877 research outputs found

    Achieving the Capacity of any DMC using only Polar Codes

    Full text link
    We construct a channel coding scheme to achieve the capacity of any discrete memoryless channel based solely on the techniques of polar coding. In particular, we show how source polarization and randomness extraction via polarization can be employed to "shape" uniformly-distributed i.i.d. random variables into approximate i.i.d. random variables distributed ac- cording to the capacity-achieving distribution. We then combine this shaper with a variant of polar channel coding, constructed by the duality with source coding, to achieve the channel capacity. Our scheme inherits the low complexity encoder and decoder of polar coding. It differs conceptually from Gallager's method for achieving capacity, and we discuss the advantages and disadvantages of the two schemes. An application to the AWGN channel is discussed.Comment: 9 pages, 7 figure

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor

    Polar Coding for Secure Transmission and Key Agreement

    Get PDF
    Wyner's work on wiretap channels and the recent works on information theoretic security are based on random codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note, the attempt is to overcome this elusive task by employing the polar coding technique of Ar{\i}kan. It is shown that polar codes achieve non-trivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. Next, fading erasure wiretap channels are considered and a secret key agreement scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI). The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading block, which is then exploited with privacy amplification techniques to generate secret keys.Comment: Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2010), Sept. 2010, Istanbul, Turke

    On the Construction of Polar Codes for Achieving the Capacity of Marginal Channels

    Full text link
    Achieving security against adversaries with unlimited computational power is of great interest in a communication scenario. Since polar codes are capacity achieving codes with low encoding-decoding complexity and they can approach perfect secrecy rates for binary-input degraded wiretap channels in symmetric settings, they are investigated extensively in the literature recently. In this paper, a polar coding scheme to achieve secrecy capacity in non-symmetric binary input channels is proposed. The proposed scheme satisfies security and reliability conditions. The wiretap channel is assumed to be stochastically degraded with respect to the legitimate channel and message distribution is uniform. The information set is sent over channels that are good for Bob and bad for Eve. Random bits are sent over channels that are good for both Bob and Eve. A frozen vector is chosen randomly and is sent over channels bad for both. We prove that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions and approaches the secrecy capacity. We further empirically show that in the proposed scheme for non-symmetric binary-input discrete memoryless channels, the equivocation rate achieves its upper bound in the whole capacity-equivocation region

    Properties and Construction of Polar Codes

    Full text link
    Recently, Ar{\i}kan introduced the method of channel polarization on which one can construct efficient capacity-achieving codes, called polar codes, for any binary discrete memoryless channel. In the thesis, we show that decoding algorithm of polar codes, called successive cancellation decoding, can be regarded as belief propagation decoding, which has been used for decoding of low-density parity-check codes, on a tree graph. On the basis of the observation, we show an efficient construction method of polar codes using density evolution, which has been used for evaluation of the error probability of belief propagation decoding on a tree graph. We further show that channel polarization phenomenon and polar codes can be generalized to non-binary discrete memoryless channels. Asymptotic performances of non-binary polar codes, which use non-binary matrices called the Reed-Solomon matrices, are better than asymptotic performances of the best explicitly known binary polar code. We also find that the Reed-Solomon matrices are considered to be natural generalization of the original binary channel polarization introduced by Ar{\i}kan.Comment: Master thesis. The supervisor is Toshiyuki Tanaka. 24 pages, 3 figure

    Polar Coding for Achieving the Capacity of Marginal Channels in Nonbinary-Input Setting

    Full text link
    Achieving information-theoretic security using explicit coding scheme in which unlimited computational power for eavesdropper is assumed, is one of the main topics is security consideration. It is shown that polar codes are capacity achieving codes and have a low complexity in encoding and decoding. It has been proven that polar codes reach to secrecy capacity in the binary-input wiretap channels in symmetric settings for which the wiretapper's channel is degraded with respect to the main channel. The first task of this paper is to propose a coding scheme to achieve secrecy capacity in asymmetric nonbinary-input channels while keeping reliability and security conditions satisfied. Our assumption is that the wiretap channel is stochastically degraded with respect to the main channel and message distribution is unspecified. The main idea is to send information set over good channels for Bob and bad channels for Eve and send random symbols for channels that are good for both. In this scheme the frozen vector is defined over all possible choices using polar codes ensemble concept. We proved that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions. It is further shown that uniform distribution of the message is the necessary condition for achieving secrecy capacity.Comment: Accepted to be published in "51th Conference on Information Sciences and Systems", Baltimore, Marylan

    Universal Polar Codes for More Capable and Less Noisy Channels and Sources

    Full text link
    We prove two results on the universality of polar codes for source coding and channel communication. First, we show that for any polar code built for a source PX,ZP_{X,Z} there exists a slightly modified polar code - having the same rate, the same encoding and decoding complexity and the same error rate - that is universal for every source PX,YP_{X,Y} when using successive cancellation decoding, at least when the channel PYXP_{Y|X} is more capable than PZXP_{Z|X} and PXP_X is such that it maximizes I(X;Y)I(X;Z)I(X;Y) - I(X;Z) for the given channels PYXP_{Y|X} and PZXP_{Z|X}. This result extends to channel coding for discrete memoryless channels. Second, we prove that polar codes using successive cancellation decoding are universal for less noisy discrete memoryless channels.Comment: 10 pages, 3 figure

    Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels

    Get PDF
    A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity I(W)I(W) of any given binary-input discrete memoryless channel (B-DMC) WW. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of NN independent copies of a given B-DMC WW, a second set of NN binary-input channels {WN(i):1iN}\{W_N^{(i)}:1\le i\le N\} such that, as NN becomes large, the fraction of indices ii for which I(WN(i))I(W_N^{(i)}) is near 1 approaches I(W)I(W) and the fraction for which I(WN(i))I(W_N^{(i)}) is near 0 approaches 1I(W)1-I(W). The polarized channels {WN(i)}\{W_N^{(i)}\} are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC WW with I(W)>0I(W)>0 and any target rate R<I(W)R < I(W), there exists a sequence of polar codes {Cn;n1}\{{\mathscr C}_n;n\ge 1\} such that Cn{\mathscr C}_n has block-length N=2nN=2^n, rate R\ge R, and probability of block error under successive cancellation decoding bounded as P_{e}(N,R) \le \bigoh(N^{-\frac14}) independently of the code rate. This performance is achievable by encoders and decoders with complexity O(NlogN)O(N\log N) for each.Comment: The version which appears in the IEEE Transactions on Information Theory, July 200
    corecore