765 research outputs found

    Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme

    Full text link
    In a slow fading channel, how to find a cooperative diversity scheme that achieves the transmit diversity bound is still an open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF) schemes do not improve with the number of relays in terms of the diversity multiplexing tradeoff (DMT) for multiplexing gains r higher than 0.5. In this work, we study the class of slotted amplify-and-forward (SAF) schemes. We first establish an upper bound on the DMT for any SAF scheme with an arbitrary number of relays N and number of slots M. Then, we propose a sequential SAF scheme that can exploit the potential diversity gain in the high multiplexing gain regime. More precisely, in certain conditions, the sequential SAF scheme achieves the proposed DMT upper bound which tends to the transmit diversity bound when M goes to infinity. In particular, for the two-relay case, the three-slot sequential SAF scheme achieves the proposed upper bound and outperforms the two-relay non-orthorgonal amplify-and-forward (NAF) scheme of Azarian et al. for multiplexing gains r < 2/3. Numerical results reveal a significant gain of our scheme over the previously proposed AF schemes, especially in high spectral efficiency and large network size regime.Comment: 30 pages, 11 figures, submitted to IEEE trans. IT, revised versio

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    • …
    corecore