construction.
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2.3.1.1 Gosset lattice E8

E8 is famous for the densest packing among 8 dimensional known lattices. It can be

constructed from (8, 4, 4) Hamming Code by Construction A. The lattice partition

is Z/2Z. The code formula is

L = C(8, 4, 4) + 2Z8.

There are 24 codewords of this code. From the viewpoint of coset codes [2], this

construction can be interpreted as that E8 is the combination of the 24 cosets of 2Z8

which are chosen from 28 cosets by the (8, 4, 4) Hamming Code (the number of the

cosets is | Z8/2Z8 |= 28).

2.3.1.2 Leech lattice Λ24

Let C ⊆ F
N
2 be a binary code with the property that all codewords have even weight.

The lattice L constructed by Construction B is defined as [40, p141]

L = {x ∈ ΛN ; Π(x) ∈ C;
N∑

i=1

xi ≡ 0 mod 4},

where dmin(L) = min{
√

dmin(C),
√
8} if Λ/Λ′ = Z/2Z.

Taking C as the extended binary Golay code with parameters (24, 12, 8). This

generates a latticeLe which is half of the famous Leech lattice. Consider the translate

[50, p366]

Lo = Le + ((1/2)23,−3/2).

It is easy to know that any pair of lattice points x ∈ Le and y ∈ Lo differ by squared
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Euclidean distance at least

23 · (1/2)2 + (3/2)2 = 8.

This follows because each codeword in the Golay code has even weight, so there

must always be at least one coordinate where x and y differ by 3/2. But 8 is also the

minimum squared distance in each one of Le and Lo. It follows that the union

L = Le ∪ Lo

has the same minimum distance as Le and Lo, and hence twice the density. This L

is known as the Leech lattice.

2.3.1.3 Low-density integer lattices (2012)

Low-density integer lattices (LDA) are constructed from Construction A and non-

binary LDPC codes [44]. The authors derived the factor graph for Construction A

lattices which can be used by the iterative message-passing decoder. They gave an

interesting example which uses a (2, 5)-regular LDPC code with p = 11 where the

column degree is 2, the row degree is 5 and p is the alphabet size of the code. The

construction is simple but the complexity of the decoder is O(p2N logN).

In 2013, the authors proved that two particular families of the low-density integer

lattices can achieve the Poltyrev capacity under lattice decoding [51, 52]. The dif-

ference between them is the the number of non-zero coefficients hi in a parity-check

equation
∑n

i=1 hixi ≡ 0 mod p. This number is called the degree of the parity-check

equation (row degree). [51] shows how Poltyrev capacity can be achieved with LDA

lattices the parity-check equations of which have degrees logarithmically growing in

the dimension of the lattices. The proof is inspired by the proof given by Gallager

which demonstrates that binary LDPC codes need logarithmically growing parity-
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check equation degrees to achieve the capacity of the binary symmetric channel.

[52] gives a stronger statement, showing that Poltyrev capacity can be attained also

by LDA lattices with constant parity-check equation degrees. The basic idea of the

proofs is as follows: Define a decoding sphere centred at the channel output and

containing (very probably) the channel input. If the sent lattice point is inside the

sphere and is the only one, no error occurs. They managed to show that the probabil-

ity that there is only one sent lattice point inside the sphere tends to 1 when n goes to

infinity. The typical settings of the LDA lattices to guarantee achieving the Poltyrev

capacity are p = n
1
2 and the column degree should at least be 7. The constant of

the column degree can not get any closer to the constant 2 which appears to be an

experimentally good choice for non-binary LDPC codes over binary-input channels.

This was posed as an open question.

2.3.2 Multilevel constructions

From Remark 2.1 we know that the single level construction cannot generate high

dimensional lattices with large coding gain if the component codes are binary codes.

By using multilevel construction, we can take advantage of using capacity-achieving

binary codes and generate high dimensional lattices with large coding gain. The

following is the definition of Construction D.

Let ψ be the natural embedding of FN
2 into Z

N , where F2 is the binary field. Let

C0 ⊆ C1 ⊆ · · · ⊆ Ca−1 ⊆ Ca = F
N
2 be a family of nested binary linear codes, where

Ci has parameters (N, ki, di) and Ca is the trivial [N,N, 1] code. Let ki = dim(Ci)

and let b1, b2, · · · , bN be a basis of FN
2 such that b1, · · · bki span Ci. The lattice ΛD

consists of all vectors of the form [45]

a−1∑

i=0

2i
ki∑

j=1

α
(i)
j ψ(bj) + 2al (2.2)
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where α
(i)
j ∈ {0, 1} and l ∈ Z

N . The fundamental volume of a lattice of Construc-

tion D is given by

V (ΛD) = 2
−N

a−1
∑

i=1
ki
V (Λa)

N = (2a−1)N · 2
N−

a−1
∑

i=1
ki
,

where the lattice partition is Λ0/Λ1/ · · · /Λa = Z/2Z/ · · · /2aZ.

It is worth noting here that there is another version of ConstructionD, referred to

Construction D by [53], which has been used in Barnes-Wall lattices [54]. Its code

formula is defined as

ΓD = ψ(C0) + 2ψ(C1) + · · ·+ 2a−1ψ(Ca−1) + 2a(Z)N .

As claimed by [53], this Construction D may not necessarily generate a lattice.

Only if the set of nested binary linear codes is closed under the Schur product, which

means c1, c2 ∈ Ci and c1 ∗ c2 ∈ Ci+1 for i = 0, · · · , a − 1, ΓD is a lattice and

ΓD = ΛD, where ∗ represents the coordinate-wise product between any two binary

codewords.

Remark 2.2: The vectors from ΓD can be written as

a−1∑

i=0

2i ·mod

(
ki∑

j=1

α
(i)
j ψ(bj), 2

)

+ 2al, (2.3)

where α
(i)
j ∈ {0, 1} and l ∈ Z

N . The difference between (2.2) and (2.3) is that this

Construction D adds modulo operations which may break the linear property.

We use the example in [53] to demonstrate that ΓD may not be a lattice.

Example 2.1: Consider nested binary linear codes C0 ⊆ C1 ⊆ C2 = F
4
2 and
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b1, b2, b3, b4 is a basis for Z4
2:

b1 = (1, 1, 0, 0)

b2 = (1, 0, 1, 0)

b3 = (1, 0, 0, 1)

b4 = (1, 0, 0, 0)

where b1, b2 span C0, b1, b2, b3 span C1.

Then,

ΛD = (α
(0)
1 b1 + α

(0)
2 b2) + 2(α

(1)
1 b1 + α

(1)
2 b2 + α

(1)
3 b2) + 4l,

where α
(i)
j ∈ {0, 1} and l ∈ Z

N .

Also,

ΓD = ψ(C0) + 2ψ(C1) + 4Z4

= {c0 + 2c1 + 4l | c0 ∈ ψ(C0), c1 ∈ ψ(C1), l ∈ Z
4}.

Since (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0) ∈ ΓD, but (2, 0, 0, 0) = (1, 1, 0, 0) +

(1, 0, 1, 0) − (0, 1, 1, 0) /∈ ΓD. Therefore ΓD is not a lattice. On the contrary, ΛD is

always a lattice.

Remark 2.3: It is a fact that the family of Reed-Muller codes is closed under

the Schur product. Therefore Construction D and Construction D generate the same

Barnes-Wall lattices.

For construction D with the lattice partition Λ1/Λ2 · · · = Z/2Z · · · . Let X1:r =

X1, X2, · · ·, Xr and Y denote the input and output for AWGN channel where Xi ∈

X = {0, 1}, Y ∈ Y . Therefore the channel of the ℓ-th level is a well-defined

2ℓ−1
Z/2ℓZ channel [39]. Given uniformly distributed x1:ℓ−1, let Aℓ(x1:ℓ) denote



2.3. Constructions of AWGN-good lattices from error-correcting codes 50

the set of the chosen constellation, i.e., Aℓ(x1:ℓ) = x1 + · · · + 2ℓ−1xℓ + 2ℓZ, the

conditional PDF of this channel with input xℓ ∈ {0, 1} and output ȳℓ = y mod 2ℓZ

is [39]

PȲℓ|Xℓ,X1:ℓ−1
(ȳℓ|xℓ, x1:ℓ−1) = fσ,2ℓZ(ȳℓ − x1 − · · · − 2ℓ−1xℓ)

=
∑

λ∈2ℓZ
fσ,λ(ȳℓ − x1 − · · · − 2ℓ−1xℓ)

=
1√
2πσ

∑

a∈Aℓ(x1:ℓ)

exp

(

− 1

2σ2
|ȳℓ − a|2

)

. (2.4)

This channel is the key to construct AWGN-good multilevel lattices. More details

are introduced in Chapter 3 which follows the proof of [39].

2.3.2.1 Barnes-Wall lattices

Reed-Muller codes RM(N, k, d) are a class of linear block codes over GF(2), where

n is the length of the codeword, k is the length of the information block and d is the

minimum Hamming distance of this block code. Conventionally, Reed-Muller codes

are denoted by RM(r,m) (0 ≤ r ≤ m) with following relation between N , k and d:

N = 2m, k = 1 +






m

1




+ · · ·+






m

r




 , d = 2m−r.

Reed-Muller codes are famous for the recursively construction, which means larger

Reed-Muller codes can be constructed from smaller ones.

Barnes-Wall lattices are an infinite family of lattices, which are the densest lat-

tices known in 4, 8, and 16 dimensions2. Their constructions involve the family of

Reed-Muller codes. We use the same notation as Reed-Muller codes. The m-th

2We give the example of Barnes-Wall lattices as a benchmark particularly because of the con-

nection between Reed-Muller codes and polar codes [16]. The advantage of polar codes over Reed-

Muller codes will translate into the advantage of polar lattices over Barnes-Wall lattices. This is

shown in Figure 3.7
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member of this family, denoted by Λ(r = 0,m), is a N = 2m dimensional complex

lattice or 2N dimensional real lattice. Following the code formulas given in [54], one

may interpret the close relationship between Barnes-Wall lattices and Reed-Muller

codes as follows:

For m− r even:

Λ(r,m) =2(m−r)/2
Z

2N +
∑

r + 1 ≤ r′ ≤ m

m− r′ odd

RM(r′,m+ 1)2(r
′−r−1)/2.

For m− r odd:

Λ(r,m) =2(m−r+1)/2
Z

2N +
∑

r + 1 ≤ r′ ≤ m

m− r′ even

RM(r′,m+ 1)2(r
′−r−1)/2.

Equivalently, one may use the complex code formula:

Λ(r,m) = φ(m−r)/2
G

N +
∑

r≤r′<n

RM(r′,m)φr′−r,

where φ = 1 + i and G is the lattice of Gaussian integers.

For example, the code formula of the 1024-dimensional Barnes-Wall lattice is:

BW1024 = RM(1, 10) + 2RM(3, 10) + · · ·+ 25Z1024. (2.5)

The code formulas show a construction of Barnes-Wall lattices from Reed-Muller

codes. The normalized fundamental volume of Barnes-Wall lattices is 2
m
2 . The

minimum squared Euclidean distance of Barnes-Wall lattices is 2m, leading to an

asymptotic coding gain of 2
m
2 .
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It is worth mentioning that Barnes-Wall lattices can be decoded with the bounded

distance decoder efficiently [55].

2.3.2.2 Low-density parity-check lattices (2006)

Low-density parity-check lattices are constructed by applying Construction D’ [40,

p232] to a set of parity checks defining a family of nested LDPC codes [47]. In

other words, this is also a multilevel construction with regular LDPC codes. This

construction provides a Tanner graph representation of lattices, which in turn is used

to efficiently decode the lattice by the generalized min-sum algorithm. One can

also use multistage decoding to decode each level’s LDPC codes. This reduces the

complexity at the expense of some possible degradation in performance. The authors

used the progressive-edge-growth algorithm (PEG) to find good component LDPC

codes. Furthermore, the irregular LDPC lattices were proposed in [56].

The following is the definition of Construction D′. Examples and decoding al-

gorithms can be found in [47]..

Let C0 ⊇ C1 ⊇ · · · ⊇ Ca−1 ⊇ Ca be a family of nested binary linear codes,

where Ci has parameters (N, ki, di). Let {h1, · · · , hN} be linearly independent

vectors in F
N
2 such that each dual code C∗

i is generated by {h1, · · · , hri}, where

ri = N − ki. Let ΛD′ be the corresponding lattice given by Construction D′. Its

parity-check matrix is

H =























h1

...

hr0

...

2ahra−1+1

...

2ahra























.
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Then x ∈ Z
N is in ΛD′ if and only if

HxT ≡ 0 mod 2a+1.

2.3.2.3 Turbo lattices (2010)

Turbo lattices are constructed by applying Construction D to a set of nested turbo

codes [46]. Each turbo code is generated by the tail-biting convolutional codes. Let

C0 ⊆ C1 ⊆ · · · ⊆ Ca−1 ⊆ Ca = F
N
2 be a family of nested binary linear codes,

where Ci has parameters (N, ki, di). The code formula for the turbo lattice is

ΛTC = C1 + 2C2 + · · ·+ 2a−1Ca−1 + 2aZN .

Consider two nested turbo codes C0 ⊆ C1 generated by a generator matrix G of

a convolutional code with the size K × N and a random interleaver Π with size

k = LK. Each interleaver can be represented by a matrix Pk×k which has only one

1 in each column and row. Therefore the generator matrix of C2 is

GTC =

(

Ik F PF

)

,

where F is a LK × L(N −K) submatrix including only parity columns of the tail-

biting generator matrix G. Then the generator matrix of C1 consists of the first k1

rows of GTC. Therefore the generator matrix of the turbo lattice is

GTL =












Ik1 0 F1 P1F1

0 2Ik2 2F2 2P2F2

0 0 4Ik3 0

0 0 0 4Ik3












,
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For example, the generator matrix of the component encoders for C2 is






1 0 1+x+x2+x3

1+x2+x3

0 1 1+x+x2

1+x2+x3




 .

The resulting turbo code has rate R2 =
1
2

and d2 = 13 for block information bits of

length 400. Then, only use the first row to be the generator matrix of the component

encoders for C1 which is

(

1 0 1+x+x2+x3

1+x2+x3

)

.

The block turbo code C1 has rate R1 =
1
3

and d1 = 28 for information block length

of 576.

Suppose a block of information bits of size 1000 is used. Since C2 is a rate 1
2

block turbo code, the dimension of the turbo lattice is 2000. The generator matrix is

GTL =












I576 0 F1 P1F1

0 2I324 2F2 2P2F2

0 0 4I500 0

0 0 0 4I500












.

The minimum distance of ΛTL is min{4, d1, d2} = 4.

2.3.2.4 Polar lattices (2013)

Polar lattices are generated by applying Construction D and construction E to a set of

nested polar codes. Since polar lattices are as explicit as polar codes, their construc-

tion is equally efficient. Furthermore, compared with the above existing schemes

[47, 44, 57, 46], polar lattices are distinguished by their provable AWGN-goodness

and low complexity, namely, they asymptotically achieve the sphere bound with mul-
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tistage decoding. More details about polar lattices are in Chapter 3.

2.3.3 Other lattices

Besides constructing from error-correcting codes, the following two lattices are de-

signed directly from the Euclidean space. These constructions may be alternatives

to the well known techniques (constructions A-D) that generate lattices from finite

alphabet linear codes.

2.3.3.1 Signal Codes: Convolutional Lattice Codes (2008)

Signal codes (or convolutional lattice codes) [58] are lattice codes designed directly

in the Euclidean space without any finite alphabet codes. As the name may suggest,

a convolutional lattice codeword (or lattice point) is generated by convolving an

integer sequence, representing the information sequence, with a fixed, continuous-

valued, finite impulse response (FIR) filter pattern. The FIR length is small yet, as

shown in the paper, by proper choice of short FIR filters it generates a lattice with

surprisingly large minimal distance. It is due to the signal processing interpretation

of the code construction. For practical usage the filter output has an increased power

and this shaping gain loss will cancel the coding gain, therefore the code construc-

tion includes a shaping mechanism inspired by precoding techniques such as the

Tomlinson-Harashima filter. Convolutional lattice codes can be decoded efficiently

by sequential decoding or for better performance by bi-directional sequential decod-

ing. Error analysis and simulation results indicate that with a very large stack length

of 106, and for frame error rate of 10−3, the stack decoder can work as close as 2.9

dB from channel capacity, where the bidirectional stack decoder can work as close

as 2.3 dB from channel capacity.

In this section, we briefly review its construction. Convolutional lattice codes

are defined as lattice codes which are based on an n-dimensional lattice whose (n+
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P )× n generator matrix G has the following Toeplitz form


























1 0
...

...
...

g1 1
. . .

...
...

... g1
. . . 0

...

gP
...

. . . 1 0

0 gP
. . . g1 1

... 0
. . .

... g1
...

...
. . . gP

...

...
...

... 0 gP


























where 1, g1, g2, · · ·, gP are the impulse response coefficients of a monic and causal

FIR filter.

From this generator matrix, it is easy to prove if n≫ P , the fundamental volume

of this lattice V (Λ)2/n = [det(G′G)]1/n → 1. Therefore, for large n, the volume will

almost not increase. It has been proved that the minimum distance of the proposed

lattices is equal or greater than 1. Let n0 be the smallest index for the non-zero

component of bmin, where xmin = Gbmin and xmin is the shortest non-zero lattice

point. Since the filter is monic and causal, xmin(n0) = bmin(n0), and thus

d2min(Λ) ≥| xmin(n0) |2=| bmin(n0) |2≥ 1.

In order to obtain high d2min(Λ), a numerical algorithm is proposed to choose the

parameters of the FIR filter. Methods that were developed for finding the minimum

distance between output sequences of intersymbol interference (ISI) channels can be

applied here to find the minimum distance given a FIR filter. The resulting search

algorithm is to compare all the lattice points within a given hypersphere, by develop-

ing a tree of all possible integer sequences, and truncating tree branches as soon as it
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can identify that all the corresponding lattice points will lie outside the hypersphere.

In fact, this search algorithm is equivalent to a sphere decoder. It can be seen that

the squared minimum distance improves as the spectral null of the filter becomes

deeper by increasing the number of zeros P . However, the range of the shaped in-

tegers becomes larger, which increases the decoding and shaping implementation

complexity.

The coordinates of a lattice point x = Gb, where b is an n-dimensional vector of

integers, are the convolution of the sequence of b with the filter

xk = bk +
P∑

p=1

gpbk=p

for k = 1, · · ·, n+ P .

Shaping is essential for convolutional lattice codes, otherwise the power increase

due to filtering operation is higher than the increase in minimal distance. The shap-

ing operation has a close relation to the precoding operation for ISI channels. The

purpose of precoding is pre-equalizing the distortion of a linear channel, which is

known at the transmitter, in order to avoid the need for equalization at the receiver.

The most simple way to do this is to filter the data with the inverse channel filter, but

the inverse filtering operation can significantly increase the signal’s power. The solu-

tion is to map the sequence of information symbols to another sequence such that the

constraints at the channel input can be meet after this procoding operation. There-

fore three shaping methods (Tomlinson-Harashima shaping, systematic shaping and

nested lattice shaping) are introduced in the paper, where the first two are indeed

based on well-known procoding schemes for ISI channels. The encoding diagram is

shown in Figure 2.3.

The decoder consists of two blocks. First to do an inverse shaping operation.

Then do the detection for b′. Unfortunately, Viterbi decoding [59] cannot be used.
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Figure 2.3: Convolutional lattice codes [58]. Instead of mapping the information b̄
to the lattice point x̄ = Gb̄ directly, it should be mapped to some other lattice point

x̄′ = Gb̄′ that belongs to the shaping region.

This is because the shaping operation increases substantially the range of possible

integer values for any filter tap, and hence the number of states in the Viterbi decoder.

The authors proposed to use the sequential decoder. The computational complexity

of sequential decoding of any tree codes increases abruptly below some cutoff SNR.

The simulations show that the sequential decoder works well even close to the cutoff

rate. Furthermore, they also use bidirectional sequential decoder with large com-

plexity and large computational resources to demonstrate that the low error rate can

be achieved beyond the cutoff rate. Only an approximated upper bound of the union

bound is given. Further check is needed to verify the actual code performance.

2.3.3.2 Low-density lattice codes (2008)

A low-density lattice code [57] is a dimension n lattice with a non-singular generator

matrix G, for which H = G−1 is sparse with constant row and column weight d. For

a given V =| detG | and a a sorted sequence of these d values w1 ≥ w2 ≥ · · · ≥

wd > 0„ the inverse generator H is designed as follows. Let

(

w1 w2 · · · wd 0 · · · 0

)

be a row vector with d positive values, followed by n − d zeros. The matrix H can

be written as permutations πi of h, followed by a random sign change Si, followed
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by scaling by k > 0:

H = k












S1 · π1(h)

S2 · π2(h)
...

Sn · πn(h)












such that the permutations result in H having exactly exactly d non-zero values in

each column. The sign-change matrix Si is a square, diagonal matrix, where the

diagonal entries are +1 or −1 with probability 1
2
. Then k is selected to normalize

the determinant to the given V . For example:

H =



















0 −0.8 0 −0.5 1 0

0.8 0 0 1 0 −0.5

0 0.5 1 0 0.8 0

0 0 −0.5 −0.8 0 1

1 0 0 0 0.5 0.8

0.5 −1 −0.8 0 0 0



















is the parity-check matrix for (n = 6, d = 3) LDLC lattices. The factor graph which

can be used for belief-propagation decoding is shown in Figure 2.4. This is a special

case of the standard LDLC constructions, which are characterized by a parameter

α ≥ 0. Belief-propagation decoding of LDLC lattices will converge exponentially

fast if and only if α ≤ 1 [57, Theorem 1], where α =
∑d

i=2 w
2
i

h2
1

. Therefore for our

example, α = 0.82 + 0.52 = 0.89.
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Figure 2.4: Factor graph of an LDLC [57].

In conclusion, a codeword x of LDLC is also generated directly at the Euclidean

space as a linear transformation of a corresponding integer message vector b, i.e.,

x = Gb, where H = G−1 is restricted to be sparse. The non-zero elements of

H are real numbers. An iterative sum-product algorithm is used to decode lattice

codewords. The variable node messages are Gaussian mixtures. The convergence

analysis imply some necessary conditions on H .

2.3.4 Comparison

The performance comparison of recently introduced lattices approaching the Poltyrev

capacity with dimension around 1000 is shown in Figure 2.5 in terms of SER3.

3The reason to shift from block error probability to SER is that most of the lattices are using SER.

Since one lattice point consists n symbols, it is a fair comparison as long as the dimensions n are the

same. The curve for the LDPC lattice was plotted with the normalized block error probability (NEP).
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Figure 2.5: Transmitting lattice points over the AWGN channel without power con-

straint. The decoding method is the lattice decoding. We investigate the SER of

lattices with dimension around 1000. All the results are obtained from their own

papers.

The polar lattice used here is constructed from the two-dimensional lattice parti-

tion (N = 512, n = 2). The simulation curves of other lattices are obtained from

their corresponding papers. We note that the theoretic minimum gap to the Poltyrev

capacity is about 1 dB for dimension 1000 [49]. Among the four types of lattices

compared, the LDPC lattice [47] has the weakest performance, while all other three

have similar performance at this dimension (the difference is within 0.5 dB). In con-

trast to the polar lattice and LDA lattice [44, 51], analytic results of the LDLC [57]

are not available; therefore, they are less understood in theory. The performance of

the LDA lattice is analyzed on the basis of a random ensemble of nonbinary LDPC

codes with a somewhat nonstandard assumption [51]; consequently, it is unclear

whether standard LDPC codes satisfy the assumption. The LDA lattice has slightly

better performance than the polar lattice at the expense of higher decoding complex-

ity (O(p2N logN)). Polar lattices have an excellent compromise between decoding

complexity (O(rN logN)) and error performance. It is worth pointing out there

is potential to improve the multi-stage decoding of polar lattices. For example, a

soft-output multi-stage decoding algorithm will outperform the current hard-output
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multi-stage decoding. We add this as our future work.

2.4 Poltyrev capacity

Poltyrev [5] has given an existence proof of capacity-achieving mod-p lattices, with

exponential error bounds that are tight near capacity. Loeliger [14] reproved the

result using standard averaging arguments for linear codes over the p-ary field GF(p)

lifted to mod-p lattices. All the results above are based on the Minkowski-Hlawka

theorem of lattice theory.

2.4.1 Poltyrev’s result

There are several ways to define coding rate and capacity per unit volume of a gen-

eral infinite constellation, not necessarily a lattice. One simple way is to count the

number of codewords per unit volume within a “large" cube and translate it into bits.

Definition 2.2 (Normalized logarithmic density): The normalized logarithmic

density (NLD) is defined as

δ =
1

n
lim sup
a→∞

log

( |Ca|
an

)

,

where

Ca = Λ ∩ CUBE(a)

is the intersection of the IC with the n-dimensional cube CUBE(a) = [−a/2, a/2)n.

Definition 2.3 (Poltyrev capacity): The largest normalized logarithmic density

that allows reliable communication (i.e., a vanishing error probability) over a large
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block of channel uses of AWGN channel is

δ∗ =
1

2
log

1

2πeσ2
.

Suppose now that the IC is a lattice Λ. Since the diameter d of the Voronoi cell is

finite, the number of codewords inside the cube is bounded between (a− d)n/V (Λ)

and (a + d)n/V (Λ). Therefore, the total number of codewords approximates to

an/V (Λ) for large a. The normalized logarithmic density of a lattice is

δ =
1

n
log

1

V (Λ)
.

The error exponentE(δ) for the unconstrained AWGN is defined as Pe = e−n(E(δ)+o(1)).

The following is the restatement of the main results in [5]. The lower bound on the

error exponent is the random coding exponent Er(δ), given by

Er(δ) =







1

2
log

1

8πσ2
− δ, δ ≤ δcr;

e−2δ

4πeσ2
+ δ +

1

2
log2πσ2, δcr ≤ δ ≤ δ∗;

0, δ ≥ δ∗,

where δcr = 1
2
log 1

4πeσ2 . Poltyrev also provided an expurgation-type argument to

improve the error exponent at low NLD values (below δex = 1
2
log 1

8πeσ2 ). We refer

the reader to [5] for details.

An upper bound on the error exponent is the sphere packing exponent. It is given

by

Esp(δ) =
1

4πe2δ+1
+ δ +

1

2
log2πσ2,

which is derived from the sphere bound. The decoding region for this sphere bound
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is the equivalent sphere with effective radius reffec
Λ , which leads to the lower bound

on the error probability.

Therefore the upper and lower bounds on the error exponent give the value of

Pe(n, δ):

e−n(Esp(δ)+o(1)) ≤ Pe(n, δ) ≤ e−n(Er(δ)+o(1)),

where Pe(n, δ) ≤ enδnVn
∫ 2r

0
wn−1Pr{Xn ∈ D(r, w)}dw+Pr{‖Xn‖ > r}. D(r, w)

denotes the section of the sphere with radius r that is cut off by a hyperplane at a

distance w
2

from the origin. The first part is the weak noise and the second part is

the strong noise. In order to derive the error exponent, Poltyrev used the asymptotic

value of r =
√
nδeδ

∗−δ. However this is not the optimal value which minimizes the

upper bound.

It is also shown in [5] that Pe(n, δ) ≥ 0.5 for n = 1, 2, · · · with δ > δ∗.

2.4.2 Loeliger’s result

Loeliger applied Minkowski-Hlawka theorem to scaled mod-p lattices LC where C

is the component code which is used to construct the mod-p lattice by Construction

A. The proof of Minkowski-Hlawka theorem for the lattice version is shown in Ap-

pendix A. The mod-p lattices LC can be replaced by any other set of lattices for

which the Minkowski-Hlawka theorem can be proved.

Theorem 2.1 (Loeliger’s coding theorem [14]): Let E be a Jordan measurable

bounded subset of Rn, for any α > 0, for all sufficiently small ǫ, and all sufficiently

large primes p, the arithmetic average of the ambiguity probability over all lattices

ǫLC is upper bounded by [14]

Pamb|E . (1 + α)V (E)/V,
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where V = ǫnpn−k is the fundamental volume of the scaled mod-p lattices ǫLC ,

C ∈ C. C is any balanced set of linear (n, k) codes over Zp.

Proof. Let fe|E be the probability density function of e conditioning on the event

e ∈ E. For any e ∈ E, the event e = e is an ambiguity if and only if (L \ {0}) ∩

(e− E) 6= 0. By applying the Minkowski-Hlawka Theorem, we have

Pamb|E =
1

|C|
∑

C∈C
Pamb|E

≤
∫

E

fe|E(v)
1

|C|
∑

C∈C
| (ǫLC \ {0}) ∩ (v − E) | dv

≈
∫

E

fe|E(v)V (E)/V dv

= V (E)/V,

and the approximation becomes exact in the limit ǫ→ 0, p→∞.

The above bound can be rewritten as

Pamb|E . (1 + α)2n(δ−h(E)),

where δ = 1
n

log 1
V (ǫLC)

is NLD and h(E) = 1
2
log V (E) is the geometric entropy

rate of E. For n → ∞,h(E) converges to the information-theoretic differential

entropy rate h(e) = 1
2
log 2πeσ2 for Gaussian noise. It is obvious that, for reliable

transmission, the fundamental volume V (ǫL) cannot be smaller than V (E). In other

words, reliable transmission is not possible if δ > δ∗.

If we consider the shaping region S ⊂ R
n, we would expect to obtain a code

with about M = V (S)/V codewords. The bound of the ambiguity probability is

Pamb|E . (1 + α)2−n[h(S)−h(E)−R],
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where R , 1/nlog2M is the information rate of the code in bits per dimension, and

where h(S) , 1/nlog2V (S). Since h(E) = h(e) as n → ∞ and limn→∞ h(S) =

1/2log2(2πeP ) where P is the signal power per dimension (S becomes an n-dimensional

sphere). Therefore, it is safe to say that arbitrarily small (but positive) error probabil-

ity is achievable with lattice codes and lattice decoding at any rate below 1/2log2(P/N).

2.5 Summary

The concept of lattice codes for the AWGN channel is introduced in Chapter 1. Some

basics about lattices, including discrete Gaussian distribution, AWGN-goodness of

lattices, lattice constructions from error-correcting codes and theoretical analysis

based on radome lattices are introduced in this Chapter. No mathematical novelty

but all the background which is needed to understand the sequel is presented in this

chapter. We will show how to construct AWGN-good lattices from polar codes ex-

plicitly and prove their AWGN-goodness in the next chapter Chapter 3.



CHAPTER 3

Polar lattices are AWGN-good

I
N this chapter, we introduce the detailed constructions of polar lattice and give

the proof that they are AWGN-good. We also provide some new insights about

Forney’s construction.

3.1 Forney et al.’s Construction Revisited

Forney et al. gave constructions of AWGN-good lattices for noise variance σ2 in

[39]. We now revisit their constructions by applying the properties of the flatness

factor and provide new guidelines to the constructions. These new guidelines have a

close connection to the later analysis of achieving the capacity in Chapter 4.

3.1.1 Component Lattices

Recall that a mod-Λ channel is a Gaussian channel with a modulo-Λ operator in the

receiver front end [60, 39]. The capacity of the mod-Λ channel is [39]

C(Λ, σ2) = log V (Λ)− h(Λ, σ2), (3.1)
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where h(Λ, σ2) is the differential entropy of the Λ-aliased noise over V(Λ):

h(Λ, σ2) = −
∫

V(Λ)
fσ,Λ(x) log fσ,Λ(x)dx.

The uniform distribution over V(Λ) maximizes the differential entropy which is

log V (Λ). Therefore C(Λ, σ2) ≥ 0 where the equality holds for the uniform dis-

tribution.

Consider the lattice partition Λ1/ · · · /Λr where Λ1 is the top lattice and Λr is

the bottom lattice, both of dimension n and let r denote the number of levels if each

level is a binary partition. It is worth pointing out that Λ1 and Λr can be scaled

versions of simple low-dimensional lattices such as Z and Z
2. It is known that the

Λ1/Λr channel (i.e., the mod-Λr channel whose input is restricted to |Λ1/Λr| discrete

lattice points in Λ1) is regular, and the optimum input distribution is uniform [39].

Recall that the capacity of the Λ1/Λr channel for Gaussian noise of variance σ2

is given by [39]

C(Λ1/Λr, σ
2) = C(Λr, σ

2)− C(Λ1, σ
2)

= h(Λ1, σ
2)− h(Λr, σ

2) + log V (Λr)/V (Λ1).

(3.2)

Forney et al. chose Λ1 and Λr as follows [39]:

• V (Λ1) is small enough that the mod-Λ1 noise is almost uniform and

C(Λ1, σ
2) ≈ 0; (3.3)

• V (Λr) is large enough that the error probability Pe(Λr, σ
2) ≈ 0. This means

that the mod-Λr noise is almost unaliased and

C(Λr, σ
2) ≈ n

2
log

(
V (Λr)

2/n

2πeσ2

)

. (3.4)
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We now give a new upper bound on the first condition and make the second condition

more precise.

First, we bound the condition (3.3) by the flatness factor. The proof is in Ap-

pendix B.

Lemma 3.1: The capacity of the mod-Λ1 channel is bounded by

C(Λ1, σ
2) ≤ log (1 + ǫΛ1(σ)) ≤ log(e) · ǫΛ1(σ). (3.5)

The second condition (3.4) means that r is large. We now link r with N in a

quantitative manner.

Lemma 3.2: Let the dimension n of Λr be fixed. It is required that r = nO(logN)

so that Pe(Λr, σ
2) vanishes sub-exponentially with N .

Proof. For this purpose, we assume Λ1 = aZn where a is determined by the flatness

factor condition and Λr = bZn where b is to be estimated. a and b are both real

numbers. We note that for all partition chains in [39], this is always possible: if

the bottom lattice does not take the form of bZn, one may simply further extend the

partition chain (which will lead to an upper bound on r).

By the union bound, the error probability of Λr is upper-bounded by

Pe(Λr, σ
2) ≤ nQ

(
b

2σ

)

≤ ne−
b2

8σ2

where we apply the Chernoff bound on the Q-function. We want

Pe(Λr, σ
2) = e−O(N),

which leads to b = O(
√
N). Without loss of generality, consider the binary lattice
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partition. In this case we have (b/a)n = 2r−1. Thus,

r = n log

(
b

a

)

+ 1

= nO(logN)

if we fix n. Obviously, this estimate still holds for non-binary lattice partitions.

Note that the error probability of polar codes (hence that of polar lattices) de-

creases as e−O(
√
N) rather than e−O(N). Lemma 3.2 shows that the number of levels r

needs to grow with n and logN . In practical designs, it is best to estimate the hidden

constant numerically.

3.1.2 Gap to Poltyrev Capacity

Let C denote the “composite" code corresponding to the weighted sum of r−1 binary

codes in (2.1). The total decoding error probability for L is bounded by

Pe(L, σ
2) ≤ Pe(C, σ2) + Pe(Λ

N
r , σ

2). (3.6)

To make Pe(L, σ
2)→ 0, we need to choose the lattice Λr such that Pe(Λ

N
r , σ

2)→ 0

and the code C for the Λ1/Λr channel whose error probability also tends to zero.

Since V (L) = 2−NRCV (Λr)
N , the logarithmic VNR of L is

log

(
γL(σ)

2πe

)

= log
V (L)

2
nN

2πeσ2

= log
2−

2
n
RCV (Λr)

2
n

2πeσ2

= − 2

n
RC +

2

n
log V (Λr)− log 2πeσ2. (3.7)
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Define 





ǫ1 = C(Λ1, σ
2)

ǫ2 = h(σ2)− h(Λr, σ
2)

ǫ3 = C(Λ1/Λr, σ
2)−RC,

(3.8)

where h(σ2) = n
2
log 2πeσ2 is the differential entropy of the Gaussian noise. We

note that, ǫ1 ≥ 0 represents the capacity of the mod-Λ1 channel, ǫ2 ≥ 0 (due to

the data processing theorem) is the difference between the entropy of the Gaussian

noise and that of the mod-Λr Gaussian noise, and ǫ3 ≥ 0 is the capacity loss of the

composite code C.

Then we have

log

(
γL(σ)

2πe

)

=
2

n

(

log V (Λr)− C(Λ1/Λr, σ
2) + ǫ3 −

n

2
log 2πeσ2

)

=
2

n

(

log V (Λr)− log V (Λr) + h(Λr, σ
2) + ǫ1 + ǫ3 −

n

2
log 2πeσ2

)

=
2

n
(ǫ1 − ǫ2 + ǫ3).

Since ǫ2 ≥ 0, we obtain the upper bound1

log

(
γL(σ)

2πe

)

≤ 2

n
(ǫ1 + ǫ3). (3.9)

Since log
(

γL(σ)
2πe

)

= 0 represents the Poltyrev capacity, the right hand side of (3.9)

gives an upper bound on the gap to the Poltyrev capacity. The bound is equal to

6.02
n
(ǫ1 + ǫ3) decibels (dB), by conversion of the binary logarithm into the base-10

logarithm.

1It was shown in [39] that ǫ2 ≈ πPe(Λr, σ
2), which is negligible compared to the other two terms.
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Table 3.1: Comparison of the choices of component lattices Λ1 and Λr

One-dimensional partition chain Multi-dimensional partition chain

Top lattice Λ1 Λ1 = aZ, a small ǫΛ1(σ) ≈ 0
Bottom lattice Λr Λr = apZ, ap large dense

3.1.2.1 Design Guidelines

To approach the Poltyrev capacity, we would like to have log
(

γL(σ)
2πe

)

→ 0 while

Pe(L, σ
2) → 0. Thus, from (3.9), we need both ǫ1

n
→ 0 and ǫ3

n
→ 0. Now we have

the design criteria:

• The top lattice Λ1 has a small normalized flatness factor 1
n
ǫΛ1(σ), namely, it is

almost impossible to decode.

• The bottom lattice Λr has a small error probability Pe(Λr, σ
2), i.e., it can be de-

coded almost perfectly, which in the low-dimensional case essentially means

Λ2 is a dense lattice.

• C is a capacity-approaching code for the Λ1/Λr channel.

In the following, we provide some guidelines to select the component lattices Λ1

and Λr. In Table 3.1, we compare constructions of L in [39] with one and multi-

dimensional lattice partition chains, using the new insights obtained in this paper.

The first method is based on the one-dimensional partition chain, corresponding

to the choice Λ1 = aZ and Λr = apZ for some scaling factor a (p is a prime).

Obviously, a has to be small while ap has to be large2 so that ǫΛ1(σ) is small and

Pe(Λr, σ
2) is small.

The second method is to use a multi-dimensional partition chain (n > 1). This

method has the following advantages: (a) a smaller value of 1
n
ǫΛ1(σ), thereby a

smaller gap to the Poltyrev capacity; (b) a lower error probability Pe(Λr, σ
2) if a

dense lattice Λr is used. Figure 3.1 compares the normalized flatness factor 1
n
ǫΛ1(σ)

2p does not have to be very large for the target error probability in practice, e.g., 10−5 [39].
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Figure 3.1: Normalized flatness factor 1
n
ǫΛ1(σ) as a function of VNR for Z, D2, D4

and E8.

for Z, D2, D4 and E8. Clearly, the normalized flatness factors of D4 and E8 are

much smaller than that of Z when the VNR is negative.

When it comes to the design of the code C, one may apply single or multilevel

constructions. The single-level construction corresponds to the well-known mod-p

lattices, which are widely used in the theory of lattice coding, since C is a linear code

over GF(p) [14, 15]. However, for large p, such non-binary codes are generally hard

to decode. Lately, a practical design of such lattices, namely integer low-density

lattice codes (LDA), is reported in [44, 51]. Its decoding complexity scales as p2

under belief-propagation (BP) decoding.

Analogously, one might use non-binary polar codes to construct single-level po-

lar lattices. The technical challenges associated with this approach are the design of

non-binary polar codes for the Λ1/Λr channel and the decoding complexity [22]. In

the rest of this paper, we address such challenges by using multilevel constructions

(Construction D). Since both encoding and decoding are done independently on dif-

ferent levels, the multilevel approach benefits from multi-stage decoding with lower

complexity. More precisely, if r levels are used, it corresponds to p = 2r−1 in mod-p

lattices. The decoding complexity scales linearly in r rather than p2 = 22(r−1). On
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Figure 3.2: Signal flow of the mod-2 BAWGN channel. P (N, k) represents the polar

code with block length N and k information bits.

the other hand, this approach suffers from error propagation from level to level, and

consequently the multi-stage decoder has to be carefully designed.

3.2 Polar Codes for Mod-2 BAWGN Channel

In this section, we will show how to construct a polar code for each level in Construc-

tion D. For clarity, we exemplify the construction for the one-dimensional partition

chain, while the extension to the multi-dimensional partition chains is straightfor-

ward. In this case, the channel in each level is in fact a mod-2 binary-input AWGN

(BAWGN) channel which is equivalent to a Z/2Z channel. The only difference be-

tween the individual channels is the noise variance: the upper channels are noisier,

while the lower channels are less noisy. The signal flow of the mod-2 BAWGN chan-

nel is shown in Figure 3.2, where the mod-2 operation is applied within [−1, 1], not

[0, 2].

3.2.1 Capacity of Mod-2 BAWGN Channel

After the mod-2Z (mod-2) operation we have the PDF

fσ,2Z(w) =
∑

λ∈2Z
fσ(w + λ), w ∈ [−1, 1]. (3.10)

With this density we can compute the capacity of the Z/2Z channel C(Z/2Z) by

applying (3.1) and (3.2), which is shown in Figure 3.3. Also shown are the capacities

of the 2Z/4Z and 4Z/8Z channels, which can also be regarded as mod-2 BAWGN
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channels, but are upgraded versions (with smaller σ2) compared with Z/2Z. For

example, coding over 2Z/4Z is not very different with coding over Z/2Z. If we

scale the 2Z/4Z channel by a factor 1
2
, then it becomes a Z/2Z channel with the

noise standard deviation σ
2
. This observation simplifies our task to find good polar

codes for the component channels. We just deal with the Z/2Z channel with different

noise variances.

We generalize this finding to the following lemma:

Lemma 3.3: Consider a lattice L constructed by a binary lattice partition chain

Λ1/ · · · /Λr−1/Λr, where the channel of the ℓ-th level is the Λℓ/Λℓ+1 channel for

1 ≤ ℓ ≤ r − 1. Then, the Λℓ−1/Λℓ channel is degraded with respect to the Λℓ/Λℓ+1

channel.

Proof. By scaling the Λℓ/Λℓ+1 channel by 1
2
, the Λℓ/Λℓ+1 channel with σ is equiva-

lent to the Λℓ−1/Λℓ channel with σ/2. To see this, we use Z/2Z channel and 2Z/4Z

channel as an example. Let W1 and W2 represent Z/2Z channel and 2Z/4Z channel

respectively. The input and output of Z/2Z channel X1 ∈ {0, 1}, Y1 ∈ [0, 2). The

input and output of 2Z/4Z channel X2 ∈ {0, 2}, Y2 ∈ [0, 4). The transition PDF of

2Z/4Z channel is given by [39]

W2(y2|x2, σ2) =
1√
2πσ2

∑

a∈4Z
exp

[

−(y2 − a− x2)2
2σ2

]

=
1√
2πσ2

∑

a∈4Z
exp

[

−(1
2
y2 − 1

2
a− 1

2
x2)

2

2(σ
2
)2

]

=
1√
2πσ2

∑

a′∈2Z
exp

[

−(1
2
y2 − a′ − 1

2
x2)

2

2(σ
2
)2

]

=
1√
2πσ2

∑

a′∈2Z
exp

[

−(y′1 − a′ − x′1)2
2(σ

2
)2

]

= W1(y
′
1|x′1, (

σ

2
)2)

where x′1 ∈ {0, 1} and y′1 ∈ [0, 2).
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Since we construct polar codes for the Λℓ−1/Λℓ channel and the Λℓ/Λℓ+1 chan-

nel independently, we only need to prove W1(y1|x1, σ2) is degraded with respect to

W ′
1(y

′
1|x1, σ′2) where σ ≥ σ′. Note that they both are mod-2 BAWGN channels with

X ∈ {0, 1} and Y1, Y
′
1 ∈ [0, 2). Then







W1(y1|x1, σ2) =
1√
2πσ2

∑

i∈2Z
exp

[

−(y1 − x1 − i)2
2σ2

]

,

W ′
1(y

′
1|x1, σ′2) =

1√
2πσ′2

∑

i∈2Z
exp

[

−(y′1 − x1 − i)2
2σ′2

]

.

Assume there is a channel from Y ′
1 to Y1 such that

W (y1|y′1) =
1

√

2π(σ2 − σ′2

∑

i∈2Z
exp

[

−(y1 − y′1 − i)2
2(σ2 − σ′2)

]

.

Then we have

∫

W ′
1(y

′
1|x1, σ

′2)W (y1|y′1)dy′1

=
1

2π
√

σ′2(σ2 − σ′2)

∑

i∈2Z

∑

i′∈2Z

∫ 2

0

exp

[

− (y′1 − x1 − i)2

2σ′2

]

exp

[

− (y1 − y′1 − i′)2

2(σ2 − σ′2)

]

dy′1

=
1

2π
√

σ′2(σ2 − σ′2)

∑

i∈2Z

∑

i′∈2Z

exp

[

− (y1 − i′ − x1 − i)2

2σ2

] ∫ 2

0

exp

[

− (y′1 − i′ − c)2

2σ′2(σ2 − σ′2)/σ2

]

dy′1

=
1

2π
√

σ′2(σ2 − σ′2)

∑

i∈2Z

∑

i′∈2Z

exp

[

− (y1 − i′ − x1 − i)2

2σ2

] ∫

R

exp

[

− (y′1 − c)2

2σ′2(σ2 − σ′2)/σ2

]

dy′1

=
1

2π
√

σ′2(σ2 − σ′2)

√

2πσ′2(σ2 − σ′2)

σ2

∑

i∈2Z

∑

i′∈2Z

exp

[

− (y1 − i′ − x1 − i)2

2σ2

]

=
1√
2πσ2

∑

i∈2Z

∑

i′∈2Z

exp

[

− (y1 − i′ − x1 − i)2

2σ2

]

=
1√
2πσ2

∑

i∈2Z

exp

[

− (y1 − x1 − i)2

2σ2

]

= W1(y1|x1, σ
2),

where c is a constant.

The definition of the degradation is given as [61, Definition 1.7]: Let W1 : X →

Y1 and W2 : X → Y2 be two channels. W1 is degraded with respect to W2 if there



3.2. Polar Codes for Mod-2 BAWGN Channel 77

Figure 3.3: Channel capacity of the mod-2 BAWGN channel. The capacity of the

discrete BMS channel is calculated in Section 3.2.3 to show the negligible difference

between the continuous mod-2 BAWGN channel and the quantized discrete channel.

exists a channel W : Y2 → Y1 such that

W1(y1|x) =
∑

y2∈Y2

W2(y2|x)W (y1|y2).

Therefore, according to the definition, the Λℓ−1/Λℓ channel is degraded with respect

to the Λℓ/Λℓ+1 channel.

3.2.2 Symmetry of Mod-2 BAWGN Channel

Polar codes are proved to be able to achieve the capacity of output-symmetric chan-

nels. Therefore we need to show this mod-2 BAWGN channel is indeed an output-

symmetric channel. The output of the mapping operation in Figure 3.2 is

y = 2|t| − 1,

where the conditional PDFs of t can be derived from (3.10).
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Figure 3.4: Conditional PDFs of y with σ = 0.3380.

Then the conditional PDFs of y are







f(y|x = 1) =
1

2
√
2πσ2

+∞∑

j=−∞
exp

[

−(y − 1 + 4j)2

8σ2

]

,

f(y|x = 0) =
1

2
√
2πσ2

+∞∑

j=−∞
exp

[

−(y + 1 + 4j)2

8σ2

]

.

From Figure 3.4, it is clearly a binary-input output-symmetric channel. The PDFs

of the output satisfy

f(y|x = 0) = f(−y|x = 1), for all y ∈ [−1, 1].

3.2.3 Construction of Polar Codes for Mod-2 BAWGN channel

Let W (y|x) be a BMS channel with input alphabet X = {0, 1} and output alphabet

Y ⊆ R. Polar codes are block codes of length N = 2m with input bits {ui}i=1:N .

Let I(W ) be the capacity of W . Given the rate R < I(W ), the information bits are

indexed by a set of RN rows of the generator matrix G = [ 1 0
1 1 ]

⊗m
. This gives an

N -dimensional channel WN(y
1:N |u1:N ). The channel seen by each bit [16] can be
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defined by

W
(i)
N (y1:N , u1:i−1|ui) =

∑

ui+1:N∈XN−i

1

2N−1
WN(y

1:N |u1:N).

Arıkan proved that as N grows W
(i)
N approaches either an error-free channel or a

completely noisy channel. The set of completely noisy (resp. error-free) subchannels

is called the frozen set AC (resp. free set A). One sets ui = 0 for i ∈ AC and only

sends information bits within A.

The decoding rule using the successive cancellation (SC) decoding is defined as

ûi =







0 i ∈ AC or
W

(i)
N (y1:N , û1:i−1|ui = 0)

W
(i)
N (y1:N , û1:i−1|ui = 1)

≥ 1 when i ∈ A,

1 otherwise.

Let PB denote the block error probability of a binary polar code and by Pe(W
(i)
N )

the error probability for the i-th subchannel. PB can be upper-bounded by the sum

of the subchannels’ Bhattacharyya parameters PB ≤ Σi∈AZ(W
(i)
N ). It was shown in

[62] that for any β < 1
2
,

lim inf
m→∞

1

N

∣
∣
∣{i : Z(W (i)

N ) < 2−Nβ}
∣
∣
∣ = I(W ). (3.11)

This means if the RN rows are chosen properly, as m → ∞, the fraction of

channels which have capacity close to 1 is about I(W ). Therefore, constructing polar

codes is equivalent to choosing all the good indexes. However, the complexity of the

exact calculation appears to be exponential in the block length. The authors in [63]

proposed a practical quantization method which can transform a BMS channel with

a continuous alphabet to a BMS channel with a specified finite output alphabet size.

The authors in [64] proposed a practical approximation method to construct polar

codes efficiently over any discrete-output BMS channel. We combined these two
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methods together in order to construct polar codes for the mod-2 BAWGN channel.

First of all, we need a collection of binary symmetric channels (BSCs) to approx-

imate this mod-2 BAWGN channel (see also [65]). The output can be divided into

several intervals Ai (positive) and −Ai (negative), 1 ≤ i ≤ K, which are symmetric

with respect to y = 0. The i-th BSC is chosen with probability pi and let the cross-

over probability be xi, which means P(Ai|0) = P(−Ai|1) = xi. According to the

conditional PDFs and the definition of cross-over probability, pi and xi of the i-th

BSC channel can be calculated as







pi =

∫

Ai

f(y|x = 1) + f(y|x = 0)dy,

xi =

∫

Ai
f(y|x = 0)dy

∫

Ai
f(y|x = 1) + f(y|x = 0)dy

.

Therefore a set of BSCs are obtained from the mod-2 BAWGN channel.

In [63], the partition on the continuous alphabet is done by a function of the

likelihood ratio (LR). For y ≥ 0, the LR of y is given by

ζy =
f(y|x = 1)

f(y|x = 0)
.

The symmetric capacity of W is

I(W ) =

∫ 1

0

(f(y|x = 1) + f(y|x = 0))C[ζy]dy, (3.12)

where C[ζ] for ζ ≥ 1 is defined as

C[ζ] = 1− ζ

ζ + 1
log

(

1 +
1

ζ

)

− 1

ζ + 1
log(ζ + 1).

ζy and C[ζy] are both strictly increasing in y for y ≥ 0. In our case, we let the

maximum value of C[ζ] be Cmax = C[ζ1]. For 1 ≤ i ≤ K, each interval is defined
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Table 3.2: The Channel Capacity Using Different Quantization Methods for the

Mod-2 BAWGN Channel with σ = 0.3380

K Uniform I(Q′) Non-uniform I(Q) ς Upper bound

8 0.5129 0.5124 0.0021 0.0998

16 0.5140 0.5138 0.0007 0.0499

32 0.5143 0.5143 0.0002 0.025

64 0.5144 0.5144 0.0001 0.0125

as

Ai =

{

y ≥ 0 :
i− 1

K
Cmax ≤ C[ζ] ≤ i

K
Cmax

}

.

Thus, the number of discrete output symbols is 2K. According to Lemma 13 from

[63], the difference in symmetric capacities of the discrete-output BMS and the orig-

inal continuous-output BMS can be bounded by 1
K
Cmax. Although this bound may

not be very tight, it is enough for our theoretic proof.

Remark 3.1: The afore-mentioned non-uniform partition gives us a theoretic

guarantee. Yet, in numerical experiments, there is no essential difference between

this method and “uniform quantization". Therefore, one can also use equal interval

partitions in the practical design. For example, the capacity of mod-2 BAWGN chan-

nel with σ = 0.3380 (we choose this value for future reference) is I(W ) = 0.5145

when calculated from the continuous density. Let Q be the non-uniformly quantized

channel of W and let ς = I(W )− I(Q). Also, let I(Q′) be the uniformly quantized

channel Q′. The results are compared in Table 3.2. We can see that if the quan-

tization is sufficiently fine, the mod-2 BAWGN channel can be approximated by a

discrete BMS channel.

Then we calculate I(Q) with different values of σ2. We set K = 32, which is

sufficient for the approximation error to be negligible. We note that 1− I(W ) is the

expectation of the function −x log(x)− (1− x) log(1− x) over the distribution Pχ,
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where the random variable χ ∈ [0, 1/2] and its PDF is Pχ(x) =
∑K

i=1 piδ(x − xi).

Actually this calculation is just the discrete version of (3.12). The results are shown

in Figure 3.3. It can be seen that the capacity of this BMS channel is almost the same

as the theoretic capacity of the mod-2 BAWGN channel.

After a discrete BMS is obtained from a mod-2 BAWGN channel, we can use

the merging algorithm in [64] to construct polar codes3. The main idea behind their

method is to perform the calculation approximately by restricting the number of

output symbols in each level, whose complexity is O(K2N).

The details are given in Construction 3.1, where the function g(x) = 2
√

x(1− x)

for the Bhattacharyya parameter Z(W ) and g(x) = −x log(x)− (1− x) log(1− x)

for mutual information I(W ). This algorithm starts with distribution Pχ. It gen-

erates a tree from a BMS channel W as the root node according to (1) and (2) in

[64]. Then it performs quantization on each level of the tree to reduce the size of the

output alphabet for the next level. Finally, the transmitting channels with the least

Bhattacharyya parameters are chosen.

Construction 3.1 Construction of Polar Codes
1: Start from the root node with parameters obtained by quantization:

(p1, x1), · · · , (pK , xK) (x1 < · · · < xK).

2: Calculate the parameters of two new channels according to the rule of polariza-

tion.

3: Merge the parameter which has the minimum value of pjdj (dj = g(xj+1)−g(xj))
with its right neighbour and repeat this merge until the number of output symbols is

2K.

4. Calculate the parameters of the next level.

5. Merge the parameters of new channels.
...

Stop until reaching the block length.

Then choose the transmitting channels with the least Bhattacharyya parameters.

Until here, we have shown how to construct polar codes over the mod-2 BAWGN

channel. Although the above quantization algorithm results in an approximation

3In fact, two merging algorithms were presented in [64] where the second algorithm gives a

slightly better performance guarantee. We just use the first algorithm which is sufficient for the

purpose of this paper.
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error, it can be bounded in a precise manner. All the merging algorithms in [63]

and [64] share the same approximation error bound. It was shown in [64] that the

“average" approximation error of the N channels is O
(
m
K

)
and K = m2 is enough

that the approximation error decays to zero.

Now we introduce the capacity loss ǫloss under the quantization-merging algo-

rithm and finite length. More precisely, it means that we can construct a polar code

of length N over a channel with the symmetric capacity C such that this polar code

is assured to have a block error probability PB ≤ N2−Nβ
(β < 1/2) at the rate

C− ǫloss. This capacity loss is caused by the approximation error and the finite block

length. We now give the following Lemma on the capacity loss, which is essentially

a restatement of [63, Theorem 1].

Lemma 3.4: Let P e(W̃
(i)
N , K) denote the upper bound on the probability of error

under SC decoding for the degraded subchannel W̃
(i)
N resulting from the quantization-

merging algorithm. Given any constant 0 < β < 1/2, let the capacity loss ǫloss be

defined by

1

N

∣
∣
∣{i : P e(W̃

(i)
N , K) < 2−Nβ}

∣
∣
∣ = I(W )− ǫloss.

Then lim inf
m→∞

ǫloss is not a function of N , and

lim
K→∞

lim inf
m→∞

ǫloss(W,K, β) = 0.

Remark 3.2: From (57) in [63], it is shown that for any positive value ǫloss there

exists K such that

lim inf
m→∞

1

N

∣
∣
∣{i : P e(W̃

(i)
N , K) < 2−Nβ}

∣
∣
∣ = I(W )− ǫloss.
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Figure 3.5: Block error probabilities of polar codes over the mod-2 BAWGN channel

with σ = 0.3380 and N = 1024, respectively constructed by the heuristic BEC

approximation [16] and by our method.

We may take K large enough so that the channel W̃
(i)
N is arbitrarily close to the

channel W
(i)
N and P e(W̃

(i)
N ) → Pe(W

(i)
N ). Then according to the polarization theory

(3.11), this capacity loss ǫloss vanishes if m → ∞. This lemma shows that we can

get arbitrarily close to the optimal construction of a polar code as K increases.

3.2.4 Simulation Results

Arıkan proposed a heuristic method in [16] in which any BMS W is regarded as

a binary erasure channel (BEC) with erasure probability 1 − I(W ). Then one can

construct a polar code over this BEC channel instead of the BMS channel. We com-

pare the performance of different methods for the mod-2 BAWGN channel with

σ = 0.338 and codeword N = 1024. Multiple rates are tested. From the simula-

tion results in Figure 3.5, polar codes constructed by our method have better per-

formance. This is because the other method assumes a mismatched channel model.

Accordingly, our quantization method will be used to construct the component polar

codes for the polar lattice. We also note that in [66], the transmission channel of each

level is approximated by a Gaussian channel with the same capacity, which results
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in a suboptimal component polar code.

3.3 Construction of Polar Lattices

Polar lattices are constructed with the lattice partition chain Λ1/Λ2 · · · /Λr and the

associated (r−1) nested polar codes with block length N . More precisely, using the

method given in the preceding section, we build a component polar code P (N, kℓ)

at the ℓ-th level to achieve the capacity of the Λℓ/Λℓ+1 channel (1 ≤ ℓ ≤ r − 1).

In this section, we prove that polar lattices can asymptotically achieve the Poltyrev

capacity as N →∞. We also present a performance analysis for finite N .

3.3.1 Nested Polar Codes

We start by showing that the component polar codes constructed at all levels are

nested. This requirement is to guarantee that the multilevel construction creates a

lattice. We consider two rules to determine the component codes, for theoretic and

practical purposes, respectively. One is the capacity rule [39, 67], where we select

the channel indexes according to a threshold on the mutual information. The other

is the equal-error-probability rule [67], namely, the same error probability for each

level, where we select the channel indexes according to a threshold on the Bhat-

tacharyya parameter. The advantage of the equal-error-probability rule based on the

Bhattacharyya parameter is that it leads to an upper bound on the error probability.

For this reason, we use the equal-error-probability rule in the practical design. It is

well-known that these two rules will converge as the block length goes to infinity

[16].

Lemma 3.5: For either the capacity rule or the equal-error-probability rule, the

component polar codes built in the multilevel construction are nested, i.e., P (N, k1) ⊆

P (N, k2) ⊆ · · · ⊆ P (N, kr−1).
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Proof. Firstly, consider the equal-error-probability rule. By Lemma 4.7 in [61], if

a BMS channel W̃ is a degraded version of W , then the subchannel W̃
(i)
N is also

degraded with respect to W
(i)
N and Z(W̃

(i)
N ) ≥ Z(W

(i)
N ). Let the threshold be, say

2−Nβ
for some β < 1/2. Then, the block error probability of the polar code with

SC decoding is upper-bounded by N2−Nβ
. The codewords are generated by xN1 =

uAGA, where GA is the submatrix of G formed by rows with indexes in the free set

A. The free sets for these two channels are respectively given by







A ={i : Z(W (i)
N ) < 2−Nβ},

Ã ={i : Z(W̃ (i)
N ) < 2−Nβ}.

Due to the fact that Z(W̃
(i)
N ) ≥ Z(W

(i)
N ), we have Ã ⊆ A. If we construct polar

codes P (N,A) over W and P (N, Ã) over W̃ , GÃ is a submatrix of GA. Therefore

P (N, Ã) ⊆ P (N,A).

From Lemma 3.3, the channel of the ℓ-th level is always degraded with respect

to the channel of the (ℓ+ 1)-th level, and consequently, P (N, kℓ) ⊆ P (N, kℓ+1).

Then, consider the capacity rule. The nesting relation still holds if we select the

channel indexes according to a threshold on the mutual information. This is because,

by Lemma 4.7 in [61], I(W̃
(i)
N ) ≤ I(W

(i)
N ) if a BMS channel W̃ is a degraded version

of W .

Concerning the effect of approximation errors of Construction 3.1, we find the

nesting property of Lemma 3.5 still holds, as long as the number of quantization

symbols K is sufficiently large.

3.3.2 Polar lattices are AWGN-good lattices

As we will use a multi-stage decoding algorithm, the overall (block) error probability

Pe(L, σ
2) of a polar lattice is upper-bounded by the sum of the block error probabil-
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ities at individual levels, by the union bound. Let Pe(Cℓ, σ2) denote the block error

probability of the polar code for the ℓ-th level (1 ≤ ℓ ≤ r − 1), and by Pe(Λ
N
r , σ

2)

the error probability for the r-th level (i.e., product of the bottom lattice). Then

Pe(L, σ
2) ≤

r−1∑

ℓ=1

Pe(Cℓ, σ2) + Pe(Λ
N
r , σ

2),

where the error probability of ΛN
r is given by

Pe(Λ
N
r , σ

2) = 1−
∫

V(ΛN
r )

fσ2(x)dx. (3.13)

Let ǫloss(ℓ) be the capacity loss of level ℓ. As shown in the previous subsection,

we can construct nested polar codes (input length kℓ and block length N ) with rates

Rℓ = kℓ
N

= C(Λℓ/Λℓ+1, σ
2) − ǫloss(ℓ) such that the block error probability in each

level PB(Cℓ, σ2) is upper-bounded byN2−Nβℓ , for any βℓ <
1
2
. Note that for finiteN ,

the capacity loss is a function of N , the channel Λℓ/Λℓ+1, K, and βℓ. The capacity

loss ǫ3 is the sum of the capacity losses of the component codes:

ǫ3 =
r−1∑

ℓ=1

ǫloss(ℓ). (3.14)

By Lemma 3.4, we have

lim
N→∞

lim
K→∞

ǫ3 = lim
K→∞

r−1∑

ℓ=1

ǫ(Λℓ/Λℓ+1, K, βℓ) = 0,

As mentioned earlier, K does not need to be very large in practice. The sum error

probability of polar codes is upper-bounded by

r−1∑

ℓ=1

Pe(Cℓ, σ2) ≤
r−1∑

ℓ=1

N2−Nβℓ

which can be made arbitrarily small by increasing the block length N .
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In conclusion, we have the following theorem:

Theorem 3.1: Let polar lattice L be constructed from the n-dimensional binary

lattice partition chain Λ1/Λ2 · · · /Λr and r − 1 nested polar codes with block length

N , where r = nO(logN). Then, the error probability of L under multi-stage decod-

ing is bounded by

Pe(L, σ
2) ≤

r−1∑

ℓ=1

N2−Nβℓ +N

(

1−
∫

V(Λr)

fσ2(x)dx

)

, (3.15)

with the logarithmic VNR bounded by (3.9). In the limit as ǫΛ1(σ) → 0, N →

∞ and K → ∞, L can achieve the Poltyrev capacity, i.e., log
(

γL(σ)
2πe

)

→ 0 and

Pe(L, σ
2)→ 0.

Remark 3.3: It is worth pointing out that Theorem 3.1 only requires mild con-

ditions. In practice, r and K need not be very large. The condition ǫΛ1(σ) → 0 is

also easily satisfied by properly scaling the top lattice Λ1. Therefore, the essential

condition in practice is N →∞.

3.3.3 Finite-Length Performance Analysis

In this subsection, we investigate the finite-length performance of polar lattices.

The finite-length analysis of polar codes was given in [68, 69, 70]. The analysis

concerns the relationship between the block length and the rate for a fixed error

probability. In other words, given a code and a desired (and fixed) error probability

Pe, what is the block length N required, in terms of the rate R, so that the code has

error probability less than Pe? It was proved that polar codes need a polynomial

block length with respect to the gap to capacity ǫloss = I(W ) − R = O(N− 1
µ )

[68, 69], where µ is known as the scaling exponent. The lower bound of the gap is

ǫloss ≥ βN
− 1

µ , where β is a constant that depends only on I(W ) and µ = 3.55 [68].

The upper bound of the gap is ǫloss ≤ β̄N− 1
µ̄ , where β̄ is a constant that depends only
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on the block error probability PB and µ̄ = 7 was given in [68]. Later this scaling

factor µ̄ has been improved to 5.77 [70].

From (3.9) and (3.14), the gap to the Poltyrev capacity of finite-dimensional polar

lattices is

log

(
γL(σ)

2πe

)

≤ 2

n

(

ǫ1 +
r−1∑

ℓ=1

ǫloss(ℓ)

)

≤ 2

n

(

ǫ1 + (r − 1)β̄N− 1
µ̄

)

with the corresponding block error probability

Pe(L, σ
2) ≤ (r − 1)PB + Pe(Λ

N
r , σ

2),

where the constant β̄ depends only on PB (assuming equal error probabilities for the

component polar codes). Since n ≪ N is fixed, the gap to the Poltyrev capacity of

polar lattices also scales polynomially in the dimension nL = nN .

In comparison, the optimal bound for finite-dimensional lattices is given by [49]

log

(
γL(σ)

2πe

)

opt

=

√
2

nL

Q−1(Pe(L, σ
2))− 1

nL

log nL +O

(
1

nL

)

. (3.16)

At finite dimensions, this is more precise than the exponential error bound for lattices

constructed from random linear codes given in [39]. Thus, given Pe(L, σ
2), the

scaling exponent of optimum random lattices is 2 which is smaller than that of polar

lattices µ̄ (smaller scaling exponent means smaller block length needed to guarantee

the same error probability). The result is consistent with the fact that polar codes

require larger block length than random codes to achieve the same rate and error

probability.
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3.4 Decoding Algorithm

In the previous section we proposed a lattice construction from polar codes. In this

section, we present a multi-stage decoding algorithm based on SC decoding of the

component polar codes, exemplified by the one-dimensional lattice partition chain.

3.4.1 SC Decoding for Each Level

The noise analysis is crucial to the construction of polar codes on each level. Besides,

it is also important to the performance of our SC decoder due to the calculation of

the channel LR. This subsection will discuss the effective noise in view of the SC

decoder on the first level. The derivation of other levels is the same but with different

noise variances. Note that we use {0, 1} notation to construct lattices. Referring to

Figure 3.2, each element of the received vector s has the conditional PDF







f(s|x = 1) =
1√
2πσ2

exp

[

−(s− 1)2

2σ2

]

,

f(s|x = 0) =
1√
2πσ2

exp

[

−(s)2

2σ2

]

.

The next step is to apply the mod-2 operation in [−1, 1]. From (3.10), the conditional

PDFs of each element of the resultant t are







f(t|x = 1) =
1√
2πσ2

+∞∑

j=−∞
exp

[

−(t− 1 + 2j)2

2σ2

]

,

f(t|x = 0) =
1√
2πσ2

+∞∑

j=−∞
exp

[

−(t+ 2j)2

2σ2

]

.

The channel LR for the SC decoder is derived from the conditional PDFs:

ζt =
f(t|x = 1)

f(t|x = 0)
. (3.17)
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To calculate the LR exactly one needs to add infinite terms. Some truncation is

necessary which depends on the level. We can truncate more terms for the levels

closer to the bottom lattice.

3.4.2 Multi-Stage Decoder for Multilevel Construction

A multi-stage decoding algorithm is introduced to feed soft values of the received

vector s into the binary decoder in each level. Algorithm 3.1 works on the real

domain for the one-dimensional lattice partition. It describes the implementation of

this multi-stage soft decoding algorithm, where the index ℓ represents the ℓ-th level

(1 ≤ ℓ ≤ r−1), s is the received vector and σ2 is the variance of the mod-2 BAWGN

channel used to calculate the channel LR for the SC decoder. The calculation of the

LR needs the information about the conditional PDFs after the mod-2 operation.

We apply the mod-2 operation, use the SC decoder to estimate the codeword, and

subtract it out from the received vector s. After that the received vector is divided

by 2 and we run the same decoding for the second level. This is because the channel

of the second level is equivalent to the channel of the first level with half of its noise

standard deviation. We keep running this decoding until the (r− 1)-th level. Finally

we return the nearest lattice point ZN to the received vector of the r-th level.

Algorithm 3.1 Multi-Stage Soft Decoding Algorithm for Multilevel Construction

function MULTI-STAGEDECODER(ℓ, s, σ)

if ℓ = r then

return z = LatticeDecoder(ZN , s)
else

t = mod(s, 2) ⊲ mod-2 operation in [-1,1]

ζt =
f(t|0)
f(t|1)

c← SCdecoder(ℓ, ζt, σ)
v← Multi-StageDecoder(ℓ+ 1, (s− c)/2, σ/2)
return z = c+ 2 · v

end if

end function
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3.4.3 Decoding Complexity

The complexity of the mod-2 operation and calculating the LR is negligible com-

pared to the complexity of SC decoding which is O(N logN). Therefore the overall

complexity of decoding such a multilevel lattice is O(rN logN), the number of lev-

els times the complexity of the SC decoder.

3.5 Design Examples for the infinite constellation

In this section, we give design examples of polar lattices based on one and two-

dimensional partition chains. The design follows the equal-error-probability rule. If

the total target error probability is Pe, then the target error probability for each level

should be Pe

r
where r is the number of levels. It is not difficult to extend the design

procedure to higher-dimensional partition chains.

3.5.1 One-Dimensional Lattice Partition

In this subsection, we use the one-dimensional lattice partition Z/2Z/ · · · /2rZ.

To construct a multilevel lattice, one needs to determine the number of levels of

lattice partitions and the actual rates according to the the target error probability for

a given noise variance. In addition to the guidelines given in Section 3.1, we have

the following rule of thumb:

If a component code cannot achieve the target error probability at the rate 1/N

for a reference σ, the corresponding level is not needed. This is because not even one

bit will be polarized. On the other hand, if the rate of a level is almost 1 and still can

achieve the target error probability for a reference σ, it is also not needed. This is

because the rate from this level will be canceled by the increment of the logarithmic

volume log V (Λr) in (3.7), leaving the VNR unchanged. The effective levels are
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Figure 3.6: A polar lattice with two levels, where σ = σ1.

those which can achieve the target error probability with an actual rate not too close

to either 0 or 1. Therefore, one can determine the number of effective levels with the

help of capacity curves in Figure 3.3. In other words, adding levels whose capacities

are close to 1 or 0 do not noticeably improve the performance.

For example, at the given noise variance indicated by the straight line in Figure

3.3, one may choose three levels. However, the first level has an almost zero rate for

the target error probability. Therefore, we choose two levels of component codes,

which was indeed suggested in [39].

The multilevel construction and the multi-stage decoding are shown in Figure

3.6. For the ℓ-th level, α(ℓ) are information bits, b1,b2, · · · ,bkℓ are a set of code

generators which are chosen from the matrix GN = [ 1 0
1 1 ]

⊗m
according to the po-

larization rule for the ℓ-th level’s channel, and σℓ is the standard deviation of the

noise.

Now, we give an example for length N = 1024 and target error probability

Pe(L, σ
2) = 10−5. Since the bottom level is a Z

N lattice decoder, σ3 ≈ 0.0845 for

target error probability 1
3
·10−5. For the middle level, σ2 = 2·σ3 = 0.1690. From Fig-

ure 3.3, the channel capacity of the middle level is C(Z/2Z, σ2
2) = C(2Z/4Z, σ2

1) =

0.9874. For the top level, σ = σ1 = 0.3380 and the capacity is 0.5145. Our goal is
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Figure 3.7: Block error probabilities of polar lattices and Barnes-Wall (BW) lattices

of length N = 1024 with multi-stage decoding. BW rule means following the struc-

ture of the Barnes-Wall lattice, but changing the Reed-Muller code to a polar code

on each level to construct lattices.

to find two polar codes approaching the respective capacities and block error proba-

bilities ≤ 1
3
· 10−5 over these mod-2 BAWGN channels.

For N = 1024, we found the first polar code with k1
N

= 0.23 for Pe(C1, σ2
1) ≈

1
3
· 10−5, and the second polar code with k2

N
= 0.9 for Pe(C2, σ2

2) ≈ 1
3
· 10−5. Thus,

the sum rate of component polar codes RC = 0.23 + 0.9, implying a capacity loss

ǫ3 = 0.3719. Meanwhile, the factor ǫ1 = C(Z, 0.33802) = 0.0160. From (3.9), the

logarithmic VNR is given by

log

(
γL(σ)

2πe

)

≤ 2 (ǫ1 + ǫ3) = 0.7758, (3.18)

which is 2.34 dB. Figure 3.7 shows the simulation results for this example. It is

seen that the estimate 2.34 dB is very close to the actual gap at Pe(L, σ
2
1) ≈ 10−5.

This simulation indicates that the performance of the component codes is very im-

portant to the multilevel lattice. The gap to the Poltyrev capacity is largely due to the

capacity losses of component codes.

Thanks to density evolution [71], the upper bound
∑

i∈A(Z(W
(i)
N )) on the block

error probability of a polar code with finite-length can be calculated numerically.
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According to (3.15), we plot the upper bound on the block error probability Pe(L, σ
2)

of the polar lattice in Figure 3.7, which is quite tight.

Now we revisit the Barnes-Wall lattice with its performance shown in Figure 3.7.

We know that there are only 2 effective levels, but the Barnes-Wall lattice (2.5) has

5 levels for N = 1024. The reason for its relatively poor performance is that it

violates the capacity rule: at some levels, the rate of the code exceeds the capacity of

the equivalent channel. For example, the rate of the first level is 0.01, which exceeds

the capacity of the first level4. Another reason is the relatively weak error-correction

ability of Reed-Muller codes. Therefore, the error probability of the first level will

be high in the low VNR region. Also shown in Figure 3.7 is our prior design [72],

where we followed the structure of the Barnes-Wall lattice, but changed the Reed-

Muller code to a polar code on each level. It is seen that replacing the Barnes-Wall

rule with our new design yields significantly improved performance.

We use the same multi-stage decoder for both polar lattices and Barnes-Wall

lattices. Thus, the encoding and decoding complexity of polar lattices is almost the

same as that of Barnes-Wall lattices.

3.5.2 Two-Dimensional Lattice Partition

In this subsection, we use the two-dimensional lattice partition

Z
2/RZ2/2Z2/2RZ2/4Z2

as an example. With some abuse of notation, here R denotes the rotation operator

represented by matrix [ 1 1
1 −1 ] [2]. The capacities of the component channels are

shown in Figure 3.8. According to the rule of level selection, the number of effective

levels for component codes is 4.

4Similar performance degradation was observed in multilevel coding, where an excessive rate at

the lowest level results in a tremendous increase of nearest neighbors [67].
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Figure 3.8: Channel capacity of the two-dimensional lattice partition.

This polar lattice with two-dimensional lattice partition is depicted in Figure 3.9.

It consists of all vectors of the form

k1∑

j=1

α
(1)
j ψ(bj)⊗ g1 + · · ·+

k4∑

j=1

α
(4)
j ψ(bj)⊗ g4 + l, (3.19)

where α
(ℓ)
j ∈ {0, 1} for 1 ≤ ℓ ≤ 4, l ∈ (4Z2)N and gℓ (1 ≤ ℓ ≤ 4) is the

generator of the coset representative [Λℓ/Λℓ+1] for the partition Λℓ/Λℓ+1 [2]. gℓ is

an element of Λℓ but not of Λℓ+1. To be more specific, g1 = (1, 0), g2 = (1, 1),

g3 = (2, 0), and g4 = (2, 2). Let GR = [ 1 1
1 −1 ] be the generator matrix of RZ2,

then gℓ+1 = gℓ · GR. Each level is a “mod-RZ2 BAWGN" channel. We note here

σℓ =
√
2σℓ+1 for 1 ≤ ℓ ≤ 4. Then (3.19) can be written as

4∑

ℓ=1

kℓ∑

j=1

α
(ℓ)
j ψ(bj)⊗ g1 ·Gℓ−1

R + l.

The calculation the channel likelihood ratio is a coset decoding problem. After
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Figure 3.9: A polar lattice with five levels, where σ = σ1.

the mod-RZ2 operation, the PDF of the Gaussian noise is given by

fσ,RZ2(x) =
∑

λ∈RZ2

fσ(x+ λ), x ∈ R(RZ2).

Therefore the likelihood ratio is

LR =
fσ,RZ2(x)

fσ,RZ2(x− (1, 0))
.

For a fair comparison, let us design such a polar lattice for n = 2 and N =

512, thus the same dimension nL = 1024, for target error probability Pe(L, σ
2) =

10−5. Since r = 5, σ5 ≈ 0.083 to make sure the error probability of the bottom

level is 1
5
· 10−5. We also have σ1 = σ5 · (

√
2)4 = 0.332. The actual rates of the

component codes to achieve 1
5
· 10−5 are found to be 0.07, 0.40, 0.825 and 0.981,

respectively. The channel capacities for each level are 0.2488, 0.7064, 0.9666 and

0.9996. Meanwhile, ǫ1 = C(Z2, 0.3322) = 0.0374 and ǫ3 = 0.6453. From (3.9), the
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Figure 3.10: Block error probabilities of polar lattices with multi-stage decoding.

gap to the Poltyrev capacity is

log

(
γL(σ̃)

2πe

)

= ǫ1 + ǫ3 = 0.6827,

which is 2.05 dB. Again, the gap to the Poltyrev capacity is largely due to the capac-

ity losses of component codes.

The simulation result of a polar lattice with N = 4096 and n = 2 (so the di-

mension is nL = 8192) is also shown in Figure 3.10. For this lattice, the gap to the

Poltyrev capacity is only 1.5 dB at block error probability 10−5.

3.6 Summary

We show how to construct AWGN-good polar lattices in this chapter. In particular,

polar codes constructed for each level is capacity-achieving. Furthermore, due to the

degradation between each level, the component polar codes are nested. This is the

requirement of Construction D. Polar lattices has been proved to be good without

power constraint. We will propose a shaping scheme over polar lattices in order to

communicate with power constraint in the next chapter Chapter 4.



CHAPTER 4

Polar lattice codes can achieve the channel capacity of

the AWGN channel 1
2 log(1 + SNR)

I
N this Chapter, we show that an AWGN-good polar lattice with a good constella-

tion can achieve the channel capacity of the AWGN channel. This is equivalent

to implementing the shaping over the AWGN-good polar lattice. Recall that the basic

idea of shaping is to generate the distribution of the input by finding the connections

between input bits. The recently introduced asymmetric polar codes [8] are powerful

tool to find such connections and implement the shaping. 1

4.1 Good constellations for multilevel lattice codes

In order to achieve the AWGN channel capacity, a good constellation for the AWGN-

good lattice is necessary. As shown in [4], the mutual information between the dis-

crete Gaussian lattice distribution DηΛ,σs (Figure 1.4) and the output of the AWGN

channel approaches 1
2
log(1+SNR) as the flatness factor ǫηΛ

(

σsσ√
σ2
s+σ2

)

→ 0 where

η is a scaling factor. Note that Λ is the top lattice in our lattice partition chain. There-

1Thanks Ling Liu for his contribution on the proof of Theorem 4.4.
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fore throughout this work, we use the lattice Gaussian distribution P (X) ∼ DηΛ, σs

as the constellation. This gives us limr→∞ P (X1:r) = P (X) ∼ DηΛ,σs which is

shown in Figure 4.1.

Figure 4.1: The lattice Gaussian distribution for DZ,σs .

From the chain rule of mutual information,

I(Y ;X1:r) =
r∑

ℓ=1

I(Y ;Xℓ|X1:ℓ−1), (4.1)

we have r binary-input channels. Given x1:ℓ−1, letAℓ(x1:ℓ) denote the set of the cho-

sen constellation. According to [67], the channel transition PDF of the ℓ-th channel

is given by

PY |Xℓ,X1:ℓ−1
(y|xℓ, x1:ℓ−1) =

1

P{Aℓ(x1:ℓ)}
∑

a∈Aℓ(x1:ℓ)

P (a)PY |A(y|a)

=
1

fσs
(Aℓ(x1:ℓ))

∑

a∈Aℓ(x1:ℓ)

exp

(

−|y − a|2
2σ2

− a2

2σ2
s

)

= exp

(

− y2

2(σ2
s + σ2)

)
1

fσs
(Aℓ(x1:ℓ))

1

2πσσs

∑

a∈Aℓ(x1:ℓ)

exp

(

−1

2

(

σ2
s + σ2

σ2
sσ

2

∣
∣
∣
∣

σ2
s

σ2
s + σ2

y − a

∣
∣
∣
∣

2
))

= exp

(

− y2

2(σ2
s + σ2)

)
1

fσs
(Aℓ(x1:ℓ))

1

2πσσs

∑

a∈Aℓ(x1:ℓ)

exp

(

− 1

2σ̃2

(
|αy − a|2

)
)

, (4.2)

where α = σ2
s

σ2
s+σ2 is asymptotically equal to the MMSE coefficient Ps

Ps+σ2 , and

σ̃ = σsσ√
σ2
s+σ2

, with Ps and σ2 denoting signal power and noise power, respectively.
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Therefore if we use DηΛ,σs as the constellation, the ℓ-th channel is generally asym-

metric with the input distribution P (Xℓ|X1:ℓ−1) (ℓ ≤ r), unless

fσs(Aℓ(x1:ℓ))/fσs(Aℓ−1(x1:ℓ−1)) =
1

2

which means ǫAℓ(x1:ℓ)(σs) is negligible.

From the above we know that the number of levels r needs to be infinity such

that the input distribution is DηZ,σs . We now describe this in a quantitative manner

showing that how large the number of levels should be in order to achieve the channel

capacity. In other words, the number of levels should be large enough to guarantee a

vanishing mutual information of the bottom level.

Lemma 4.1: The mutual information of the bottom level I(Y ;Xr|X1:r−1) goes

to 0 if the number of levels r = O(logN) and N goes infinity. Moreover, using the

first r − 1 levels would involve a capacity loss
∑

ℓ≥r I(Y ;Xℓ|X1:ℓ−1) ≤ O( 1
N
).

Proof. For level r, note that Ar is defined as x1 + · · ·2r−1xr + 2rZ. Clearly, Ar is a

subset ofAr−1. Let λ1 and λ2 denote the two lattice points with smallest norm in set

Ar−1. Without loss of generality, we assume λ1 ≤ 0 ≤ λ2 and |λ1| ≤ |λ2|. Observe

that λ2 − λ1 = 2r−1. For a Gaussian distribution with variance σ2
s , we can find a

positive integer T , making the probability

∫ Tσs

−Tσs

1
√

2πσ2
s

exp(− x2

2σ2
s

)dx→ 1.

Actually, this T does not need to be very large. For instance, when T = 6, the above

probability is larger than 1 − 2e−9. Now we assume 2r−1 = 3Tσs, and T = δN

for some constant δ, then λ1 and λ2 cannot be in the interval [−Tσs, Tσs] simulta-
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neously. If the two points are both outside of [−Tσs, Tσs], then we have

P (Ar−1) < 2

∫ −Tσs

−∞

1
√

2πσ2
s

exp(− x2

2σ2
s

)dx→ 0,

which means the probability of choosing Ar−1 goes to zero. This is in contradiction

to the assumption. Therefore, we have that the point λ1 is in the interval [−Tσs, Tσs]

and λ2 is outside the interval. The two cosets according to xr = 0 and xr = 1 are

λ1 + 2rZ and λ2 + 2rZ respectively. We have

P (xr = 0|x1:r−1)

P (xr = 1|x1:r−1)
=

∑

2rZ exp(− (x+λ1)2

2σ2
s

)
∑

2rZ exp(− (x+λ2)2

2σ2
s

)

≥
exp(− λ2

1

2σ2
s
)

2
∑

2rZ+ exp(− λ2
2

2σ2
s
)

≥
exp(− λ2

1

2σ2
s
)

2 · exp(− λ2
2

2σ2
s
)
(1− exp(−(2r)2

2σ2
s

))

Since λ2 − λ1 = 2r−1 = 3Tσs and λ2 + λ1 ≥ Tσs, we have

P (xr = 0|x1:r−1)

P (xr = 1|x1:r−1)
≥ 1

2
exp(

3

2
T 2)(1− exp(−18T 2))

≥ 3

4
T 2 =

3

4
δ2N2.

Assume that 3
4
δ2N2 = M , we can get P (xr = 0|x1:r−1) ≥ M

M+1
and P (xr =

1|x1:r−1) ≤ 1
M+1

. Then we have,

I(Y ;Xr|X1:r−1) ≤ H(Xr|X1:r−1) ≤ h2(
1

M + 1
),

where h2(p) = plog(1
p
) + (1− p)log( 1

(1−p)
) denotes the binary entropy function. By
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the relationship ln(x) ≤ x−1√
x

when x ≥ 1, we finally have

I(Y ;Xr|X1:r−1) ≤ log(e)(
1√
M

+
1

M
) = ǫ1

1

2r
+ ǫ2

1

22r
,

where ǫ1 and ǫ2 are two positive constants. Therefore, when r = O(logN), we have

I(Y ;Xr|X1:r−1)→ 0, and
∑

ℓ≥r I(Y ;Xℓ|X1:ℓ−1) ≤ O( 1
N
).

4.2 Asymmetric Polar Codes

The polar codes for the BMAs are introduced in [8]. It provides a feasible way to do

the shaping over polar codes.

Definition 1 (Bhattacharyya Parameter for BMA Channel [7, 8]): Let W be a

BMA channel with input X ∈ X = {0, 1} and output Y ∈ Y . The input distribution

and channel transition probability is denoted by PX and PY |X respectively. The

Bhattacharyya parameter Z for W is then defined as

Z(X|Y ) = 2
∑

y

PY (y)
√

PX|Y (0|y)PX|Y (1|y)

= 2
∑

y

√

PX,Y (0, y)PX,Y (1, y).

The following lemma shows that by adding an observable at the output of W , Z

will not decrease.

Lemma 4.2 (Conditioning reduces Bhattacharyya parameterZ): Let (X, Y, Y ′) ∼

PX,Y,Y ′ , X ∈ X = {0, 1}, Y ∈ Y , Y ′ ∈ Y ′, we have

Z(X|Y, Y ′) ≤ Z(X|Y ).
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Proof.

Z(X|Y, Y ′) = 2
∑

y,y′

√

PX,Y,Y ′(0, y, y′)PX,Y,Y ′(1, y, y′)

= 2
∑

y

∑

y′

√

PX,Y,Y ′(0, y, y′)
√

PX,Y,Y ′(1, y, y′)

(a)

≤ 2
∑

y

√
∑

y′

PX,Y,Y ′(0, y, y′)

√
∑

y′

PX,Y,Y ′(1, y, y′)

= 2
∑

y

√

PX,Y (0, y)PX,Y (0, y)

where (a) follows from Cauchy-Schwartz inequality.

Let X1:N and Y 1:N be the input and output vector after N independent uses of

W . For each i ∈ [N ], (X i, Y i) ∼ PXY = PXPY |X . Let N = 2n for integer

n ≥ 1. Consider polarized random variables U1:N = X1:NGN generated by the

matrix GN = [ 1 0
1 1 ]

⊗n
, where ⊗ denotes the Kronecker product.

Theorem 4.1 (Polarization of Random Variables [8]): For any β ∈ (0, 0.5),







lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1) ≥ 1− 2−Nβ
}
∣
∣
∣
∣
= H(X),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1) ≤ 2−Nβ
}
∣
∣
∣
∣
= 1−H(X),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N) ≥ 1− 2−Nβ
}
∣
∣
∣
∣
= H(Y |X),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N) ≤ 2−Nβ
}
∣
∣
∣
∣
= 1−H(Y |X),

(4.3)

and







lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ
and Z(U i|U1:i−1) ≥ 1− 2−Nβ

}
∣
∣
∣
∣
= I(X;Y ),

lim
N→∞

1

N

∣
∣
∣
∣

{

i : Z(U i|U1:i−1, Y 1:N ) ≥ 2−Nβ
or Z(U i|U1:i−1) ≤ 1− 2−Nβ

}
∣
∣
∣
∣
= 1− I(X;Y ).

The Bhattacharyya parameter for BMA channels was firstly defined as the Bhat-

tacharyya parameter of a source X given Y as its side information. The definition
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is for the distributed source coding problem in [7]. By the duality between chan-

nel coding and source coding, it can be also used to construct capacity achieving

polar codes for BMA channels [8]. Actually, Z(U i|U1:i−1) is the Bhattacharyya

parameter for a single source X (without side information). Consider the case

that the output Y of W is a random variable which is independent of X , then

Z(U i|U1:i−1,Y 1:N
) = Z(U i|U1:i−1) and H(X|Y ) = H(X). Moreover, the calcu-

lation of Z can be converted to the calculation of the Bhattacharyya parameter Z̃ for

a related binary-input memoryless symmetric (BMS) channel. Now we construct a

BMS channel W̃ based on the BMS channel W . The following lemma is hidden in

[8], we make it explicit.

Lemma 4.3 (From Asymmetric to Symmetric): Let W̃ be a binary input channel

corresponding to the asymmetric channel W with input X̃ ∈ X = {0, 1} and output

Ỹ ∈ {Y ,X }. The input of W̃ is uniformly distributed, i.e., PX̃(x̃ = 0) = PX̃(x̃ =

1) = 1
2
. The relationship between W̃ and W is shown in Figure4.2. Then W̃ is a

binary symmetric channel in the sense that PỸ |X̃(y, x⊕ x̃|x̃) = PY,X(y, x).

 

  

 

 

 

 

Figure 4.2: The relationship between W̃ and W .



4.2. Asymmetric Polar Codes 106

Proof.

PỸ |X̃(y, x⊕ x̃|x̃) =
PỸ ,X̃(y, x⊕ x̃, x̃)

PX̃(x̃)
=

∑

x′∈X PỸ ,X,X̃(y, x⊕ x̃, x′, x̃)
PX̃(x̃)

(a)
=

∑

x′∈X PY |X(y|x′)PX⊕X̃,X,X̃(x⊕ x̃, x′, x̃)
PX̃(x̃)

(b)
=

∑

x′∈X PY |X(y|x′)PX⊕X̃|X,X̃(x⊕ x̃|x′, x̃)PX(x
′)PX̃(x̃)

PX̃(x̃)
(c)
= PY,X(y, x).

The equalities (a)-(c) follow from (a) Y is only dependent on X , (b) X and X̃ are

independent to each other and (c) PX⊕X̃|X,X̃(x⊕ x̃|x′, x̃) = (x′ = x).

The following definition of Bhattacharyya parameter for a BMS channel is from

the seminal paper of polar codes [16]. This kind of Bhattacharyya parameter can be

calculated recursively.

Definition 2 (Bhattacharyya Parameter for Symmetric Channel[16]): Let W̃

be a binary-input memoryless symmetric channel with transition probability PY |X ,

the Bhattacharyya parameter Z̃ ∈ [0, 1] is defined as

Z̃(W̃ ) ,
∑

y

√
PY |X(y|0)PY |X(y|1).

Note that Definition 1 and Definition 2 are the same when PX is uniform.

The following theorem describes how to construct polar codes for a BMA chan-

nel W from a BMS channel W̃ . Let X1:N and Y 1:N be the input and output vectors

of W . Let X̃1:N and Ỹ 1:N =
(

X1:N ⊕ X̃1:N , Y 1:N
)

be the input and output vectors

of W̃ . Consider polarized random variables U1:N=X1:NGN and Ũ1:N=X̃1:NGN . Let

WN and W̃N denote the combining channel of N uses of W and W̃ .

Theorem 4.2 (Construction of Polar Codes for BMA Channels[8]): The Bhat-

tacharyya parameter for each subchannel of WN is equal to that of each subchannel
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of W̃N , i.e.,

Z(U i|U1:i−1, Y 1:N) = Z̃(Ũ i|Ũ1:i−1, X1:N ⊕ X̃1:N , Y 1:N).

We formally define the frozen set F̃ and Ĩ of the symmetric polar codes as fol-

lows:







its frozen set: F̃ = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N) > 2−Nβ}

its information set: Ĩ = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N) ≤ 2−Nβ}.

By Theorem 4.2, the Bhattacharyya parameters of the symmetric channel W̃ and

the asymmetric channel W are the same. However, the channel capacity of W̃ is

I(X̃;X ⊕ X̃)+ I(X̃;Y |X ⊕ X̃) = 1−H(X)+ I(X;Y ), which is 1−H(X) more

than the capacity ofW . This is because the choice of the input X̃1:N is more than that

ofX1:N (X̃ is uniform whileX is selected according to PX). If we fix the input of W̃

to beX1:N , then we receive (Y 1:N , 01:N) as the output of W̃N , where 01:N denotes the

all zero vector. In this case, the mutual information becomes I(X;Y, 0) = I(X;Y ).

Therefore, to obtain the real capacity I(X;Y ) of W , the input distribution of W

needs to be adjusted to PX . By the polar lossless source coding, the indices with

very small Z(U i|U1:i−1) should be stripped off from the information set Ĩ of the

symmetric channel, and the proportion of this part is 1−H(X) as N goes to infinity.

We name this set as the information set I for the symmetric channel W . And the

remaining part Ic is the frozen set. According to [8], the bits within this frozen

set can be determined by a certain mapping and the bits within the information set

I. We further find out that there are some bits which can be made independent to

the information bits and uniformly distributed. The purpose of extracting such an

independent frozen set is for the interest of our lattice construction which will be

shown in Section 4.4. We name this part as the independent frozen set F . In order to

generate the input distribution PX , the remaining frozen bits are determined by the

bits in F ∪ I. We name the set of all those deterministic bits as the shaping frozen

set S . The process is depicted in Figure 4.3. We formally define the above three sets
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Figure 4.3: Polarization for symmetric and asymmetric channels.

as follows:







its independent frozen set: F = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≥ 1− 2−Nβ}

its information set: I = {i ∈ [N ] : Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ

and Z(U i|U1:i−1) ≥ 1− 2−Nβ}

its shaping frozen set: S = (F ∪ I)c .

(4.4)

To find these three sets, one can use Theorem 4.2 to calculate Z(U i|U1:i−1, Y 1:N)

using the known constructing techniques for symmetric polar codes [71, 63]. We

note that Z(U i|U1:i−1) can be computed using a similar way. We construct a sym-

metric channel between X̃ andX⊕X̃ , which is actually a binary symmetric channel

with cross probability PX(x = 1). This method has been used in lossless source

coding [6]. We realize that the above operation is equivalent to implementing the

shaping over the polar codes for the symmetric channel W̃ . This is consistent with

the concept that shaping can be dealt with as a source coding problem.

Besides the construction, the decoding process for the asymmetric polar codes

can also be converted to the decoding for the symmetric polar codes. When X1:N ⊕

X̃1:N = 0, we have U1:N = Ũ1:N , which means the decoding results of U1:N equals

to that of Ũ1:N . This explains why the decoding of polar codes on W can be treated

as the decoding of polar codes on W̃ given X ⊕ X̃ = 0. We conclude this as the

following lemma.
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Lemma 4.4 (Decoding for Asymmetric Channel [8]): Let y1:N be a realization

of Y 1:N and û1:i−1 be the previous i−1 estimation of u1:N . The ratio of the posterior

probability of the ui can be calculated as

PU i|U1:i−1,Y 1:N (0|û1:i−1, y1:N )

PU i|U1:i−1,Y 1:N (1|û1:i−1, y1:N )
=
W̃

(i)
N ((y1:N , 01:N ), û1:i−1|0)

W̃
(i)
N ((y1:N , 01:N ), û1:i−1|1)

, (4.5)

where W̃
(i)
N is the transition probability of the i-th subchannel of W̃N and can be

computed by the successive cancellation (SC) decoding algorithm with complexity

O(N logN).

In [8], the bits in F ∪ S are all chosen according to P (U i|U1:i−1). However, in

order to construct polar lattices, we change the scheme slightly by making the bits

in F uniformly distributed from {0, 1} and the bits in S are still chosen according to

P (U i|U1:i−1). The expectation of the decoding error probability still vanishes with

N . This is an extension of the results from [8, Theorem 3]. We give the proof in

Appendix C for completeness. Consider a polar code with the following encoding

and decoding strategies for a BMA.

• Encoding: Before sending the codeword x1:N = u1:NGN , the index set [N ] should

be divided into three parts: the independent frozen setF , the information set I and

the shaping frozen set S which are defined in (4.4). The encoder first places the

uniformly distributed information bits in I. We fill F with a uniformly distributed

sequence from {0, 1} which are shared between the encoder and the decoder. The

bits in S are generated according to the family of randomized mapping ΦS as

follows:

ui =







0 with probability PU i|U1:i−1(0|u1:i−1),

1 with probability PU i|U1:i−1(1|u1:i−1).

• Decoding: The decoder receives y1:N and estimates û1:N of u1:N according to the
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rule

ûi =







ui, if i ∈ F

φi(û
1:i−1), if i ∈ S

argmax
u

PU i|U1:i−1,Y 1:N (u|û1:i−1, y1:N ), if i ∈ I

.

where φS , {φi}i∈S and φS ∈ ΦS .

Theorem 4.3: With the above encoding and decoding, the message rate can be

arbitrarily close to I(Y ;X) and the expectation of the decoding error probability

over the randomized mappings satisfies EΦS
[Pe(ΦS)] = O(2−Nβ′

) for any β′ <

β < 0.5. Consequently, there exists a deterministic mapping φS such that Pe(φS) =

O(2−Nβ′

).

Practically, to share the mapping φS between the encoder and the decoder, we

can let them have access to the same source of randomness, which can be achieved

by forcing the pseudorandom number generators at both sides to be in the same state.

4.3 Multilevel asymmetric polar codes

As we have mentioned in Section 4.1, if we use DηΛ,σs as the constellation, the ℓ-th

channel of the multilevel system is generally asymmetric and its channel transition

PDF is shown by (4.2). Our task is to construct asymmetric polar codes for each level

in order to achieve its mutual information I(Y ;Xℓ|X1:ℓ−1). The construction of the

polar code for the first level is already given in Section 4.2. We take the channel of

the second level W2 as an example to demonstrate our construction. This channel

is also a BMA with input X2 ∈ X = {0, 1}, output Y ∈ Y and side information

X1 at the transmitter. To construct explicit asymmetric polar codes we propose the

following two-step algorithm.

• At the first step, construct a polar code for a BMS with the input vector X̃1:N
2 =

[X̃1
2 , X̃

2
2 , · · ·, X̃N

2 ] and the output vector Ỹ 1:N =
(

X1:N
2 ⊕ X̃1:N

2 , Y 1:N , X1:N
1

)
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Figure 4.4: The first step of polarization.

where X̃ i
2 ∈ X = {0, 1} is uniformly distributed. At this step X1 is regarded as

the output. Then the distribution of the inputX2 becomes the marginal distribution
∑

x1,x3:r
PX1:r(x1:r). Consider polarized random variables U1:N

2 = X1:N
2 GN and

Ũ1:N
2 = X̃1:N

2 GN . Then according to Theorem 4.1, the polarization gives us the

three sets F2, I ′2 and S ′
2 as shown in Figure 4.4. Similarly, we can prove that

|I′
2|

N
→ I(Y,X1;X2) and

|F2∪S′
2|

N
→ 1 − I(Y,X1;X2) as N goes to infinity. The

definitions of these three sets are as follows:



























its independent frozen set: F2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≥ 1− 2−Nβ}

its information set: I′
2 = {i ∈ [N ] : Z(U i

2|U1:i−1
2 , Y 1:N , X1:N

1 ) ≤ 2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥ 1− 2−Nβ}

its shaping frozen set: S′
2 =

(

F ∪ I′
2

)c
.

(4.6)

More explicitly,







lim
N→∞

|I ′2|
N

= I(Y,X1;X2),

lim
N→∞

|F2 ∪ S ′
2|

N
= 1− I(Y,X1;X2).

• At the second step, we consider X1:N
1 as the side information for the encoder.

Given X1:N
1 , the choices of X1:N

2 should be further restriced since X1 and X2

are generally correlated. For example, PX1,X2(x1, x2) = fσs(A(x1, x2))/fσs(ηΛ)

from Figure 4.1. X1 and X2 will be independent only if ǫA(x1,x2)(σs) = 0. By

stripping off the bits which are almost deterministic given U1:i−1
2 and X1:N

1 from

I ′2, we obtain the information set I2 for W2. Then the distribution of the input

X2 becomes the conditional distribution PX2|X1(x2|x1). The process is shown in

Figure 4.5. More explicitly, consider the proportions of the indices divided as
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Figure 4.5: The second step of polarization.

followings:

1 = 1− I(X̃2; X̃2 ⊕X2, X1, Y )
︸ ︷︷ ︸

F2

+I(X̃2; X̃2 ⊕X2, X1, Y )

Step1
= 1− I(X̃2; X̃2 ⊕X2, X1, Y )

︸ ︷︷ ︸

F2

+ I(X̃2; X̃2 ⊕X2)
︸ ︷︷ ︸

S′

2

+ I(X̃2;X1, Y |X̃2 ⊕X2)
︸ ︷︷ ︸

I′

2

Step2
= 1− I(X̃2; X̃2 ⊕X2, X1, Y )

︸ ︷︷ ︸

F2

+ I(X̃2; X̃2 ⊕X2)
︸ ︷︷ ︸

S′

2

+ I(X̃2;X1|X̃2 ⊕X2)
︸ ︷︷ ︸

SX1

+ I(X̃2;Y |X1, X̃2 ⊕X2)
︸ ︷︷ ︸

I2

= 1− I(X̃2; X̃2 ⊕X2, X1, Y )
︸ ︷︷ ︸

F2

+1−H(X2)
︸ ︷︷ ︸

S′

2

+ I(X2;X1)
︸ ︷︷ ︸

SX1

+ I(X2;Y |X1)
︸ ︷︷ ︸

I2

= 1− I(X̃2; X̃2 ⊕X2, X1, Y )
︸ ︷︷ ︸

F2

+1−H(X2|X1)
︸ ︷︷ ︸

S2

+ I(X2;Y |X1)
︸ ︷︷ ︸

I2

Remark 4.1: This also gives a method of lossless source coding for discreet source

with arbitrary alphabet size.

We give the formal statement in the following lemma.

Lemma 4.5: After the first step of polarization, we obtain the three sets F2, I ′2
and S ′

2 according to (4.6). Let the set SX1 denote the indices whose Bhattacharyya

parameters satisfy Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≤ 2−Nβ

and Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤

1 − 2−Nβ
and Z(U i

2|U1:i−1
2 ) ≥ 1 − 2−Nβ

. The proportion of SX1 satisfies that

limN→∞
|SX1

|
N

= I(X2;X1). Then by stripping SX1 from I ′2, we obtain the true

information set I2 for W2. Therefore the three sets are obtained as follows:



























its independent frozen set: F2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≥ 1− 2−Nβ}

its information set: I2 = {i ∈ [N ] : Z(U i
2|U1:i−1

2 , Y 1:N , X1:N
1 ) ≤ 2−Nβ

and Z(U i
2|U1:i−1

2 , X1:N
1 ) ≥ 1− 2−Nβ}

its shaping frozen set: S2 = (F ∪ I2)c .
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Proof. Firstly we show the proportion of set SX1 goes to I(X1;X2) when the block

length N is sufficiently large. Here we define a set which is slightly different

from SX1 as S ′
X1

= {i ∈ [N ] : Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤ 2−Nβ

and Z(U i
2|U1:i−1

2 ) ≥

1 − 2−Nβ}. Consider we are constructing asymmetric polar codes over the channel

from X1 to X2, it is not difficult to find that limN→∞
|S′

X1
|

N
= I(X2;X1) by Theorem

4.3. Furthermore, by Lemma 4.2, if Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤ 2−Nβ

, we can immedi-

ately have Z(U i
2|U1:i−1

2 , X1:N
1 , Y 1:N) ≤ 2−Nβ

. Therefore, the difference between the

definitions of SX1 and S ′
X1

is the part of Z(U i
2|U1:i−1

2 , X1:N
1 ). Let P̄X1 denote the

unpolarized set with 2−Nβ ≤ Z(U i
2|U1:i−1

2 , X1:N
1 ) ≤ 1− 2−Nβ

, we have

lim
N→∞

|SX1 |
N
− |S

′
X1
|

N
≤ lim

N→∞

|P̄X1|
N

= 0.

As a result, limN→∞
|SX1

|
N

= limN→∞
|S′

X1
|

N
= I(X2;X1).

Now we prove that SX1∪I2 = I ′2. Again, by Lemma 4.2, ifZ(U i
2|U1:i−1

2 , X1:N
1 ) ≥

1 − 2−Nβ
, we get Z(U i

2|U1:i−1
2 ) ≥ 1 − 2−Nβ

and the difference between the defini-

tions of SX1 and I ′2 only lays on the part of Z(U i
2|U1:i−1

2 , X1:N
1 ). Observe that the

union set SX1∪I2 would remove the condition on Z(U i
2|U1:i−1

2 , X1:N
1 ), and therefore

SX1 ∪ I2 = I ′2. It can be also found that the proportion of I2 goes to I(X2;Y |X1)

as N goes to infinity.

We summarize our main results in the following theorem. The proof is in Ap-

pendix D. Consider a polar code with the following encoding and decoding strategies

for the channel of the second levelW2 with the channel transition PDF PY |X2,X1(y|x2, x1)

shown in (4.2).

• Encoding: Before sending the codeword x1:N2 = u1:N2 GN , the index set [N ] should

be divided into three parts: the independent frozen set F2, the information set I2,

and the shaping frozen set S2. The encoder first places the uniformly distributed in-

formation bits in I2. Then the independent frozen set F2 is filled with a uniformly
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distributed sequence which are shared between the encoder and the decoder. The

bits in S2 are generated according to the family of randomized mapping ΦS2 as

follows:

ui2 =







0 with probability PU i
2|U1:i−1

2 ,X1:N
1

(0|u1:i−1
2 , x1:N1 ),

1 with probability PU i
2|U1:i−1

2 ,X1:N
1

(1|u1:i−1
2 , x1:N1 ).

(4.7)

• Decoding: The decoder receives y1:N and estimates û1:N2 based on the previously

recovered x1:N1 according to the rule

ûi2 =







ui2, if i ∈ F2

φi(û
1:i−1
2 ), if i ∈ S2

argmax
u

PU i
2|U1:i−1

2 ,X1:N
1 ,Y 1:N (u|û1:i−1

2 , x1:N1 , y1:N ), if i ∈ I2

.

where φS2 , {φi}i∈S2 and φS2 ∈ ΦS2 .

Theorem 4.4 (Coding Theorem for Multilevel Asymmetric Polar Codes): With

the above encoding and decoding, the message rate can be arbitrarily close to I(Y ;X2|X1)

and the expectation of the decoding error probability over the randomized mappings

satisfies EΦS2
[Pe(ΦS2)] = O(2−Nβ′

) for any β′ < β < 0.5. Consequently, there

exists a deterministic mapping φS2 such that Pe(φS2) = O(2−Nβ′

).

We note that Theorem 4.4 can be generalized to the construction of asymmetric

polar codes for the channel of the ℓ-th level Wℓ. The only difference is that the

side information changes from X1:N
1 to X1:N

1:ℓ−1. As a result, we can construct an

asymmetric polar code which achieves a rate arbitrarily close to I(Y ;Xℓ|X1:ℓ) with

vanishing error probability. We omit the proof for the sake of brevity.
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4.4 Polar lattices with lattice Gaussian shaping can

achieve the capacity

In this section, we first show that polar lattice codes with the lattice Gaussian distri-

bution can achieve the AWGN channel capacity 1
2
log(1 + SNR). Then we further

demonstrate that constructing asymmetric multilevel polar codes is equivalent to im-

plementing the shaping over an AWGN-good polar lattice. This is consistent with

the theory proved in [4].

As shown in [4], the mutual information between the discrete Gaussian lattice

distribution and the output of the AWGN channel approaches 1
2
log(1 + SNR) as the

flatness factor goes to 0. Assume the distribution of X is DηZ,σs where η is the scale

factor. Therefore by applying polar codes over the asymmetric channels for each

level, if ǫηZ (σ̃) → 0 where σ̃ = σsσ√
σ2
s+σ2

, r = O(logN) and N goes infinity, the

total message rate of such polar lattice code with shaping can be arbitrarily close to

the channel capacity 1
2
log(1 + SNR).

lim
ǫηZ(σ̃)→0

I(Y ;X) = lim
ǫηZ(σ̃)→0,r→∞

I(Y ;X1:r)

= lim
ǫηZ(σ̃)→0,r→∞

I(Y ;X1) + I(Y ;X2|X1) + · · ·+ I(Y ;Xr|X1:r−1)

=
1

2
log(1 + SNR).

We use multistage SC decoding and the LR of each level can be computed ac-

cording to Lemma 4.4. The block error probability of each level can be guaranteed

to be exponentially vanished by Theorem 4.4. Let Pe(Cℓ, σ2) denote the block error

probability of the polar code for the ℓ-th level (1 ≤ ℓ ≤ r− 1). Then the block error
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probability of the asymmetric multilevel polar code can be bounded as

Pe(L, σ
2) ≤

r∑

ℓ=1

Pe(Cℓ, σ2)

≤
r∑

ℓ=1

2−Nβℓ ,

where 0 < βℓ < β < 0.5 for 1 ≤ ℓ ≤ r.

In conclusion, we have the following theorem:

Theorem 4.5: Consider the above multilevel asymmetric polar code, where r =

O(logN). In the limit as ǫηZ (σ̃) → 0, N → ∞, with the transmitting rate up to

1
2
log(1 + SNR), the error probability of this multilevel code under multi-stage SC

decoding is bounded by

Pe(L, σ
2) <

r∑

ℓ=1

2−Nβℓ ,

where 0 < βℓ < β < 0.5. In other words, the above multilevel asymmetric polar

code can achieve the full AWGN channel capacity.

Next, we explain that this asymmetric multilevel polar coding scheme is equiva-

lent to implementing Gaussian shaping over a coset of an AWGN-good polar lattice

L+ c. First we need to find the AWGN-good polar lattice. As discussed in the previ-

ous section, the shaping over polar codes for symmetric channels is implemented by

generating the bits in the source coding set S randomly according to the probability

PU i
ℓ |U

1:i−1
ℓ ,X1:N

1:ℓ−1
. Therefore the AWGN-good lattice L is constructed by polar codes

for all the corresponding symmetric channels. We note here that the frozen bits of

the polar codes for symmetric channels must be set to all-zeros in order to be obtain

a polar lattice.

The following lemma shows the connection between multilevel codes and lattices

which can simplify our polar codes construction for the symmetric channels. Recall
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the ℓ-th channel is a BMA with the input distribution P (Xℓ|X1:ℓ−1) (ℓ ≤ r). It is

clear that PXℓ
(x1:ℓ) = fσs(Aℓ(x1:ℓ))/fσs(ηΛ). According to Lemma 4.3 and (4.2),

the channel transition probability of the ℓ-th corresponding symmetric channel W̃ℓ is

PW̃ℓ
(y, x1:ℓ−1, xℓ ⊕ x̃ℓ|x̃ℓ) = PY,X1:ℓ

(y, x1:ℓ)

= PX1:ℓ
(x1:ℓ)PY |Xℓ,X1:ℓ−1

(y|xℓ, x1:ℓ−1)

= exp

(

− y2

2(σ2
s + σ2)

)
1

2πσσs

1

fσs(ηΛ)

∑

a∈Aℓ(x1:ℓ)

exp

(

− 1

2σ̃2

(
|αy − a|2

)
)

.

Therefore, for example we use DZ,σs as the constellation, we can conclude that the

channel likelihood ratio (LR) of ℓ-th symmetric channel W̃ℓ is in the same form as

that of the 2ℓ−1
Z/2ℓZ channel shown in (2.4). The only difference is an MMSE

scaling factor α on y and σ2. We note here that the multistage SC decoding at the

receiving end is actually performed on the MMSE scaled received signal αy (See

Lemma 4.4). We summarize the foregoing analysis in the following lemma:

Lemma 4.6: Consider a multilevel lattice code with the constellation DZ,σs .

Constructing a polar code for the ℓ-th symmetric channel W̃ℓ transformed from the

asymmetric channel Wℓ is equivalent to constructing a polar code for the MMSE

scaled 2ℓ−1
Z/2ℓZ channel defined in the lattice literature [39].

Proof. The proof is straightforward by applying the definitions of Bhattacharyya pa-

rameters or mutual information of W̃ℓ and MMSE-scaled 2ℓ−1
Z/2ℓZ channel. As a

result, the Bhattacharyya parameters and mutual information of the polarized sub-

channels are equal for these two channels.

For the sake of simplicity, we only give the proof of the case with uniform inputs.

To see this, it suffices to show that the mutual information and Bhattacharyya param-

eters of the resultant bit-channels which are polarized from W (Λ1/Λ2 = Z/2Z, σ2)

and W ′(Y ;X1) with input X1 and output Y created by (4.1) are the same. Let

Q(y|x) be a BMS channel with binary input alphabet X ∈ {0, 1} and output alpha-
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bet Y ∈ R. Consider a random vector U2 that is uniformly distributed over X 2.

Let X2 = U2 · [ 1 0
1 1 ] be the input to two independent copies of the channel Q and

let Y 2 be the corresponding outputs. After the channel combining and splitting, the

resultant bit-channels [16] are defined as

Q
(1)
2 (y2|u1) =

1

2

∑

u2

Q(y1|u1 ⊕ u2)Q(y2|u2),

Q
(2)
2 (y2, u2|u1) =

1

2
Q(z1|u1 ⊕ u2)Q(y2|u2).

Then we apply this polarization transformation toW (Λ1/Λ2, σ
2) andW ′(Y ;X1),

respectively. After some manipulations, we get

W
(1)
2 (y2|0) = 1

2
(fσ,Λ2(y1)fσ,Λ2(y2) + fσ,Λ2(y1 − 1)fσ,Λ2(y2 − 1)),

W
(1)
2 (y2|1) = 1

2
(fσ,Λ2(y1 − 1)fσ,Λ2(y2) + fσ,Λ2(y1)fσ,Λ2(y2 − 1)),

and

W
′(1)
2 (y2|0) = 1

2|Λ2/Λr|2
(

∑

x∈Λ2/Λr

fσ,Λ2
(y1 − x)fσ,Λ2

(y2 − x) +
∑

x∈Λ2/Λr

fσ,Λ2
(y1 − x− 1)fσ,Λ2

(y2 − x− 1)
)

,

W
′(1)
2 (y2|1) = 1

2|Λ2/Λr|2
(

∑

x∈Λ2/Λr

fσ,Λ2
(y1 − x− 1)fσ,Λ2

(y2 − x) +
∑

x∈Λ2/Λr

fσ,Λ2
(y1 − x)fσ,Λ2

(y2 − x− 1)
)

.

By the definitions of the mutual information and the Bhattacharyya parameter of

a BMS channel [16]







I(Q) ,
∫ ∑

x
1
2
Q(y|x) log Q(y|x)

1
2
Q(y|0)+ 1

2
Q(y|1)dy

Z(Q) ,
∫ √

Q(y|0)Q(y|1)dy
,
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we have







I(W
(1)
2 (y2|x1)) = I(W

′(1)
2 ((y2|x1)))

Z(W
(1)
2 (y2|x1)) = Z(W

′(1)
2 (y2|x1)))

.

And it is not difficult to verify that







I(W
(1)
2 (y2, x2|x1)) = I(W

′(1)
2 ((y2, x2|x1)))

Z(W
(1)
2 (y2, x2|x1)) = Z(W

′(1)
2 (y2, x2|x1)))

.

Since the construction of polar codes are based on either the mutual informa-

tion or the Bhattacharyya parameter of the bit-channels, polar codes constructed for

W (Λ1/Λ2, σ
2) and W ′(Y ;X1) are the same. The validation of the equivalence be-

tween the ℓ-th channel W (Λℓ/Λℓ+1, σ
2) and W ′(Y ;Xℓ|X1, · · ·, Xℓ−1) is similar.

Remark 4.2: This lemma unifies the multilevel coding theory and lattice coding

theory which were hidden in [39, 67]. One can expect the equivalence in a more

general sense than the construction of polar codes. The proof may be based on the

equivalence between coset decoding [12] and maximum likelihood (ML) decoding

of the fine lattice Λℓ in the presence of the Λℓ+1-aliased Gaussian noise.

The following lemma shows that these polar codes for all the corresponding sym-

metric channels are nested which is an important requirement to construct lattices

[39].

Lemma 4.7: Let W̃ℓ and W̃ℓ+1 denote the corresponding symmetric channels

which are transformed from the ℓ-th and the (ℓ + 1)-th asymmetric channel for 1 ≤

ℓ ≤ r. W̃ℓ is degraded with respect to W̃ℓ+1 and polar codes constructed for W̃ℓ and

W̃ℓ+1 are nested.
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Figure 4.6: The relation between W̃1 and W̃2.

Proof. From Theorem 4.2, the channel transition probabilities of W̃ℓ and W̃ℓ+1 are







PW̃ℓ
= PỸℓ|X̃ℓ

(y, x1:ℓ−1, xℓ ⊕ x̃ℓ|x̃ℓ) = PY,X1:ℓ
(y, x1:ℓ)

PW̃ℓ+1
= PỸℓ+1|X̃ℓ+1

(y, x1:ℓ, xℓ+1 ⊕ x̃ℓ+1|x̃ℓ+1) = PY,X1:ℓ+1
(y, x1:ℓ+1)

. (4.8)

By the definition of the degradation [61, Definition 1.7], we need to show that

there always exists a channel that can transform W̃ℓ+1 to W̃ℓ. For simplicity, we use

W̃1 and W̃2 as an illustrative example. The relation between W̃1 and W̃2 is depicted

in Figure 4.6. It is clear that the mapping between Ỹ2 and Ỹ1 is independent of the

input. According to the definition of the degraded channel, W̃1 is degraded with

respect to W̃2. This degradation can also be proved by using the equivalence lemma

Lemma 4.6 since it is proved that the 2ℓ−1
Z/2ℓZ channel is degraded with respect to

the 2ℓZ/2ℓ+1
Z channel in Lemma 3.3.

Since W̃ℓ is degraded with respect to W̃ℓ+1 we have Z̃(W̃
(i)
ℓ,N) ≥ Z̃(W

(i)
ℓ+1,N),

where W̃
(i)
ℓ,N and W̃

(i)
ℓ+1,N denote the i-th subchannel at ℓ-th and (ℓ+1)-th level. Then

Fℓ ⊇ F ℓ+1. By Theorem 4.3 and 4.4, these sets can be filled with uniformly random

bits. Then we generate a uniformly distributed binary sequence with size |F1|. We

fill Fℓ with the first |Fℓ| bits of the sequence and fill Fℓ+1 with the first |Fℓ+1| bits of

the sequence. Therefore the uniformly distribution requirement for the sets Fℓ and

Fℓ+1 can be guaranteed and Fℓ ⊇ Fℓ+1. Recall that the original definition of frozen
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set for symmetric polar codes is the bits which satisfy Z(U i
ℓ |U1:i−1

ℓ , Y 1:N , X1:N
1:ℓ−1) ≥

2−Nβ
[16]. If the above original frozen set is a all-zero vector, then this multilevel

polar code is a polar lattice denoted by L. Otherwise, this multilevel polar code is a

coset of the polar lattice L+χ where χ is a bitwise addition of the bits in the original

frozen sets of all levels. Therefore it is clear that 2r−1
Z

N ⊆ L+ χ ⊆ Z
N .

From Lemma 4.6 we know that the polar lattice L is equivalent to the multi-

level construction of lattices with one dimensional lattice partition Z/2Z · ·· and the

MMSE scaling factor. Such polar lattices are AWGN-good lattices corresponding to

the Gaussian noise variance σ̃2. As pointed out in the previous section, constructing

the polar code for an asymmetric channel is equivalent to implementing the shaping

over the codewords of the polar code for the corresponding symmetric channel. If we

do not share the independent frozen set Fℓ in each level before each communication,

then the above shaping scheme implements a lattice Gaussian distribution over ZN

for the constellation DZ,σs . Since we need to share the frozen set during a commu-

nication process (we have already proved in Theorem 4.3 and 4.4 that there exists at

least one frozen set which are good for communication.), the above shaping scheme

implements a lattice Gaussian distribution over a coset of the AWGN-good lattice

L + χ which is because the sublattice of a lattice Gaussian is still a lattice Gaus-

sian. We can conclude now that by constructing multilevel asymmetric polar codes

with the constellation DZ,σs is equivalent to implementing a lattice Gaussian distri-

bution DL+χ,σs where L is an AWGN-good lattice constructed from Construction D

corresponding to the Gaussian noise variance σ̃2.

According to [4, Lemma 1], the average power of DL+χ,σs Ps will never be

greater than σ2
s regardless of the shift vector χ. Then we don’t need the flatness

factor condition on L that ǫL(σs) → 0 in [4]. Therefore our coding scheme can

achieve the AWGN channel capacity for any SNR. We note here that our coding

scheme is not only a practical implementation of [4], but also an improvement in the
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sense that we successfully remove the restriction that SNR > e in [4, Theorem 3].

We summarize the results in the following theorem:

Theorem 4.6: Consider a coset of polar lattice L+χ constructed from the lattice

partition ηΛ/Λ′ with the noise variance σ̃ = σsσ√
σ2
s+σ2

. By further manipulating the

shaping frozen sets of the symmetric polar codes in L + χ according to the constel-

lation DηΛ,σs , we get a coset of lattice code whose codewords are distributed as the

discrete Gaussian distribution DL+χ,σs . In the limit as ǫηΛ(σ̃) → 0, N → ∞ and

r = O(logN), with any transmitting rate up to the channel capacity 1
2
log(1 + SNR)

where SNR = Ps

σ2 , the error probability of multi-stage SC decoding vanishes expo-

nentially which is bounded by

Pe(L, σ
2) <

r∑

ℓ=1

2−Nβℓ ,

where 0 < βℓ < β < 0.5.

4.5 Summary

Asymmetric polar codes provide us a powerful tool to find the connections between

input bits to implement the probabilistic shaping. The proposed multilevel asym-

metric polar codes can be proved to achieve the capacity of the AWGN channel for

any SNR. It is equivalent to implementing the shaping over an AWGN-good polar

lattice by our equivalence lemma Lemma 4.6. This coding scheme is the first explicit

construction of lattice codes achieving the capacity of the AWGN channel. We will

expand this technique to the Gaussian wiretap channel in the next chapter Chapter 5.



CHAPTER 5

Polar lattices can achieve the strong secrecy capacity

of the Gaussian wiretap channel

Now we are ready to introduce our polar lattice coding scheme on the Gaussian wire-

tap channel and the system model is shown in Figure 1.6. The target in this chapter

is to prove the proposed coding scheme can achieve the strong secrecy capacity.1

In [73], a nested polar lattice structure was proposed to achieve the strong secrecy

on the Mod-Λ Gaussian wiretap channel. Although power constrain was taken into

consideration, the shaping lattice was non-constructive, which makes the problem of

constructing practical strong secrecy achieving polar lattice on the Gaussian wire-

tap channel still an open question. As we have shown in the above sections, the

discrete lattice Gaussian distribution provides us an alternative way to obtain the

shaping gain. In this chapter, we implement this shaping scheme on the same nested

polar lattice structure proposed in [73]. In order to make the shaping scheme com-

patible, we have to modify the construction method of the multilevel wiretap polar

codes. We notice that the modified wiretap polar coding scheme is still based on

1Thanks Ling Liu for his contribution on the proof of Lemma 5.4 and the concept of the shaping

induced channel.
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the original scheme introduced in [74]. However, we change the selection criteria

of the information bad set for Eve, which is defined in terms of the Bhattacharyya

parameter instead of the information of the subchannels. It turns out that our mod-

ified wiretap polar coding scheme can also be proved to achieve the strong secrecy

capacity and it is more suitable for the further shaping implementation.

5.1 Modified Binary Symmetric Wiretap Polar Cod-

ing

In this part we consider the construction of polar codes on the binary symmetric

wiretap channel. With some abuse of notation, we use Ṽ and W̃ to denote the

main channel between Alice and Bob and the wiretap channel between Alice and

Eve respectively. Both Ṽ and W̃ are with binary input X and W̃ is degraded with

respect to Ṽ . Let Y and Z denote the output of Ṽ and W̃ . After the channel com-

bination and splitting of N independent uses of the Ṽ and W̃ by the polarization

transform U1:N = X1:NGN , we define the sets of reliability-good indices for Bob

and information-bad indices for Eve as

G(Ṽ ) = {i : Z̃(Ṽ (i)
N ) ≤ 2−Nβ},

N (W̃ ) = {i : Z̃(W̃ (i)
N ) ≥ 1− 2−Nβ}.

(5.1)

In [74], the information-bad set N (W̃ ) was defined according to the mutual in-

formation of the subchannels {i : I(W̃ (i)
N ) ≤ 2−Nβ}. However, our new criterion

is based on the Bhattacharyya parameter. The following lemma shows that the new

criterion is stricter than the original one in the sense that the mutual information of

the subchannels with indices in the new set N (W̃ ) can also be bounded in the same

form.
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Lemma 5.1: Let W̃
(i)
N be the i-th subchannel after the polarization transform on

N independent uses of a BMS channel W̃ . For any 0 < β < 0.5, if Z̃(W̃
(i)
N ) ≥

1− 2−Nβ
, the mutual information of the i-th subchannel can be upper-bounded as

I(W̃
(i)
N ) ≤ 2−Nβ′

, 0 < β′ < β < 0.5.

Proof. Since W̃ is symmetric, W̃
(i)
N is symmetric as well. By the [Proposition 1,

[16]], we have

I(W̃
(i)
N ) ≤

√

1− Z̃(W̃ (i)
N )2

≤
√

2 · 2−Nβ ≤ 2−Nβ′

.

Since the mutual information of subchannels inN (W̃ ) can be upper-bounded in

the same form, it is not difficult to understand that strong secrecy can be achieved

using the technique proposed in [74]. Similarly, we divide the index set [N ] into the

following four sets shown in Figure 5.1:

A = G(Ṽ ) ∩ N (W̃ )

B = G(Ṽ ) ∩ N (W̃ )c

C = G(Ṽ )c ∩ N (W̃ )

D = G(Ṽ )c ∩ N (W̃ )c.

(5.2)

Clearly,A∪B∪C ∪D = [N ]. Then we assign setA with message bits M , set B

with random bits R, set C with frozen bits F which are known to both Bob and Eve

prior to transmission and set D with random bits R.

The next lemma shows that this assignment achieves strong secrecy.

Lemma 5.2: According to the partitions of the index set shown in (5.2), if we
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V

c

V

W
c

W

Reliable indices 

Unreliable indices 

Secured indices Unsecured indices 

N

N

Figure 5.1: The partition of the index [N ] for the binary wiretap channel [74]. In-

tuitively, if the message bits are assigned in the reliable and secured set, both the

reliability and secrecy can be guaranteed.

assign the four sets as follows

A ←M

B ← R

C ← F

D ← R,

(5.3)

then the information leakage I(M ;Z1:N ) can be upper-bounded as

I(M ;Z1:N ) ≤ N · 2−Nβ′

. (5.4)

Proof. As has been shown in [74], the induced channel MF → Z1:N is symmetric

when B and D are fed with random bits R. For a symmetric channel, the maximum

mutual information is achieved by uniform input distribution. Let ŨA and ŨC de-

note independent and uniform versions of M and F and Z̃1:N be the corresponding

channel output. Letting i1 < i2 < ... < i|A∪C| be the indices in A ∪ C.

I(MF ;Z1:N ) ≤ I(ŨAŨC; Z̃
1:N )
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=

|A∪C|
∑

j=1

I(Ũ ij ; Z̃1:N |Ũ i1 , ..., Ũ ij−1)

=

|A∪C|
∑

j=1

I(Ũ ij ; Z̃1:N , Ũ i1 , ..., Ũ ij−1)

≤
|A∪C|
∑

j=1

I(Ũ ij ; Z̃1:N , Ũ1:ij−1)

=

|A∪C|
∑

j=1

I(W̃
(ij)
N ) ≤ N · 2−Nβ′

.

Due to the symmetry of the induced channel [74], there is no specific assumption

on the distribution on M and F and a similar proof can be found in [75].

With regard to the secrecy rate, we show that the modified polar coding scheme

can also achieve the secrecy capacity.

Lemma 5.3: Let C(Ṽ ) and C(W̃ ) denote the channel capacity of the main chan-

nel Ṽ and wiretap channel W̃ respectively. Since W̃ is degraded with respect to Ṽ ,

the secrecy capacity, which is given by C(Ṽ )−C(W̃ ), is achievable using the mod-

ified wiretap coding scheme, i.e.,

lim
N→∞

|G(Ṽ ) ∩ N (W̃ )|/N = C(Ṽ )− C(W̃ ).

Proof. According to the definitions of G(Ṽ ) and N (W̃ ) presented in (5.1),

lim
N→∞

|G(Ṽ )|
N

= lim
N→∞

1

N
|{i : Z̃(Ṽ (i)

N ) ≤ 2−Nβ}| = C(Ṽ ),

lim
N→∞

|N (W̃ )|
N

= lim
N→∞

1

N
|{i : Z̃(W̃ (i)

N ) ≥ 1− 2−Nβ}| = 1− C(W̃ ).
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Here we define another two sets Ḡ(Ṽ ) and N̄ (W̃ ) as

Ḡ(Ṽ ) = {i : Z̃(Ṽ (i)
N ) ≥ 1− 2−Nβ},

N̄ (W̃ ) = {i : Z̃(W̃ (i)
N ) ≤ 2−Nβ}.

Similarly, we have limN→∞
|Ḡ(Ṽ )|

N
= 1−C(Ṽ ) and limN→∞

|N̄ (W̃ )|
N

= C(W̃ ). Since

W̃ is degraded with respect to Ṽ , Ḡ(Ṽ ) and N̄ (W̃ ) are disjoint with each other, then

we have

lim
N→∞

|Ḡ(Ṽ ) ∪ N̄ (W̃ )|
N

= 1− C(Ṽ ) + C(W̃ ).

By the property of polarization, the proportion of the unpolarized part is vanishing

as N goes to infinity, i.e.,

lim
N→∞

|G(Ṽ ) ∪ Ḡ(Ṽ )|
N

= 1,

lim
N→∞

|N (W̃ ) ∪ N̄ (W̃ )|
N

= 1,

Finally, we have

lim
N→∞

|G(Ṽ ) ∩N (W̃ )|
N

= 1− lim
N→∞

|Ḡ(Ṽ ) ∪ N̄ (W̃ )|
N

= C(Ṽ )− C(W̃ ).

It is not difficult to observe that the proportion of the problematic set D is ar-

bitrarily small. This because set D is a subset of the unpolarized set {i : 2−Nβ
<

Z̃(Ṽ
(i)
N ) < 1 − 2−Nβ}. As has been shown in [74], the reliability condition cannot

be proved due to the existence of the set D. Fortunately, a blocking technique can

solve the issue of the setD. Since we do not need this technique in our lattice coding

design, we refer the reader to [75] for more details.
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5.2 Secrecy-Good Lattices

In [73], we have already discussed how to obtain the AWGN good lattice Λb and

secrecy good lattice Λe for the mod-Λ Gaussian wiretap channel. In fact, the result

also holds for the polar lattices when the input distribution of each level is uniform

for the genuine Gaussian wiretap channel. The setting without power constraint is

similar to the Poltyrev setting in the Gaussian point-to-point channel.

Definition 5.1 (Secrecy-good): Alice sends the confidential message M which

is mapped to the coset leaders of the lattice partition Λb/Λe in a Gaussian wiretap

channel. If the above coding scheme results in fast-vanishing information leakage

I(M ;Z1:N ) where Z1:N is the signal received by Eve. Then the lattice Λe is regarded

as a secrecy-good lattice.

Note that this definition is more general than the definition proposed in [9] which

is based on the flatness factor.

As we have analyzed, Λb and Λe can be viewed as the lattices constructed accord-

ing to the related symmetric channels at each level. Briefly, our construction method

of Λb and Λe is based on the previously mentioned polar coding scheme for binary

symmetric wiretap channels. A polar lattice L is constructed by a set of nested polar

codes C1(N, k1) ⊆ C2(N, k2) ⊆ · · · ⊆ Cr−1(N, kr−1) and a binary lattice partition

chain Λ1/Λ2/ · · ·/Λr. The block length of polar codes isN . Alice splits the message

M into M1, · · ·,Mr−1. We follow (5.3) to assign bits in the component polar codes

to achieve strong secrecy. Define Vℓ = W (Λℓ/Λℓ+1, σ
2
b ) and Wℓ = W (Λℓ/Λℓ+1, σ

2
e)

and Wℓ is degraded with respect to Vℓ for 1 ≤ ℓ ≤ r− 1. Then we can getAℓ, Bℓ, Cℓ
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and Dℓ for 1 ≤ ℓ ≤ r − 1 which are defined as

Aℓ = G(Vℓ) ∩ N (Wℓ)

Bℓ = G(Vℓ) ∩ N (Wℓ)
c

Cℓ = G(Vℓ)c ∩N (Wℓ)

Dℓ = G(Vℓ)c ∩ N (Wℓ)
c.

Similarly we assign the bits as follows

Aℓ ←Mℓ

Bℓ ← R

Cℓ ← F

Dℓ ← R

(5.5)

for 1 ≤ ℓ ≤ r − 1. Since Wℓ(and Vℓ) is degraded with respect to Wℓ+1(and Vℓ+1), it

is easy to obtain that Cℓ ⊇ Cℓ+1 which means Aℓ ∪ Bℓ ∪ Dℓ ⊆ Aℓ+1 ∪ Bℓ+1 ∪ Dℓ+1.

This construction is clearly a lattice construction as polar codes constructed on each

level are nested.

Interestingly, this polar lattice construction generates an AWGN-good lattice Λb

and a secrecy-good lattice Λe simultaneously. Λb is constructed from a set of nested

polar codes C1(N, |A1|+ |B1|+ |D1|) ⊆ · · · ⊆ Cr−1(N, |Ar−1|+ |Br−1|+ |Dr−1|)

and the lattice partition chain Λ1/ · · · /Λr, while Λe is constructed from a set of

nested polar codes C1(N, |B1| + |D1|) ⊆ · · · ⊆ Cr−1(N, |Br−1| + |Dr−1|) and the

same lattice partition chain Λ1/ · · · /Λr.

By using the above assignments and Lemma 5.2, such polar codes can guarantee

an upper bound on the mutual information between the input message Mℓ and the
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output of the Eve’s ℓ-th level channel ZN
ℓ as shown in the following inequality:

I(Mℓ;Z
N
ℓ ) ≤ N2−Nβ′

,

where ZN
ℓ = Z1:N mod Λℓ+1. Recall Z1:N is the signal received by Eve.

From the equivalence lemma Lemma 4.6, this polar code can also guarantee the

same upper bound on the mutual information between the input message and the

output of the channel derived by the chain rule of the mutual information (4.1) as

shown in the following inequality:

I(Mℓ;Z
1:N , X1:N

1:ℓ−1) ≤ N2−Nβ′

.

From the chain rule of mutual information,

I(Z1:N ;M) =
r∑

i=1

I(Z1:N ;Mℓ|M1:ℓ−1) (5.6)

=
r∑

ℓ=1

h(Mℓ|M1:ℓ−1)− h(Mℓ|Z1:N ,M1:ℓ−1)

=
r∑

ℓ=1

h(Mℓ)− h(Mℓ|Z1:N ,M1:ℓ−1)

=
r∑

ℓ=1

I(Mℓ;Z
1:N ,M1:ℓ−1)

≤
r∑

ℓ=1

I(Mℓ;Z
1:N , X1:N

1:ℓ−1) ≤ rN2−Nβ′

,

where the first inequality is because by adding more random variables cannot de-

crease the mutual information. Therefore strong secrecy is achieved as limN→∞ I(M ;Z1:N ) =

0.

As we have analyzed in Lemma 4.6, the secrecy-good polar lattice constructed

above is based on the symmetric channel at each level. Without considering the

shaping, the lattice can be viewed as the polar lattice constructed on an MMSE scaled
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Gaussian wiretap channel, i.e., with main channel noise variance σ̃2
b and wiretap

channel noise variance σ̃2
e . According to the main theory of [73], we have

lim
N→∞

R =
r∑

ℓ=1

lim
N→∞

|Aℓ|
N

=
r∑

ℓ=1

I(X̃ℓ;Y, X̃ℓ ⊕ Xℓ, X1:ℓ−1)− I(X̃ℓ;Z, X̃ℓ ⊕ Xℓ, X1:ℓ−1)

=
1

2
log(

σ̃2
e

σ̃2
b

) =
1

2
log

(
1 + SNRb

1 + SNRe

)

.

(5.7)

Remark 5.1: In the Poltyrev setting, the capacities of the main channel and the

wiretap channel are both infinity. But the secrecy capacity is finite. Interestingly it

equals the secrecy capacity under the power constraint. Therefore we can predict

here that the shaping operation on both Λb and Λe should not change the secrecy

capacity, which is shown in the following section.

5.3 Shaping over Λb and Λe

Now we consider shaping for both AWGN-good and secrecy-good lattices. Since the

shaping scheme is implemented by Alice, who is the sender of both main channel and

wiretap channel, the shaping is implemented on Λb and Λe simultaneously. Accord-

ing to Chapter 4, we have to strip off those indices with small Z(U i
ℓ |U1:i−1

ℓ , X1:N
1:l−1)

from the information set of the symmetric channels. Therefore, Alice cannot send

messages on those subchannels with Z(U i
ℓ |U1:i−1

ℓ , X1:N
1:ℓ−1) < 1 − 2−Nβ

. Note that

this part is the same for Ṽℓ and W̃ℓ, because it only depends on the shaping distribu-

tion. At the ℓ-th level, to make the input distribution satisfying PXℓ|X1:ℓ−1
, the index

set which is used for shaping is given as

Sℓ , {i ∈ [N ] : Z(U i
ℓ |U1:i−1

ℓ , X1:N
1:ℓ−1) < 1− 2−Nβ}.
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The index set which is shaping free is denoted by Sc
ℓ . Recall that for the index set

[N ], we already have two partition criteria, i.e, reliability-good and information-bad

(see (5.1)). We rewrite the reliability-good index set Gℓ and information-bad index

set Nℓ at level ℓ as

Gℓ , {i ∈ [N ] : Z(U i
ℓ |U1:i−1

ℓ , X1:N
1:ℓ−1, Y

1:N) ≤ 2−Nβ},

Nℓ , {i ∈ [N ] : Z(U i
ℓ |U1:i−1

ℓ , X1:N
1:ℓ−1, Z

1:N ) ≥ 1− 2−Nβ}.
(5.8)

Note that Gℓ andNℓ are defined by the asymmetric Bhattacharyya parameters. How-

ever, by Theorem 4.3 and Lemma 4.6, we have Gℓ = G(Ṽℓ) andNℓ = N (W̃ℓ), where

Ṽℓ and W̃ℓ are the corresponding symmetric channels for Bob and Eve at level ℓ. The

four sets Aℓ, Bℓ, Cℓ and Dℓ are defined in the same fashion as (5.5) with Gℓ and Nℓ

replacing G(Ṽℓ) and N (W̃ℓ), respectively.

As a result, we have three criteria: shaping-dependent, reliability-good and information-

bad. The whole index set [N ] is divided in a cube according to these three directions

which give us eight sets:

AS
ℓ = Aℓ ∩ Sℓ, ASc

ℓ = Aℓ ∩ Sc
ℓ

BS
ℓ = Bℓ ∩ Sℓ, BSc

ℓ = Bℓ ∩ Sc
ℓ

CSℓ = Cℓ ∩ Sℓ, CS
c

ℓ = Cℓ ∩ Sc
ℓ

DS
ℓ = Dℓ ∩ Sℓ, DSc

ℓ = Dℓ ∩ Sc
ℓ

By a careful analysis which will be given in the journal paper, we can obtain the

following lemma.

Lemma 5.4: Consider the reliability-good indices set Gℓ and information-bad

indices setNℓ defined as in (5.8). By striping off the source coding set Sℓ, we get the

new message set ASc

ℓ = Gℓ ∩Nℓ ∩ Sc
ℓ , the proportion of |ASc

ℓ | equals to that of |Aℓ|,

and the message rate after shaping can still be arbitrarily close to 1
2
log
(

1+SNRb

1+SNRe

)

.
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Proof. ASc

ℓ = Aℓ and (5.7).

5.4 Strong secrecy

In [74], an induced channel is defined to prove the strong secrecy. Here we call it

randomness induced channel because it is caused by feeding the subchannels in the

set Bℓ and Dℓ with uniformly random bits. Following the same fashion, we will

define an induced channel for the wiretap coding scheme with shaping. However,

this new induced channel is different from the randomness induced channel because

we are no longer feeding uniformly random bits to the subchannels in the set Bℓ and

Dℓ. In fact, some subchannels (covered by the mapping) should be fed with the bits

according to the distribution P (U i
ℓ |U1:i−1

ℓ , X1:N
1:l−1). We define the channel induced

by the shaping bits as the shaping induced channel.

Definition 5.2 (Shaping induced channel): The shaping induced channelQN(W,S)

is defined in terms of N uses of an asymmetric channel W , and a shaping subset S

of [N ] of size |S| = s. The input alphabet of QN(W,S) is {0, 1}N−s and the bits in

S are determined by the input bits according to a specific mapping.

According to the analysis in Sec. 5.3, we can set S as the set which consists of

all the bits decided by the mapping (including set B). Based on the shaping induced

channel, we define the new induced channel, which is caused by feeding a part of

the input bits of the shaping induced channel with uniformly random bits. It is a

combination of the shaping induced channel and randomness induced channel. The

input alphabet of QN(W,S,R) is {0, 1}N−s−r and the bits in R are uniformly and

independently random. This is different from the definition given in [74] because

the bits in S are neither independent to the message bits nor uniformly distributed.

As long as the input bits of the new induced channel are uniform and the shap-

ing bits are chosen according to all possible mappings (randomly pick one of the
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family of mappings each time), the new induced channel can still generate 2N pos-

sible realizations of X1:N
ℓ as N goes to infinity, and those x1:Nℓ can be viewed as

the output of N i.i.d binary sources with input distribution PXℓ|X1:ℓ−1
. These two

results are exactly the conditions required by Theorem 4.2. Specifically, we have

Z(U i
ℓ |U1:i−1

ℓ , X1:N
1:ℓ−1, Z

1:N ) = Z̃(Ũ i
ℓ |Ũ1:i−1

ℓ , X1:N
1:ℓ−1, X

1:N
ℓ ⊕ X̃1:N

ℓ , Z1:N ). In simple

words, this equation holds when x1:Nℓ and x1:Nℓ ⊕ x̃1:Nℓ are all selected from {0, 1}N

according to their distributions. Then we can exploit the relation between the asym-

metric channel and the corresponding symmetric channel to help us to bound the

mutual information of the asymmetric channel . Therefore, we have to stick to the

input distribution (uniform) of our new induced channel and also the distribution of

the mappings. This is similar to the setting of the randomness induced channel in

[74], where the input distribution and the randomness distribution are both set to be

uniform. However, the randomness induced channel is further proved to be sym-

metric, then any other input distribution can still achiev the strong secrecy and the

symmetry finally results in the semantic security. In this work, unfortunately, we

do not have the symmetry of the new induced channel, and the input distribution

which includes message bits and the independent frozen bits should be restricted to

be uniform. In other words, we can not fix the independent frozen bits as [74] did.

Lemma 5.5: Let Mℓ be the message and Fℓ be the independent frozen bits at the

input of the channel at the ℓ-th level after shaping, we have

I(MℓFℓ;Z
1:N , X1:N

1:ℓ−1) ≤ 2N2−Nβ′

.

Proof. For the shaping induced channel QN(Wℓ,Sℓ,R), we write the indices of the

input bits (Sℓ ∪ R)c = [N ] \ (Sℓ ∪ R) as (Sℓ ∪ R)c = {i1, i2, ..., iN−sℓ−r}, where
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|R| = r and |Sℓ| = sℓ, and assume that i1 < i2 < · · · < iN−sℓ−r. We have

I(MℓFℓ;Z
1:N , X1:N

1:ℓ−1) = I(U
(Sℓ∪R)c

ℓ ;Z1:N , X1:N
1:ℓ−1)

= I(U i1
ℓ , U

i2
ℓ , ..., U

iN−r−sℓ
ℓ ;Z1:N , X1:N

1:ℓ−1)

=

N−r−sℓ∑

j=1

I(U
ij
ℓ ;Z1:N , X1:N

1:ℓ−1|U i1
ℓ , U

i2
ℓ , ..., U

ij−1

ℓ )

=

N−r−sℓ∑

j=1

I(U
ij
ℓ ;Z1:N , X1:N

1:ℓ−1, U
i1
ℓ , U

i2
ℓ , ..., U

ij−1

ℓ )

(a)

≤
N−r−sℓ∑

j=1

I(U
ij
ℓ ;Z1:N , X1:N

1:ℓ−1, U
1
ℓ , U

2
ℓ , ..., U

ij−1
ℓ )

where (a) holds because adding more variables will not decrease the mutual infor-

mation.

Then the above mutual information can be bounded by the mutual information

of the symmetric channel plus an infinitesimal term as follows:

N−r−sℓ∑

j=1

I(U
ij
ℓ ;Z1:N , X1:N

1:ℓ−1, U
1:ij−1
ℓ )

(a)

≤
N−r−sℓ∑

j=1

I(Ũ
ij
ℓ ;Z1:N , X1:N

1:ℓ−1, X̃
1:N
ℓ ⊕X1:N

ℓ , Ũ
1:ij−1
ℓ ) +H(Ũ

ij
ℓ |Z1:N , X1:N

1:ℓ−1, X̃
1:N
ℓ ⊕X1:N

ℓ , Ũ
1:ij−1
ℓ )

−
N−r−sℓ∑

j=1

H(U
ij
ℓ |Z1:N , X1:N

1:ℓ−1, U
1:ij−1
ℓ )

(b)

≤
N−r−sℓ∑

j=1

I(Ũ
ij
ℓ ;Z1:N , X1:N

1:ℓ−1, X̃
1:N
ℓ ⊕X1:N

ℓ , Ũ
1:ij−1
ℓ )

+

N−r−sℓ∑

j=1

Z(U
ij
ℓ |Z1:N , X1:N

1:ℓ−1, U
1:ij−1
ℓ )− (Z(U

ij
ℓ |Z1:N , X1:N

1:ℓ−1, U
1:ij−1
ℓ ))2

(c)

≤
N−r−sℓ∑

j=1

I(Ũ
ij
ℓ ;Z1:N , X1:N

1:ℓ−1, X̃
1:N
ℓ ⊕X1:N

ℓ , Ũ
1:ij−1
ℓ ) +N2−Nβ

(d)

≤ N2−Nβ′

+N2−Nβ

≤ 2N2−Nβ′

for 0 < β′ < β < 0.5 and inequalities (a)-(d) follows from

(a) Ũ
ij
ℓ is uniformly distributed,



5.5. Reliability 137

(b) [7, Proposition 2] givesH(X|Y )−H(X|Y, Z) ≤ Z(X|Y )−(Z(X|Y, Z)2)

and Theorem 4.2,

(c) Our coding scheme can guarantee that Z(U
ij
ℓ |Z1:N , X1:N

1:ℓ−1, U
1:ij−1
ℓ ) is ei-

ther smaller than 2−Nβ
or greater than 1− 2−Nβ

,

(d) Lemma 5.1.

Finally, the strong secrecy can be proved in the same fashion as shown in (5.6).

5.5 Reliability

In the original setting of polar coding scheme for binary wiretap channel [74], how

to assign D is a problem. Assigning freezing bits to D guarantees the reliabil-

ity but achieves the weak secrecy, whereas assigning random bits to D guaran-

tees the strong secrecy but may violate the reliability requirement because D may

be nonempty. In order to ensure strong security, D is assigned with random bits

(D ∈ R), which results in the fact that this scheme failed to accomplish the theoret-

ical reliability. More explicitly, for any ℓ-th level channel W (Λi/Λi+1, σ
2
b ) at Bob’s

end, the probability of error is upper bounded by the sum of the Bhattacharyya pa-

rameters Z(W
(j)
N (Λi/Λi+1, σ

2
b )) of those bit-channels that are not frozen to zero. For

each bit-channel index j and β < 0.5, we have

j ∈ A ∪R = G(W (Λi/Λi+1, σ
2
b ), β) ∪ D.

By the definition (5.1), we can see that the sum of Z(W
(j)
N (Λi/Λi+1, σ

2
b )) over the

set G(W (Λi/Λi+1, σ
2
b ) is bounded by 2−Nβ

, and therefore, the error probability of

the ℓ-th level channel under the SC decoding, denoted by P SC
e (Λi/Λi+1, σ

2
b ), can be
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upper bounded by

P SC
e (Λi/Λi+1, σ

2
b ) ≤ 2−Nβ

+
∑

j∈D
Z(W

(j)
N (Λi/Λi+1, σ

2
b )).

Since multistage decoding is utilized, by the union bound, the final decoding error

probability for Bob is bounded as

Pr{M̂ 6=M} ≤
r−1∑

i=1

P SC
e (Λi/Λi+1, σ

2
b ).

Unfortunately, a proof that this scheme satisfies the reliability condition cannot be ar-

rived here because the bound of the sum
∑

j∈D Z(W
(j)
N (Λi/Λi+1, σ

2
b )) is not known.

Note that significantly low probabilities of error can still be achieved in practice

since the size of D is very small.

It is also worth mentioning that this reliability problem was recently solved in

[75], where a new scheme dividing the information message of each Λi/Λi+1 chan-

nel into several blocks is proposed. For a specific block, D is still assigned with

random bits and transmitted in advance in the set A of the previous block. This

scheme involves negligible rate loss and finally realizes reliability and strong secu-

rity simultaneously. In this case, if the reliability of each partition channel can be

achieved, i.e., for any ℓ-th level partition Λi/Λi+1, P SC
e (Λi/Λi+1, σ

2
b ) vanishes as N

goes to infinity. Then the total decoding error probability for Bob can be made arbi-

trarily small. Actually, based on the new scheme of assigning the problematic bits in

D [75], the error probability on level i can be upper bounded by

P SC
e (Λi/Λi+1, σ

2
b ) ≤ ǫiN ′ + ki · o(2−N ′β

),

where ki is the number of information blocks on the ℓ-th level, N ′ is the length

of each block which satisfies N ′ × ki = N and ǫiN is caused by the first separate
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block on the ℓ-th level consisting of the initial bits in Di. Since |Di| is extremely

small comparing to the block length N , the decoding failure probability for the first

block can be made arbitrarily small when N is sufficiently large. Therefore, Λb is an

AWGN-good lattice.

Note that the rate loss incurred by repeatedly transmitting bits in Di is negli-

gible because of its small size and the fact that only one block is wasted on each

level. Explicitly, the actually achieved secrecy rate in the ℓ-th level is given by

ki
ki+1

[C(Λi/Λi+1, σ
2
b ) − C(Λi/Λi+1, σ

2
e)]. Clearly, this rate can be made close to the

maximum secrecy rate by choosing sufficiently large ki as well.

The above analysis is for the coding design without shaping. When shaping is

involved, the problematic set Dℓ at each level is included in the shaping Sℓ. The

bits in Dℓ can be recovered by Bob simply by the sharing mapping and do not need

to use the blocking technique. By Theorem 4.3 and Theorem 4.4, the reliability

at each level can be guaranteed by uniformly distributed independent frozen bits

and random mapping with distribution P (U i
ℓ |U1:i−1

ℓ , X1:N
1:l−1). Consequently, by the

multilevel decoding and union bound, the expectation of the block error probability

of our wiretap coding scheme is vanishing as N goes to infinity.

Now we present the main theorem of this Chapter.

Theorem 5.1: Consider a multilevel coset code constructed from polar codes

based on asymmetric channels and lattice Gaussian shaping DZ,σs . Given σ2
e >

σ2
b , as the number of levels r = O(logN), N → ∞ and ǫZ

(

σsσe√
σ2
s+σ2

e

)

→ 0,

all strong secrecy rates R satisfying R < 1
2
log
(

1+SNRb

1+SNRe

)

are achievable for the

Gaussian wiretap channel.
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Proof.

lim
N→∞

R =
r∑

i=1

lim
N→∞

|ASc

ℓ |
N

=
r∑

i=1

I(Y ;Xi|X1, · · ·, Xi−1)− I(Z;Xi|X1, · · ·, Xi−1)

=
1

2
log

(
1 + SNRb

1 + SNRe

)

.

5.6 Discussions

We would like to explain our coding scheme for the Gaussian wiretap channel fur-

ther in terms of the lattice structures. As we discussed in the previous section, we

constructed the AWGN-good lattice Λb and the secrecy-good lattice Λe without con-

sidering the power constraint. We note that these two lattices are generated only if

the independent frozen bits in each level are all zeros. By using the lattice Gaussian

shaping Dσs,Z as our constellation, we actually implemented the lattice Gaussian

shaping over both Λb + χ and Λe + χ, where χ is a uniformly distributed shift. This

is because we can not fix the independent frozen bits Fℓ in our scheme (due to the

lack of the proof that the new induced channel is symmetric). However, the coset

leaders of the partition Λb+χ/Λe+χ are the same as the lattice partition Λb/Λe. To

sum up our coding scheme, Alice first associates each message m ∈ M to a coset

leader of Λb/Λe, then randomly picks a point in the coset Λe + χ + λm according

to the distribution DΛe+χ+λm,σs to send. The above scheme is consistent with the

theoretical model proposed in [9].

Another practical issue is that how to share the uniformly distributed bits in the

independent frozen bits and the specific mapping. The solution is that we assume

Alice shares a seed with both Bob and Eve. Then they can generate the independent
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frozen bits locally. Bob can recover the shaping frozen set according to the seed and

the distribution P (U i
ℓ |U1:i−1

ℓ , X1:N
1:l−1) which is available for Bob. We must admit that

it is possible for Eve to obtain some bits in the shaping frozen set Sℓ given Fℓ and

mapping even before the communication. An unavoidable question is that whether

such shaping bits in Sℓ make the messageMℓ insecure when Eve knows F and the

selected mapping in the current round of communication. Fortunately those bits turn

out to be irrelevant to the messageMℓ, and they can be viewed as another kind of

frozen bits in Sℓ. Therefore we can conclude that the whole shaping scheme is secure

in the sense that the mutual information leakage between M and Z1:N vanishes sub-

exponentially with the block length of polar codes N .

5.7 Summary

Polar lattices with discrete Gaussian shaping have been proved to be good in the

AWGN channel. We apply this technique to the Gaussian wiretap channel. The

design turns out to be a shaping over an AWGN-good polar lattice and a secrecy-

good polar lattice simultaneously. Finally it can be proved to achieve the strong

secrecy capacity of the Gaussian wiretap channel.



CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have refined Forney et al.’s multilevel approach to the construction

of AWGN-good lattices. The channel capacity of each level is calculated and a polar

code is constructed to achieve its capacity accordingly. This leads to the construction

of polar lattices and the proof of their AWGN-goodness. Polar lattices are of both

theoretic and practical interests. Since polar lattices are as explicit as polar codes,

their construction is equally efficient. Both the analysis and simulation results show

that the performance of polar lattices can be improved by increasing the dimension n

of the lattice partition chain. Compared with existing schemes [47, 44, 57, 46], polar

lattices are distinguished by their provable AWGN-goodness and low complexity,

namely, they asymptotically achieve the Poltyrev capacity with multi-stage decod-

ing. With discrete Gaussian shaping, polar lattices also achieve the capacity of the

power-constrained AWGN channel.

Following our previous work in [73], an explicit shaping scheme is proposed to

construct polar lattices which achieve the strong secrecy rate of Gaussian wiretap
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channels. Since our shaping scheme uses the discrete lattice Gaussian distribution,

the equivalent channel at each level is no longer symmetric, which requires capacity

achieving polar codes for asymmetric channel. Fortunately, this problem can be

solved by combining the design of channel coding and source coding together over

a symmetric channel. Merely considering the channel coding part would give us

secrecy-good polar lattices without shaping, as has been shown in [73]. To obtain

the optimum shaping gain, the input bits according to the source coding part should

be carefully selected. This also follows the concept that the shaping problem can

be actually viewed as a source coding problem. It is worth noting that the channel

equivalence between the related symmetric channel and the Λ/Λ′ channel provides

us much convenience for the coding design.

6.2 Future Work

It is well known that shaping has a close relation with quantization. Out next work

is to construct quantization-good polar lattices.

It also would be very interesting to apply polar lattices to network applica-

tions, for example, multiple access channel, interference alignment and compute-

and-forward problem. Here is a list of potential starting point:

1. Construct quantization-good polar lattice by employing the shaping technique

presented in this thesis. Compared the performance with trellis coded quanti-

zation.

2. If polar lattices can be proved to be quantization good. Then it is straightfor-

ward to prove them to achieve the Wyner-Ziv bound.

3. In order to improve the performance of polar lattices, a soft multi-stage decod-

ing is a promising direction. Maybe this can be implemented by a very long

SC decoder.
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4. The compute-and-forward problem also consists Gaussian noise and power

constraint. Some theoretical work has already been done with random lattices

and discrete Gaussian shaping. It would be very interesting to apply polar

lattices in this scenario.

5. Another direction to apply polar lattices is the broadcast channel and interfer-

ence channel. The construction of component polar codes need to be modified

according to different requirements.

6. Regarding the secrecy, the first problem is to prove polar lattice can achieve

the semantic security of the Gaussian wiretap channel. This requires the strong

secrecy for any distribution of the messages. The problem of the broadcast-

ing channel with confidential messages is still open. Polar lattices have the

potential to solve it.
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APPENDIX A

Minkowski-Hlawka Theorem

In this proof, we only use mod-p lattices for demonstration purpose, i.e., of the form

LC , {v ∈ Z
n : v ≡ c mod(pZn), c ∈ C}, where p is a prime and C(n, k) is a

linear code over Zp (Construction A). The lattice partition is Z/pZ. The fundamental

volume of a scaled mod-p lattice is

V (γLC) = γnpn−k,

for some γ ∈ R.

For any Riemann integrable function f : R
n → R of bounded support and any

positive ǫ, there exists a lattice Λ in R
n with fundamental volume 1 such that

∑

x∈Λ\{0}
f(x) <

∫

Rn

f(x)dx+ ǫ.

Theorem A.1 (MH Theorem for mod-p lattices, [14]): Let f be a Riemann in-

tegrable function R
n → R of bounded support. Then, for any integer k, 0 < k < n,
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and any fixed V , the approximation

1

C
∑

C∈C

∑

v∈γLC\{0}
f(v) ≈ V −1

∫

Rn

f(v)dv

where C is any balanced set of linear (n, k) codes over Zp, becomes exact in the limit

p→∞, γ → 0, γnpn−k = V fixed.

Proof.

1

C
∑

C∈C

∑

v∈γLC\{0}
f(v)

=
1

C
∑

C∈C




∑

v∈Zn\{0}:v mod p=0

f(γv) +
∑

v∈Zn:v mod p∈C\{0}
f(γv)





(a)
=

∑

v∈Zn\{0}:v mod p=0

f(γv) +
1

C
∑

C∈C

∑

c∈C\{0}

[
∑

v∈Zn:v mod p=c

f(γv)

]

(b)
=

∑

v∈Zn\{0}:v mod p=0

f(γv) +
pk − 1

pn − 1

∑

c∈Zn
p

[
∑

v∈Zn:v mod p=c

f(γv)

]

(c)
=

∑

v∈Zn\{0}:v mod p=0

f(γv) +
pk − 1

pn − 1

∑

v∈Zn:v mod p 6=0

f(γv),

where the step from (a) to (b) follows from the Basic Averaging Lemma in [14].

Since f has bounded support, the left term of (c) vanishes for sufficiently large γp

(i.e. f is the error probability function). The right term of (c) becomes

pk − 1

pn − 1

∑

v∈Zn:v mod p 6=0

f(γv) ≈ pk−nγ−n

∫

Rn

f(v)dv

which becomes exact in the limit p→∞, γ → 0.

All known proofs of the Minkowski-Hlawka theorem are obtained from aver-

aging over a large, usually infinite, class of lattices; in this sense, the Minkowski-

Hlawka theorem can be regarded as the random coding arguments. One can derive
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various existence results for packing lattices. For example, for a sequence of lattices

Λn, the best known asymptotic lower bound for the packing efficiency
r

pack

Λ

reffec
Λ

is equal

to 1
2
, a result known as the Minkowski-Hlawka theorem.



APPENDIX B

The proof of Lemma 3.1

By the definition of the flatness factor, we have

fσ,Λ1(x) ≤
1 + ǫΛ1(σ)

V (Λ1)
.

Thus, the differential entropy of the mod-Λ1 Gaussian noise is bounded by

h(Λ1, σ
2) = −

∫

V(Λ1)

fσ,Λ1(x) log fσ,Λ1(x)dx

≥ −
∫

V(Λ1)

fσ,Λ1(x) log
1 + ǫΛ1(σ)

V (Λ1)
dx

= − log
1 + ǫΛ1(σ)

V (Λ1)

= log V (Λ1)− log (1 + ǫΛ1(σ)).

Therefore, from (3.1), C(Λ1, σ
2) is bounded by log (1 + ǫΛ1(σ)). The second in-

equality in (3.5) follows from the fact log(1+x) = log2(e) · loge(1+x) ≤ log(e) ·x

for x > 0.



APPENDIX C

Proof of Theorem 4.3

Proof. Let Ei denote the set of pairs of u1:N and y1:N such that decoding error occurs

at the ith bit, then the block decoding error event is given by E ≡ ⋃i∈I Ei. According

to our encoding scheme, each codeword u1:N appears with probability

2−(|I|+|F|)
∏

i∈S
PU i|U1:i−1(ui|u1:i−1).

Then the expectation of decoding error probability over all random mapping is ex-

pressed as

E[Pe] =
∑

u1:N ,y1:N

2−(|I|+|F|)(
∏

i∈S
PU i|U1:i−1(ui|u1:i−1))

·PY 1:N |U1:N (y1:N |u1:N) [(u1:N , y1:N ) ∈ E ].

Now we define the probability distribution QU1:N ,Y 1:N as

QU1:N ,Y 1:N (u1:N , y1:N ) = 2−(|I|+|F|)(
∏

i∈S
PU i|U1:i−1(ui|u1:i−1))PY 1:N |U1:N (y1:N |u1:N ).
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Then the variational distance between QU1:N ,Y 1:N and PU1:N ,Y 1:N can be bounded as

2||QU1:N ,Y 1:N − PU1:N ,Y 1:N || =
∑

u1:N ,y1:N

|Q(u1:N , y1:N )− P (u1:N , y1:N )|

(a)
=

∑

u1:N ,y1:N

|
∑

i

(Q(ui|u1:i−1)− P (ui|u1:i−1))(
i−1∏

j=1

P (ui|u1:i−1))(
N∏

j=i+1

Q(ui|u1:i−1))Q(y1:N |u1:N )|

≤
∑

i∈I∪F

∑

u1:N ,y1:N

|Q(ui|u1:i−1)− P (ui|u1:i−1)|(
i−1∏

j=1

P (ui|u1:i−1))(
N∏

j=i+1

Q(ui|u1:i−1))Q(y1:N |u1:N )

=
∑

i∈I∪F

∑

u1:i−1

2P (u1:i−1)||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||

(b)

≤
∑

i∈I∪F

∑

u1:i−1

P (u1:i−1)
√

2ln2D(PUi|U1:i−1=u1:i−1 ||QUi|U1:i−1=u1:i−1)

≤
∑

i∈I∪F

√

2ln2
∑

u1;i−1

P (u1:i−1)D(PUi|U1:i−1=u1:i−1 ||QUi|U1:i−1=u1:i−1)

≤
∑

i∈I∪F

√

2ln2D(PUi|U1:i−1 ||QUi|U1:i−1)

≤
∑

i∈I

√

2ln2(1−H(U i|U1:i−1)) +
∑

i∈F

√

2ln2(1−H(U i|U1:i−1))

≤
∑

i∈I

√

2ln2(1− Z(U i|U1:i−1)2) +
∑

i∈F

√

2ln2(1− Z(U i|U1:i−1, Y 1:N )2)

≤ 2N
√

4ln2 · 2−Nβ = O(2−Nβ′

), (C.1)

where equality (a) follows from [8, Equation (56)] andQ(y1:N |u1:N ) = P (y1:N |u1:N ).

D(·||·) in the inequality (b) is the relative entropy, and this inequality holds because

of the Pinsker’s inequality. Then we have

E[Pe] = QU1:N ,Y 1N (E)

≤ ||QU1:N ,Y 1:N − PU1:N ,Y 1:N ||+ PU1:N ,Y 1:N (E)

≤ ||QU1:N ,Y 1:N − PU1:N ,Y 1:N ||+
∑

i∈I
PU1:N ,Y 1:N (Ei), (C.2)
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where

PU1:N ,Y 1:N (Ei) ≤
∑

u1:N ,y1:N

P (u1;i−1, y1:N )P (ui|u1:i−1, y1:N ) · [P (ui|u1:i−1, y1:N )

≤ P (ui ⊕ 1|u1:i−1, y1:N )]

≤
∑

u1:N ,y1:N

P (u1;i−1, y1:N )P (ui|u1:i−1, y1:N )

√

P (ui ⊕ 1|u1:i−1, y1:N )

P (ui|u1:i−1, y1:N )

= Z(U i|U1:i−1, Y 1:N ) ≤ 2−Nβ

. (C.3)

From (C.1), (C.2) and (C.3), we have E[Pe] = O(2−Nβ′

) for any β′ < β < 0.5.



APPENDIX D

Proof of Theorem 4.4

Proof. Let Ei denote the set of triples of u1:N2 , x1:N1 and y1:N such that decoding error

occurs at the i-th bit, then the block decoding error event is given by E ≡ ⋃i∈I Ei.

According to our encoding scheme, each codeword u1:N2 appears with probability

2−(|I2|+|F2|)
∏

i∈S2

PU i
2|U1:i−1

2 ,X1:N
1

(ui2|u1:i−1
2 , x1:N1 ).

Then the expectation of decoding error probability over all random mapping is ex-

pressed as

E[Pe] =
∑

u1:N
2 ,x1:N

1 ,y1:N

2−(|I2|+|F2|)(
∏

i∈S2

PU i
2|U1:i−1

2 ,X1:N
1

(ui2|u1:i−1
2 , x1:N1 ))

·PY 1:N ,X1:N
1 |U1:N

2
(y1:N , x1:N1 |u1:N2 ) [(u1:N2 , x1:N1 , y1:N ) ∈ E ].

Now we define the probability distribution QU1:N
2 ,X1:N

1 ,Y 1:N as

QU1:N
2

,X1:N
1

,Y 1:N (u1:N
2 , x1:N

1 , y1:N ) =2−(|I2|+|F2|) ·QX1:N
1

(x1:N
1 )

(
∏

i∈S2

PUi
2
|U1:i−1

2
,X1:N

1
(ui

2|u1:i−1
2 , x1:N

1 )) · PY 1:N |X1:N
1

,U1:N
2

(y1:N |u1:N
2 , x1:N

1 ).
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Then the variational distance between QU1:N
2 ,X1:N

1 ,Y 1:N and PU1:N
2 ,X1:N

1 ,Y 1:N can be

bounded as

2‖QU1:N
2

,X1:N
1

,Y 1:N − PU1:N
2

,X1:N
1

,Y 1:N ‖ =
∑

u1:N
2

,x1:N
1

,y1:N

|Q(u1:N
2 , x1:N

1 , y1:N )− P (u1:N
2 , x1:N

1 , y1:N )|

=
∑

u1:N
2

,x1:N
1

,y1:N

|Q(u1:N
2 |x1:N

1 )Q(x1:N
1 )Q(y1:N |u1:N

2 , x1:N
1 )− P (u1:N

2 |x1:N
1 )P (x1:N

1 )P (y1:N |u1:N
2 , x1:N

1 )|

(a)

≤
∑

u1:N
2

,x1:N
1

,y1:N

|Q(u1:N
2 |x1:N

1 )− P (u1:N
2 |x1:N

1 )|P (x1:N
1 )P (y1:N |u1:N

2 , x1:N
1 )

+
∑

u1:N
2

,x1:N
1

,y1:N

|Q(x1:N
1 )− P (x1:N

1 )|Q(u1:N
2 |x1:N

1 )P (y1:N |u1:N
2 , x1:N

1 )

where inequation (a) follows from [8, Equation (56)],Q(y1:N |u1:N2 , x1:N1 ) = P (y1:N |u1:N2 , x1:N1 ).

For the first summation, following the same fashion as the proof of Theorem 4.3, we

can prove

∑

u1:N
2

,x1:N
1

,y1:N

|Q(u1:N
2 |x1:N

1 )− P (u1:N
2 |x1:N

1 )|P (x1:N
1 )P (y1:N |u1:N

2 , x1:N
1 ) ≤ 2N

√

4ln2 · 2−Nβ .

According to the result of the coding scheme for level 1, we already have

2‖QU1:N
1 ,Y 1:N − PU1:N

1 ,Y 1:N‖ ≤ 2N
√

4ln2 · 2−Nβ .

Since we have PY 1:N |U1:N
1

= QY 1:N |U1:N
1

, we can write

2‖QU1:N
1
− PU1:N

1
‖ ≤ 2N

√

4ln2 · 2−Nβ .

Clearly, there is a one to one mapping between U1:N
1 andX1:N

1 , then we immediately

have 2‖QX1:N
1
− PX1:N

1
‖ ≤ 2N

√
4ln2 · 2−Nβ . Therefore, for the second summation,

∑

u1:N
2 ,x1:N

1 ,y1:N

|Q(x1:N1 )− P (x1:N1 )|Q(u1:N2 |x1:N1 )P (y1:N |u1:N2 , x1:N1 )

=
∑

x1:N
1

|Q(x1:N1 )− P (x1:N1 )| ≤ 2N
√

4ln2 · 2−Nβ .
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Then we have ||QU1:N
2 ,X1:N

1 ,Y 1N − PU1:N
2 ,X1:N

1 ,Y 1N || ≤ 4N
√
4ln2 · 2−Nβ

, and

E[Pe] = QU1:N
2 ,X1:N

1 ,Y 1N (E)

≤ ‖QU1:N
2 ,X1:N

1 ,Y 1N − PU1:N
2 ,X1:N

1 ,Y 1N ‖+ PU1:N
2 ,X1:N

1 ,Y 1N (E)

≤ ‖QU1:N
2 ,X1:N

1 ,Y 1N − PU1:N
2 ,X1:N

1 ,Y 1N ‖+
∑

i∈I
PU1:N

2 ,X1:N
1 ,Y 1N (Ei),

The rest part of the proof follows the same fashion of the proof of Theorem 4.3.

Finally we have E[Pe] ≤ N2−Nβ′

for any β′ < β < 0.5.
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